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ABSTRACT

It is shown that polynomial prediction is equivalent to
requiring that the transfer function of the predictor interpo-
lates the 'prediction-functionf(z) = z and its derivatives
atz = 1. This result is generalized to all other linear filter-
ing operations, including interpolation, differentiation and
smoothing, and to all other narrowband signal models, i.e.
polynomially modulated complex exponential signals. An
algorithm for determining the coefficients of this type of
FIR filters with minimum noise gain is presented and illus-
trated by deriving the coefficients of predictive differentia-
tors.

1. INTRODUCTION
Polynomial predictors are filters that extrapolate a polyno-
mial signal model while attenuating wideband noise [1].
They are useful in situations where minimal delay or pre-
diction of a smooth signal model is required, as in e.g. ele-
vator control [2], DC-level detection in EEG [3] and zero-
crossing detection in the synchronization of thyristor power
converters [4].

Polynomials are a special class of signals in many ways,
but one key property of polynomials which is shared by a
much larger class of signals is that they are linearly pre-
dictable. This larger signal class of linearly predictable sig-

nals, which we also refer to as narrowband signals, is com-

posed of arbitrary finite sums of polynomially modulated
complex exponential signals.

In this paper we formulate the design problem of poly-
nomial predictors in the frequency domain, and find that the
constraint of polynomial prediction is equivalent to the re-

guirement that the frequency response of the predictor inter-

polates the functiorf(z) = z and its derivatives at = 1.
We can interpret this as follows: although polynomial sig-
nals strictly have na-transform, they can be represented
by line spectra and derivatives at= 1, and the function
f(z) = z is the transfer function of the (causally unreal-
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izable) ideal one-step—ahead predictor. By extending this
analysis to other points besides= 1 and other functions
thanf(z) = z we see that the requirements for a filter to act
like any given ideal filter for a class of narrowband signals
corresponds to interpolation of the ideal transfer function
at points in the complex plane specified by the narrowband
signal model.

A design method for finding the optimal coefficients of
this class of FIR filters with minimal noise gain has been
presented in [5]. The design of predictive differentiators is
illustrated as a special case.

2. POLYNOMIAL PREDICTION ASCOMPLEX
INTERPOLATION

Let h(n) be the impulse response of a one-step—ahead FIR
predictor of polynomial ordek, i.e. we have

N
> h(k)(-k)'=1,£=0,1,...,L, 1)
k=0

where the length of the filter i& + 1. This condition guar-
antees that

N
> k) n—k)' =@n+1)" £=0,1,...,L,
k=0

for all n.

It has been shown [6] thdf ;1 (z) is the transfer func-
tion of a polynomial predictor of orddr + 1 if and only if
Hy,(z) is a predictor of ordef.. Based on this result we can
prove the following:

Lemma. If H(z) is a polynomial predictor of ordef,
then

H(Z)|Z=1 ].7
HY ()01 = 1, L>1,
HO()my = 0,0=23,... L,
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whereH ) (2)|,
uated at = z.

_., denotes thé'" derivative ofH (z) eval-

Proof. For L = 0, based on eq. (1), we have

N
H(z)l,y =Y hk)z*| _, Zh @)
k=0
and similarly forL =1
N
HY (2), = Y hk)(=kz"_, @
k;()
= > h(k)(~k) 4)
k=0
= 1 (5)

Assume now that the result holds for predictors of order
at mostL and consider a predictdf . (z) of orderL + 1,
whereL > 1. Based on the result mentioned above, we can
expresH .1 (z) as

Hpgi(2) =14 (1= 27" )Hy(2),

whereH | (z) is a predictor of ordef.. Now calculating the
(L + 1)*® derivative ofH1(z) atz = 1 using Leibnitz’s
rule [7]

