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ABSTRACT 
Sampling rate conversion using the filter banks is proposed in 
the field of digital signal processing. However, in sampling rate 
conversion with a rational factor, the computational complexity 
may become very large. Moreover whenever the sampling rate is 
changed, it is necessary to design the filter again. In this paper, 
hence, we present a kernel with block structure for sampling rate 
conversion. As the filter proposed has the impulse response 
approximated by polynomials, it is unnecessary redesign 
whenever the sampling rate is changed. The kernel proposed has 
the block structure that the impulse response of the sampling 
section since the third is represented by the polynomial used for 
the second sampling section. Therefore, the filter has less 
memory. Moreover, the filter has the advantage that it is 
possible to correspond to arbitrary fractional sampling rate 
conversion. 

1. INTRODUCTION 

Sampling rate conversion widely used in subband coding [6], 
A/D and D/A transitions [4] etc. is an important techniques. The 
technique using filter banks has been popularly used for digital 
sampling rate conversion for a fixed ratio /M N , where M  and 
N  are positive integers [8]. In the application of sampling rate 

conversion from compact disc (CD) to digital audio tape (DAT) 
[1]-[3], because M  and N  are 160 and 147 respectively, the 
computational complexity of this method become very large. 
Moreover this method is necessary to redesign the filter, 
whenever the sampling rate is changed. 

Then, we proposed an interpolation kernel (filter) approximated 
by using any quadratic functions for piecewise the sinc function 
[5]. This method is unnecessary to redesign the filter, whenever 
the sampling rate is changed, and the kernel obtained is easy to 
implement. However, to obtain a large attenuation in the 
stopband, a lot of quadratic functions are needed. Therefore the 
computational complexity of this method increases. 

In this paper, hence, we present kernel with block structure for 
sampling rate conversion. The kernel proposed has the block 
structure that the impulse response of the sampling section since 
the third is represented by the polynomial used for the second 
sampling section. Therefore, the filter has less memory. As the 
filter proposed has the impulse response approximated by 
polynomials, it is unnecessary to redesign the filter whenever the 
sampling rate is changed. Moreover, the filter has the advantage 

that it is possible to correspond to arbitrary fractional sampling 
rate conversion. 

2. KERNEL FOR INTERPOLATION 

In this section, the structure and the design method of the filter 
proposed are described. 

2.1 Kernel Structure 

Reconstruction of a piecewise continuous function from discrete 
data is taken to be a linear combination of input data and a 
reconstruction kernel. For unit spaced samples, this is 
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where if  are the sample values and y(  is the reconstruction 
kernel. In [5], we proposed a kernel approximated to each 
sampling section piece by any quadratic functions as follows. 
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Because the coefficient of piecewise local quadratic functions is 
different, an amount of memory to compose the kernel increase 
when the sampling section and number of quadratic functions 
increase. Therefore, to obtain a large attenuation in the stopband, 
the computational complexity of this method increases. 

Hence, we present a filter with block structure. This filter uses 
the coefficient of the same quadratic function as the second 
sampling section from the third sampling section. Figure 1 shows 
the proposed structure of filtre with 5 sampling sections and 
figure 2 shows the outline of the proposed filter and. Moreover, 
the proposed kernel of the general form is 
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where  N  and  are the number of polynomials for one 
sampling section and the number of sampling sections. e  is 
arbitrary constant of proportionality. 

S
i

2.2 Kernel design 

To produce a useful filter from the prposed general form, we 
need to apply restrictions to eq. (3) 
1) 1,0( )g x g=   for  0x =

2) 2,( ) ng x g=   for nx
N

=  

3)   for ( ) 0g x = x s=  
4) C0-Continuous 
We notice from conditions 1) and 3) that the kernel is zero 

Fig. 2 The outline of the proposed filter
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intersymbol interference. Moreover, we notice from conditions 
2) that each quadratic function starts and ends at same points. 
Substituting the above four restrictions in eq. (2), we obtain eq. 
(4).  

Now, to enable the achievement of a large attenuation in the 
stopband, it approximates in the frequency domain. The 
frequency characteristic of eq. (3) is 
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= =
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where  and  is a number of evaluation points in one 
sampling section.  is coefficient multiplied by the amplitude in 
the second sampling section to obtain the amplitude for each 
sampling section since the third and e . Moreover, 

T=1/L L
ie

0 1= ( )g jL  is 
all equal excluding . 0≠j

Now, an ideal frequency characteristic is obtained by 
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Moreover, let W and  be the weighting function and the 
maximum allowable approximation error, respectively. Then, the 
design problem of the filter proposed is to find coefficients 

