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ABSTRACT

In some applications the observed samples are inherently
nonuniform. In contrast to that in this paper we take
advantage of deliberate nonuniform sampling and perform
DSP where the classical approaches leave off. For
instance think about mobile communication or digital
radio. Deliberate nonuniform sampling promises
increased equivalent sampling rates with reduced overall
hardware costs. The equivalent sampling rate is the
sampling rate that a uniform sampling device would
require in order to achieve the same processing
bandwidth. While the equivalent bandwidth of a realizable
system may well extend into the GHz range its mean
sampling rate is usually in the MHz range. Current
existing prototype systems achieve 40 times the
bandwidth of a classic DSP system that would operate
uniformly (cf. [3] and [4]). Throughout the literature on
nonuniform sampling (e. g. [1], [2] and [5]) many
sampling schemes have been investigated. In this paper
the authors discuss a nonuniform sampling scheme that is
especially suited to be implemented in digital devices,
thus, fully exploiting state-of-the-art ADCs without
violating their specifications. An analysis of the statistical
properties of the algorithm is given to demonstrate
common pitfalls and to prove its correctness.

1. INTRODUCTION

At the heart of a deliberate nonuniform sampling device
there is the sampling driver (SD) core generating the
sampling pulse train used to digitize the analog signal. To
realize a SD in digital circuits obviously a synchronous
design is desirable. According to sampling theory [1] a
straightforward implementation of a SD core produces
periodic sampling with jitter. A pseudo random number
generator (PRNG) usually generates numbers that are
passed to a counter that when digitally controllable delay
line (DCDL) together with sampling pulses produced by a
central control unit. Every digital circuit, driving an ADC,
performs periodic sampling with jitter due to phase noise
that is always present. However, a simple SD core
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realization depicted in Fig. 3 (without grayed elements)
does it deliberately. The time axis can be thought of as
being separated into time slots having system clock
duration T,;. Inside every slot a sampling instance ¢ is
produced. It is important to note that a vital property of a
successful SD design must realize equal probability to
produce the sampling point anywhere in the k-th time slot.
Then the density of sampling points is equal anywhere
along the time axis. Failure to do so will result in an
undesired spectrum of the sampled signal containing
spurious frequencies, a result of the convolution of the
spectra of the sampling process and the analog signal.

A real design will not be able to produce sampling
points at arbitrary moments in time but will rather realize
time increments of so called time quantum size Ty. The
equivalent sampling rate then is given by

fo =i. ()

Because of the time quantum the PDF of a particular
sampling instance becomes a discrete PDF as depicted in
Fig. 1. Since there is a limited amount of time increments
within one time slot one can define the system clock
period to time quantum ratio M

T,
M =< )
To

M is a key parameter of a sampling driver since it
represents the factor about which the processing
bandwidth of the digital system is increased if sampling
takes place like described in equation (3).

T,
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Fig. 1: PDF of sampling instances at k-th time slot.
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It is convenient to keep M a power of two. The process of
sampling instant generation is well known as periodic
sampling with jitter (cf. [1]) and can be described by

by =kl +&Ty ke eN 0<g <M 3)
where & is a pseudo random number produced by the
PRNG at the k-th time slot. Unfortunately, equation (3)
has an undesirable property. Two successive samples may
be separated by only the time quantum 7. To further
quantify this we make the following derivations. Let 7 be
the time between to successive samples, the intersample
time

Tsztk_tk—l' (4)
Thus the intersample time is a derived random variable.

For convenience we define the Laplacian random
experiment £,

Q)= {a)(()o),a)l(o),...,a)flo),...,a);glil}

Qy ={(0,0),(0,1),..CEy 5. )svoen (M =1, M =2),(M =1, M =T)} (5)
iy Jjpone€N;  0<i,j,n<M

a)l(TO) = (in’jn)E (gk—] = in and gk :jn)

1
0)y _
P(w, )—M2

Here (i,, j,) denotes the event that g.; takes on value i,
and & takes on value j,. It is easy to see that there are M >
such events. Assuming that both g, and & have uniform
distribution and are statistically independent, it
immediately follows that the events (i,, j,) have equal
probability 1/M *. One can now define a different random
experiment £ with a set (0, of 2M elementary events

— 1M, (D Q)
Q ={wy, 0.0 ,...,0_,

O, = 10,1y 2Ty, Ty, @M 1Ty} 1eNo0<i<2m  (6)

o =T, =11,

where the /-th event in QQ; denotes the event that 7 takes
on value /Ty. Unlike the events in Q, the events in €, do
not occur with equal probability. However, these
probabilities can be obtained from E, by

1
P(w") = ‘;P(wﬁo))zfz ‘O)Z:(ln . %)

(O]
€@ 0, cw;

0<I<2M

,

n,leN; OSn<M2;

But when is an event in € said to be a favorable event in
terms of an event in Q,? Fortunately using (2), (3) and (4)
this is easily stated as

oV ew if I=j,+M-i,. (®)

Applying (7) and (8) one can calculate probabilities for all
events in Q; and hence the discrete PDF of T,. It assumes
the discrete PDF sketched in Fig. 2.