(di)+ 1+ (1= =) H ()
. (di)+ (==Y Hue)l.y
L+1 L+1—¢

where we've used egs. (2), (5), the fact that

(

and the induction hypothesil (9 (z)|.—;
2,3,...,L

£
%) (1—2"Y|._, = (=Dt

= 0 for ¢

There is a good explanation for the values of the deriva-
tives of polynomial predictors given by the previous lemma:
the sequencg, 1, 0,0, ... is composed of the values of the
derivatives of the functiorf(z) = z atz = 1. The func-
tion f(z) = z in turn is the transfer function of the ideal
one-step—ahead predictor. Thus, we get the following in-
terpretation: polynomial predictors of ordérare exactly
those filters which have a transfer function which interpo-
latesf(z) = z and its firstL derivatives at = 1.

This raises the question of what happens if we interpo-
lateother transfer functions, for example the idéab-step—
ahead predictor functiorfi(z) = 22 and its derivatives at
z = 1? Does this give us a two-step—ahead polynomial pre-
dictor? It turns out, in fact, that it does, as we will show in
the next section.

Furthermore, by the choice of the points in the complex
plane which interpolate the ideal transfer function we can
select the set of signals for which the interpolated transfer
function behaves as the ideal filter. For example, if we in-
terpolate the desired function at= exp(+jwo), the filter
behaves like the ideal filter for the signais(won + ¢),
whereg is any real number [8].

3. FILTERING ASCOMPLEX INTERPOLATION

Let I(z) be the ideal transfer function we wish to approxi-
mate, and choose poindg, z1, . . . , zx inthe complex plane
with corresponding multiplicitied/q, M, ..., Mk. Then
we have the following result.

Theorem. Let H(z) be the transfer function of any
causal FIR filter that interpolatd$z) and its first)/;, deriva-
tives at the point = z, i.e. we have

H"™ (z) = I (2), k=0,1,...,K, m =0,1,..., M.

Then the output of the filteH (z) for the input signal

whereL < My, is equal to the output of the filtdi(z) to
the inputz(n).

Proof. Consider the signat(n) = n’z%. We will show
that the outpuy(n) of the filter H(z) to the inputz(n) is
determined completely by the values of the fifstieriva-
tives of H(z) atz = z¢. We have

N
y(n) = D h(k)n—k) 2"
k=0
N L
L
— h ( )nLl(_k)lZ(r)L—k
k=0 Z 0
L L N
= 2 Z;(K)nl’ 2_: Zzg’”,
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so the output depends only on the set of quantities Prediction/smoothing/inter polation. The function
I(z) = 2P is the transfer function of the idepistep—ahead

N - r predictor, ifp is a positive integer. If we lai = 0 we obtain
> h(k)(—k)'z : (6)  asmoothingfilter that gives an unbiased estimate of the cur-
k=0 £=0 rent sample value with reduced wideband noise, if the filter

is designed to have minimal noise gainplfs not an inte-
ger,I(z) = z? is the transfer function of the ideal predictor
and interpolator.

The value of thé'" derivative ofH (z) atz = z is

J4
<i> H(z)|,_, Differentiation. The ideal differentiator produces the
dz ’ output (jw) exp(jwn) to the inputexp(jwn), from which
d\‘'& Lk it follows that the transfer function of the ideal differentia-
= <%> > bk tor is I(z) = log(z). By cascading differentiators, we find
k=0 that the ideal transfer function of the filter for calculating
A\ 'L e then™-order derivative i (z) = (log(z))".
= (@) Z h(k)(—Fk) z z=z0 Lowpass/bandpass/highpassfiltering. Here the ideal trans-
o k=0 fer function is 1 forz’s with angles in the passband of the

filter, and O elsewhere.
We can also cascade these transfer functions to yield

N
= Y h(k)(=k) (k= 1) (=k—£+1) 275 __ € €3 [
=70 combinations of the above properties. For example, we can

k=0
N cascade a differentiator with a polynomial predictor to give
_ Zo—z Z h(k)(—k)(—=k — 1) -+ (—k — £ + 1)Z0—k. a pollynomial predictive differentiator, as shown in the next
=0 section.
However, we can express the set of values 4. DESIGN OF NARROWBAND FILTERS WITH
L MINIMAL NOISE GAIN