( )ω δ

je , 

and ,i ja ,i jg  satisfying 

( )[ ( ) ( )]W D Gδ ω ω ω− ≤ − ≤ δ  (7) 

on the evaluation frequency points 0 . By the way, 
Because 

ω π≤ ≤
je  and the quadratic coefficients, and ,i ja ,i jg , can not 

be optimized at the same time, eq. (7) can not be solved by using 
a standard linear programming. Therefore, in the proposed 
method, je  is fixed by arbitrary value and the quadratic 

coefficients, and ,i ja ,i jg , are optimized by using a standard 
linear programming as follows: 
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Next the obtained a and ,i j ,i jg  are fixed and je  is optimized by 
using a standard linear programming as follows: 
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The above operation continues until the difference  and  
is less than a value of 10 . Then, with coefficients, 

iδ 1iδ +

5−
je , , 

and 
,i ja

,i jg , the filter proposed can be formed as FIR filter. In this 
method, we are confirming that the same filter can be designed 
though a variety initial value of je  is given. 

3. EXAMPLE 

In this section, to show the proposed filter effectiveness, we 
consider about the following designs. 

3.1 Example 1 

We think about the filter design of the following specification. 

[Specifications] 

N  : 3, S  : 5, L  : 9, roll-off rate : 0.25 

Passband edge: 0.75, Stopband edge : 1.25,  

Weight : 1 (All the frequencies) 

The time response and its amplitude characteristics of the filter 
obtained are shown in figs. 3 and 4, respectively. 

It’s clear from fig. 3 that the time response of the proposed filter 
is the zero intersymbol interference because ( )g x  exactly 
crosses zero except at the point . In fig. 4, solid line and 
dash line indicate the amplitude response of the proposed filter 
and the filter in the same specification without the block 
processing, that is, filter using ref [5], respectively. The number 
of the polynomial coefficients of the former filter is 15 and one 
of latter filter is 26. Consequently, the filter using the proposed 
block processing method can achieve an equal characteristic by 
less memory. 

0x =

3.2 Example 2 

This example shows that the amplitude response of the proposed 
filter dose not change if the sampling rate is changed into the 
rational number. 

[Specifications] 

N  : 3, S  : 5, roll-off rate : 0.25 

Passband edge: 0.75, Stopband edge : 1.25,  

Weight : 1 (All the frequencies) 

In fig. 5, the amplitude response of the obtained filter to be 
upsampling 9 to 12.5 is shown by solid line and one of the 
obtained filter to be downsampling 15 to 12.5 is shown by dash 
line. It is clear from fig. 5 that the amplitude response obtained 
even if the sampling rate changes very looks like. That is, even if 
the sampling rate changes, the proposed filter need not be 
designed. Moreover, the filter proposed has the advantage that it 
is possible to correspond to arbitrary fractional sampling rate 
conversion. 
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4. SUMMARY 

In this paper, we present a kernel with block structure for 
sampling rate conversion. The kernel proposed has the block 
structure that the impulse response of the sampling section since 
the third is represented by the polynomial used for the second 
sampling section. Therefore, the filter has less memory. As the 
filter proposed has the impulse response approximated by 
polynomials, it is unnecessary to redesign whenever the 
sampling rate is changed. Moreover, the filter has the advantage 
that it is possible to correspond to arbitrary fractional sampling 
rate conversion. 

 

5. REFERENCES 
 [1] S. Park, G. Hillman and R. Robles, “A novel structure for 
realtime digital sample-rate converters with finite precision error 
analysis,” Int. Conf. Acoust. Speech Signal Processing, pp. 3613-

3616, 1991. 
[2] S. Cucchi, F. Desiman, G. Parladori and G. Sicuranza, “DSP 
implementation of arbitrary sampling frequency conversion for 
high quality sound application,” Int. Conf. Acoust. Speech Signal 
Processing, pp. 3609-3612, 1991. 
[3] C. W. Farrow, “A continuously variable digital delay 
element,” Int. Symp. Circuits and Systems, pp.2641-2645, 1988. 
[4] Einar Maeland: “On the Comparison of Interpolation 
Methods“,IEEE Trans. Medical Imaging, vol. 7, no.3,pp.213-217, 
September.1988. 
[5] Kazuhiro Ozawa Naoyuki Aikawa and Masamitsu Sato “An 
interpolation 1-D kernel with quadratic polynomials,” Int. Conf. 
ITC-CSCC2000, no.WeA I-3-2, pp 563-566,  2000. 
[6]  J. C. Candy and G. C. Temes, “Oversampling Delter-Sigma 
Data Converter,” IEEE Press, 1992. 
[7] J. W. Woods, “Subband Coding of images,” Kluwer 
Academic Publishers, 1981. 
[8] P. P. Vaidyanathan, “Multirate Systems and Filter Banks,” 
Prentice-Hall, Englewood Cliffts NJ, 1993. 

Fig. 3 The time response 

Fig. 5 The comparison of the amplitude responses of the 
different sampling rate

Fig. 4 Amplitude response of the proposed filter 
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