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ABSTRACT

It is shown that polynomial prediction is equivalent to
requiring that the transfer function of the predictor interpo-
lates the ’prediction-function’���� � � and its derivatives
at � � �. This result is generalized to all other linear filter-
ing operations, including interpolation, differentiation and
smoothing, and to all other narrowband signal models, i.e.
polynomially modulated complex exponential signals. An
algorithm for determining the coefficients of this type of
FIR filters with minimum noise gain is presented and illus-
trated by deriving the coefficients of predictive differentia-
tors.

1. INTRODUCTION

Polynomial predictors are filters that extrapolate a polyno-
mial signal model while attenuating wideband noise [1].
They are useful in situations where minimal delay or pre-
diction of a smooth signal model is required, as in e.g. ele-
vator control [2], DC-level detection in EEG [3] and zero-
crossing detection in the synchronization of thyristor power
converters [4].

Polynomials are a special class of signals in many ways,
but one key property of polynomials which is shared by a
much larger class of signals is that they are linearly pre-
dictable. This larger signal class of linearly predictable sig-
nals, which we also refer to as narrowband signals, is com-
posed of arbitrary finite sums of polynomially modulated
complex exponential signals.

In this paper we formulate the design problem of poly-
nomial predictors in the frequency domain, and find that the
constraint of polynomial prediction is equivalent to the re-
quirement that the frequency response of the predictor inter-
polates the function���� � � and its derivatives at� � �.
We can interpret this as follows: although polynomial sig-
nals strictly have no�-transform, they can be represented
by line spectra and derivatives at� � �, and the function
���� � � is the transfer function of the (causally unreal-

izable) ideal one-step–ahead predictor. By extending this
analysis to other points besides� � � and other functions
than���� � � we see that the requirements for a filter to act
like any given ideal filter for a class of narrowband signals
corresponds to interpolation of the ideal transfer function
at points in the complex plane specified by the narrowband
signal model.

A design method for finding the optimal coefficients of
this class of FIR filters with minimal noise gain has been
presented in [5]. The design of predictive differentiators is
illustrated as a special case.

2. POLYNOMIAL PREDICTION AS COMPLEX
INTERPOLATION

Let ���� be the impulse response of a one-step–ahead FIR
predictor of polynomial order�, i.e. we have

��
���

��������� � �� � � �� �� 	 	 	 � �� (1)

where the length of the filter is
 ��. This condition guar-
antees that

��
���

������� ��� � ��� ���� � � �� �� 	 	 	 � ��

for all �.
It has been shown [6] that������� is the transfer func-

tion of a polynomial predictor of order�� � if and only if
����� is a predictor of order�. Based on this result we can
prove the following:

Lemma. If ���� is a polynomial predictor of order�,
then

�������� � ��

����������� � �� �� � � ��

����������� � �� � � 	� 
� 	 	 	 � ��
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where� ��� �������� denotes the��� derivative of���� eval-
uated at� � ��.

Proof. For� � �, based on eq. (1), we have
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���� � �� (2)

and similarly for� � �,
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(3)
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�������� (4)

� �	 (5)

Assume now that the result holds for predictors of order
at most� and consider a predictor������� of order���,
where� � �. Based on the result mentioned above, we can
express������� as

������� � � � ��� ����������

where����� is a predictor of order�. Now calculating the
�� � ���� derivative of������� at � � � using Leibnitz’s
rule [7]
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where we’ve used eqs. (2), (5), the fact that

�
�
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��� ����
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���

� ���������

and the induction hypothesis� ���������� � � for � �
	� 
� 	 	 	 � �.

There is a good explanation for the values of the deriva-
tives of polynomial predictors given by the previous lemma:
the sequence�� �� �� �� 	 	 	 is composed of the values of the
derivatives of the function���� � � at � � �. The func-
tion ���� � � in turn is the transfer function of the ideal
one-step–ahead predictor. Thus, we get the following in-
terpretation: polynomial predictors of order� are exactly
those filters which have a transfer function which interpo-
lates���� � � and its first� derivatives at� � �.

This raises the question of what happens if we interpo-
lateother transfer functions, for example the idealtwo-step–
ahead predictor function���� � � 	 and its derivatives at
� � �? Does this give us a two-step–ahead polynomial pre-
dictor? It turns out, in fact, that it does, as we will show in
the next section.

Furthermore, by the choice of the points in the complex
plane which interpolate the ideal transfer function we can
select the set of signals for which the interpolated transfer
function behaves as the ideal filter. For example, if we in-
terpolate the desired function at� � �
�������, the filter
behaves like the ideal filter for the signals������� � ��,
where� is any real number [8].

3. FILTERING AS COMPLEX INTERPOLATION

Let ���� be the ideal transfer function we wish to approxi-
mate, and choose points��� ��� 	 	 	 � �� in the complex plane
with corresponding multiplicities������ 	 	 	 ��� . Then
we have the following result.

Theorem. Let ���� be the transfer function of any
causal FIR filter that interpolates���� and its first�� deriva-
tives at the point� � ��, i.e. we have

�������� � ��������� � � �� �� 	 	 	 ��� � � �� �� 	 	 	 ���	

Then the output of the filter���� for the input signal

���� � ����� �

where� � ��, is equal to the output of the filter���� to
the input����.