N
—L —k
{ZO Z h(k)(=k) -+ (=k = £+ 1)z } ) Consider a vector of FIR filter coefficientswhich satisfy
k=0 =0 a set of linear constraints:

as a linear combination of the values in (6). This transfor-

Ty,
mation is given by the matrix S"h=p,

whereS is a N x K-matrix with K’ < N. If we want the

1 0 0 0 . o . . S :

0 2! 0 0 filter to have minimal noise gain, i.e. to minimize the im-
0 _0,2 9 0 ... pulse response energy with the given constraints, the filter
Z93 %o _3 __3 ‘ coefficients are given by the minimum-norm solution [5]

0 2z 325" 757 -
: h =S(s”s)"!p. (9)

We illustrate the choice @ andh by designing a two-
step—ahead predictive differentiator t!-degree polyno-
mials and damped sinusoidal9)" sin(0.17n) with arbi-
trary phase. The same method can be used to design a filter
with other ideal transfer functions and signal models.

This matrix is lower diagonal, and thus its inverse exists and
can be used to write (6) in terms of (7).

The same reasoning applies to the points... ., zx as
well, showing that the output df (z) for the signals

nmzt k=0,1,....,K, m=0,1,..., M, (8) The ideal transfer function for the given signal model
is the cascade of the ideal two-step predictor and the ideal
depends only on the derivatives Bf(z) of orderM, M, differentiator, i.e.
..., Mg atz,...,zx. But because we require thaft(z) )
and its derivatives match(z) and its derivatives at these I(z) = 2" log(2).

points with the appropriate orders, it follows that the output
of H(z) matches the output df(z) for the signals given by
(8), completing the proof.

The first 2 derivatives of (z) areI (V) (z) = 2zlog(z) + 2
andI®(z) = 2log(z) + 3. Thus, the interpolation require-
ments are:I(1) = 0, IM(1) = 1, I®(1) = 3, I(z) =

Note that the same result appliesaay function 7(z) 22 log(z0) = —0.219 + 0.1567, I(2g) = (25)*log(zg) =
and as is well known, there are several interesting functions —0.219 — 0.1567, wherezo = 0.9 exp(j0.17) and()* de-
around that define useful filters, for example: notes complex conjugation.
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Now for a given filter lengthV we set

1 0 0 2 (28)°

1 -1 (—1) o (@)
s=|1 -2 (—2)? 27 (25)~°

1 —N+1 (=N+1)2 Nt (g)~N*!
and

=[0 1 3 —0.219+0.156j —0.219—0.156j | ,

-20

and calculate the optimal filter coefficients using eq. (9).

The impulse and magnitude responses of the optim
predictor of lengttb0 are shown in Fig.1. The noise gain of
this filter is0.0021985. An example of filtering a noisy sig-
nal conforming to the signal model with this filter is shown
in Fig. 2, where the output of the optimal filter of lendit
(noise gainl 3.662) is shown for comparison.
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Fig. 1. Optimal predictive differentiator of length 50.

5. CONCLUSIONS

In this paper we showed that polynomial prediction can be
interpreted as interpolating the 'prediction-functigis) =

z and its derivatives at = 1. By extending this reasoning,
we showed thaany filtering operation, including predic-
tion, smoothing and interpolation, for a narrowband signal
model is equivalent to interpolating the ideal transfer func-
tion at the points in the complex plane defined by the signal
model. We illustrated this approach by deriving the coeffi-
cients of the optimal FIR filters for predictive differentiation
of a sum of polynomials and sinusoids.
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Differentiation and prediction of a noisy Z"dfdegree polynomial+sinusoid
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Fig. 2. Predictive differentiation of a polyno-
mial+sinusoidal signal with additive white noise.
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