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ABSTRACT

Sampling rate conversion using the filter banks is proposed in
the field of digital signal processing. However, in sampling rate
conversion with a rationa factor, the computational complexity
may become very large. Moreover whenever the sampling rateis
changed, it is necessary to design the filter again. In this paper,
hence, we present a kernel with block structure for sampling rate
conversion. As the filter proposed has the impulse response
approximated by polynomials, it is unnecessary redesign
whenever the sampling rate is changed. The kernel proposed has
the block structure that the impulse response of the sampling
section since the third is represented by the polynomial used for
the second sampling section. Therefore, the filter has less
memory. Moreover, the filter has the advantage that it is
possible to correspond to arbitrary fractional sampling rate
conversion.

1. INTRODUCTION

Sampling rate conversion widely used in subband coding [6],
A/D and D/A transitions [4] etc. is an important techniques. The
technique using filter banks has been popularly used for digital
sampling rate conversion for afixed ratio M /N, where M and
N are positive integers [8]. In the application of sampling rate
conversion from compact disc (CD) to digital audio tape (DAT)
[1]-[3], because M and N are 160 and 147 respectively, the
computational complexity of this method become very large.
Moreover this method is necessary to redesign the filter,
whenever the sampling rate is changed.

Then, we proposed an interpolation kernel (filter) approximated
by using any quadratic functions for piecewise the sinc function
[5]. This method is unnecessary to redesign the filter, whenever
the sampling rate is changed, and the kernel obtained is easy to
implement. However, to obtain a large attenuation in the
stopband, a lot of quadratic functions are needed. Therefore the
computational complexity of this method increases.

In this paper, hence, we present kernel with block structure for
sampling rate conversion. The kernel proposed has the block
structure that the impulse response of the sampling section since
the third is represented by the polynomia used for the second
sampling section. Therefore, the filter has less memory. As the
filter proposed has the impulse response approximated by
polynomials, it is unnecessary to redesign the filter whenever the
sampling rate is changed. Moreover, the filter has the advantage
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that it is possible to correspond to arbitrary fractional sampling
rate conversion.

2. KERNEL FOR INTERPOLATION

In this section, the structure and the design method of the filter
proposed are described.

2.1 Kernd Structure

Reconstruction of a piecewise continuous function from discrete
data is taken to be a linear combination of input data and a
reconstruction kernel. For unit spaced samples, thisis

)

f(x)=2 fiy(x-i) )
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where f, are the sample values and y(x) is the reconstruction

kernel. In [5], we proposed a kernel approximated to each
sampling section piece by any quadratic functions as follows.
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Because the coefficient of piecewise local quadratic functions is
different, an amount of memory to compose the kernel increase
when the sampling section and number of quadratic functions
increase. Therefore, to obtain a large attenuation in the stopband,
the computational complexity of this method increases.

Hence, we present a filter with block structure. This filter uses
the coefficient of the same quadratic function as the second
sampling section from the third sampling section. Figure 1 shows
the proposed structure of filtre with 5 sampling sections and
figure 2 shows the outline of the proposed filter and. Moreover,
the proposed kernel of the general formis
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Fig. 1 The structure (@) no block structure (b) block structure

where

N and S are the number of polynomias for one

sampling section and the number of sampling sections. g is
arbitrary constant of proportionality.

2.2Kernd design

To produce a useful filter from the prposed general form, we
need to apply restrictionsto eg. (3)
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We notice from conditions 1) and 3) that the kernel is zero
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Fia. 2 The outline of the pronosed filter
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intersymbol interference. Moreover, we notice from conditions
2) that each quadratic function starts and ends at same points.
Substituting the above four restrictions in eg. (2), we obtain eqg.

4.

Now, to enable the achievement of a large attenuation in the
stopband, it approximates in the frequency domain. The
frequency characteristic of eg. (3) is

-1 (j+DL
G(w) = > 8 > g(iT)cos(icT) (5

i=0 =il

where T=1/L and L is a number of evaluation points in one
sampling section. g is coefficient multiplied by the amplitude in

the second sampling section to obtain the amplitude for each
sampling section since the third and e, =1. Moreover, g(jL) is

all equal excluding j#0.
Now, an ideal frequency characteristic is obtained by

1 Passband
D(w) (6)
0 Sopband
Moreover, let W(w) and O be the weighting function and the

maximum allowable approximation error, respectively. Then, the
design problem of the filter proposed is to find coefficients e;,

a,;and g, ; satisfying
-0 W (w)[D(w)-G(w)]<d @)

on the evaluation frequency points 0< w< 77 . By the way,
Because g, and the quadratic coefficients, & ; and g, ; , can not

be optimized at the same time, eg. (7) can not be solved by using
a standard linear programming. Therefore, in the proposed
method, e, is fixed by arbitrary value and the quadratic

coefficients, & ; and g, ; , are optimized by using a standard
linear programming as follows:

Minimize o'
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Next the obtained & ; and g, ; arefixed and g, is optimized by
using a standard linear programming as follows:
Minimize &2
Subject to
s1 (L

W(w)> e > G(iT)cos(ial) - 8% < -W(w)D(w) 9)
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The above operation continues until the difference & and &'
is less than a value of 10°. Then, with coefficients, e, & ; ,

and g, ; , the filter proposed can be formed as FIR filter. In this

method, we are confirming that the same filter can be designed
though avariety initial value of e isgiven.

3. EXAMPLE

In this section, to show the proposed filter effectiveness, we
consider about the following designs.

3.1 Examplel

We think about the filter design of the following specification.
[Specifications]

N :3, S:5 L :9,roll-off rate: 0.25

Passband edge: 0.75, Stopband edge : 1.25,

Weight : 1 (All the frequencies)

The time response and its amplitude characteristics of the filter
obtained are shown in figs. 3 and 4, respectively.

It's clear from fig. 3 that the time response of the proposed filter
is the zero intersymbol interference because g(x) exactly

crosses zero except at the point x=0. In fig. 4, solid line and
dash line indicate the amplitude response of the proposed filter
and the filter in the same specification without the block
processing, that is, filter using ref [5], respectively. The number
of the polynomial coefficients of the former filter is 15 and one
of latter filter is 26. Consequently, the filter using the proposed
block processing method can achieve an equal characteristic by
less memory.

3.2 Example 2

This example shows that the amplitude response of the proposed
filter dose not change if the sampling rate is changed into the
rational number.

[Specifications]
N :3, S:5 roll-off rate: 0.25
Passband edge: 0.75, Stopband edge : 1.25,
Weight : 1 (All the frequencies)

In fig. 5, the amplitude response of the obtained filter to be
upsampling 9 to 12.5 is shown by solid line and one of the
obtained filter to be downsampling 15 to 12.5 is shown by dash
line. It is clear from fig. 5 that the amplitude response obtained
even if the sampling rate changes very looks like. That is, even if
the sampling rate changes, the proposed filter need not be
designed. Moreover, the filter proposed has the advantage that it
is possible to correspond to arbitrary fractiona sampling rate
conversion.
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4. SUMMARY

In this paper, we present a kernel with block structure for
sampling rate conversion. The kernel proposed has the block
structure that the impulse response of the sampling section since
the third is represented by the polynomia used for the second
sampling section. Therefore, the filter has less memory. As the
filter proposed has the impulse response approximated by
polynomials, it is unnecessary to redesign whenever the
sampling rate is changed. Moreover, the filter has the advantage
that it is possible to correspond to arbitrary fractional sampling
rate conversion.
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Fig. 3 The time response
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