Proof. Consider the signal���� � ����� . We will show
that the output���� of the filter���� to the input���� is
determined completely by the values of the first� deriva-
tives of���� at � � ��. We have
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so the output depends only on the set of quantities
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	 (6)

The value of the��� derivative of���� at� � �� is
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However, we can express the set of values
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(7)

as a linear combination of the values in (6). This transfor-
mation is given by the matrix�

�����	

� � � � � � �
� ���� � � � � �
� ���	� ��	� � � � �
� 	��
� �
��
� ��
� � � �
...

...
...

...
. . .



������ 	

This matrix is lower diagonal, and thus its inverse exists and
can be used to write (6) in terms of (7).

The same reasoning applies to the points��� 	 	 	 � �� as
well, showing that the output of���� for the signals

����� � � � �� �� 	 	 	 ��� � � �� �� 	 	 	 ��� (8)

depends only on the derivatives of���� of order� �, ��,
	 	 	, �� at ��� 	 	 	 � �� . But because we require that����
and its derivatives match���� and its derivatives at these
points with the appropriate orders, it follows that the output
of ���� matches the output of���� for the signals given by
(8), completing the proof.

Note that the same result applies toany function ����
and as is well known, there are several interesting functions
around that define useful filters, for example:

Prediction/smoothing/interpolation. The function
���� � �	 is the transfer function of the ideal�-step–ahead
predictor, if� is a positive integer. If we let� � � we obtain
a smoothing filter that gives an unbiased estimate of the cur-
rent sample value with reduced wideband noise, if the filter
is designed to have minimal noise gain. If� is not an inte-
ger,���� � �	 is the transfer function of the ideal predictor
and interpolator.

Differentiation. The ideal differentiator produces the
output���� �
������ to the input�
������, from which
it follows that the transfer function of the ideal differentia-
tor is ���� � ������. By cascading differentiators, we find
that the ideal transfer function of the filter for calculating
the���-order derivative is���� � ���������.

Lowpass/bandpass/highpass filtering. Here the ideal trans-
fer function is 1 for�’s with angles in the passband of the
filter, and 0 elsewhere.

We can also cascade these transfer functions to yield
combinations of the above properties. For example, we can
cascade a differentiator with a polynomial predictor to give
a polynomial predictive differentiator, as shown in the next
section.

4. DESIGN OF NARROWBAND FILTERS WITH
MINIMAL NOISE GAIN

Consider a vector of FIR filter coefficients� which satisfy
a set of linear constraints:

�
� � ��

where� is a
 ��-matrix with� � 
 . If we want the
filter to have minimal noise gain, i.e. to minimize the im-
pulse response energy with the given constraints, the filter
coefficients are given by the minimum-norm solution [5]

� � ���
�����	 (9)

We illustrate the choice of� and� by designing a two-
step–ahead predictive differentiator for	��-degree polyno-
mials and damped sinusoidals�	�� �����	���� with arbi-
trary phase. The same method can be used to design a filter
with other ideal transfer functions and signal models.

The ideal transfer function for the given signal model
is the cascade of the ideal two-step predictor and the ideal
differentiator, i.e.

���� � �	 ������	

The first 2 derivatives of���� are� ������ � 	� ������ � �

and� �	���� � 	 �������
. Thus, the interpolation require-
ments are:���� � �, � ������ � �, ��	���� � 
, ����� �
�	� ������� � ��		�� � �	����, ������ � �����

	 �������� �
��		��� �	����, where�� � �	� �
����	��� and��� de-
notes complex conjugation.
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Now for a given filter length
 we set
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and

� �


� � 
 ��		�� � �	���� ��		��� �	����

�

�

and calculate the optimal filter coefficients using eq. (9).
The impulse and magnitude responses of the optimal

predictor of length�� are shown in Fig.1. The noise gain of
this filter is�	��	����. An example of filtering a noisy sig-
nal conforming to the signal model with this filter is shown
in Fig. 2, where the output of the optimal filter of length��
(noise gain�
	��	) is shown for comparison.

0 5 10 15 20 25 30 35 40 45 50
−0.01

−0.005

0

0.005

0.01

0.015

0.02
Optimal impulse response of length 50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0

10

normalized frequency

m
ag

ni
tu

de
, d

B

Magnitude response

Fig. 1. Optimal predictive differentiator of length ��.

5. CONCLUSIONS

In this paper we showed that polynomial prediction can be
interpreted as interpolating the ’prediction-function’���� �
� and its derivatives at� � �. By extending this reasoning,
we showed thatany filtering operation, including predic-
tion, smoothing and interpolation, for a narrowband signal
model is equivalent to interpolating the ideal transfer func-
tion at the points in the complex plane defined by the signal
model. We illustrated this approach by deriving the coeffi-
cients of the optimal FIR filters for predictive differentiation
of a sum of polynomials and sinusoids.
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Fig. 2. Predictive differentiation of a polyno-
mial+sinusoidal signal with additive white noise.
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