P(T, IT,)
¢ P(T, /Ty < M)=0.469
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Fig. 2: PDF of intersample time.

The system clock period T, is usually matched to the
minimum conversion time of the attached ADC

T = min{Tgycopg b 9

This is justified by the design decision to operate the
sampling driver also in a uniform mode (g constant) in
which case the minimum ADC sampling period should be
fully utilized. The intersample time constraint
=ty 2Ty (10)
T, > MT,,
must always be met. Given (7) and (8) we can calculate
the probability that (10) is not met. In case of this
straightforward design the probability to violate the
constraints is 47%. Since this probability is non-zero we
conclude that such a design is unusable as a SD.

2. PHASE SHIFTING

In this Section we propose a sampling scheme that
deliberately introduces phase shifts at times when
consecutive samples occur too close for the ADC to
handle.

START/ RESET RNUM [ RANDOM NUMBER_ ) DELAY
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Fig. 3: Deliberate (phase shift) SD building block.

Fig. 3 shows the modified SD building block. A phase
shift of the sampling pulse means that it is deferred one
SD system clock period (i. e. 360°). The modified
sampling scheme can be described recursively as
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0 if g,< M
ty =ty =& T + Ty + I 4Ty, (11)
T  otherwise

k,e, eN; 0<g, <M

The process of phase shifting fundamentally changes the
character of the sampling scheme. What was periodic
sampling with deliberate jitter before becomes additive
random sampling. This is also expressed by the fact that
the index of the sampling instance & is no longer identical
to the index of the system clock m (see Fig. 4).

P(t,)

t
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Fig. 4: PDF of sampling instance with phase shift.

Fortunately, any additive random sampling scheme will
produce a sampling point density function (SPDF) that
approaches a constant value after a transient phase. This
property (based on the central limit theorem) is stated here
without further proof and the interested reader is referred
to [1] for a detailed treatment. We verify this property for
the proposed algorithm in Section 4. Due to the randomly
occurring phase shift the PDF of a particular sampling
instance is stretched like shown in Fig. 4. The PDF of the
derived random variable T, looks different than that
obtained in Section 1. First, using (4) and (11) one can
write

. M
Ty =|M=g + 0 ¥ 8k71<7

M otherwise

+e Tp, (12)

ke, eN; 0<g, <M

Observing that (12) will never deliver a period greater
than 3M, for convenience, an experiment £, with a set (),
of 3M elementary events is defined

_ 2) 2 2) 2
Q, —{a)(() ,a)]( ),...,a)l( ,...,wéM)_l

Q3 = {0,Tp, 2Ty s [T eees BM ~ DTy} 13
o =T, =1T,

l1eN; 0<I<3M
Since the underlying random process is the process that

generates events in Q, one can determine the probabilities
of events in Q, a priori

P(o?) = ZP(a)E,O)) nleNO0<n<M?*0<I<3M
(2)

o cof
! . (14)

n
M otherwise

The probabilities obtained are depicted in Fig. 5. As can
be seen from these calculations the probability to produce
intersample times less than M7 is around 11% and thus
non-zero.
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Fig. 5: PDF of intersample time with phase shift.

The property of such a sampling driver is certainly better
but would still be too demanding for an attached ADC
being operated at its limits as described above.

In the next Section we pursue a way to obtain a
sampling driver algorithm that will deliver intersample
times never violating the constraints set by (9) and (10).

3. RANDOM NUMBER CORRELATION

Until now it was assumed that two consecutive numbers
produced by the PRNG are statistically independent.
While this seems desirable at first glance we will show
here that correlation between random numbers can be
beneficial.

When generating pseudo random numbers maximum
length linear feedback shift registers (LFSR) are very
commonly used (see [6]). These registers seem to be very
suitable to be incorporated into the implementation of a
sampling driver. Using a slice of bits from a long LFSR
one can write for two consecutive random numbers &.;
and &,

T, € {0,1} (15)

where 7; is a binary random number assumed to be evenly
distributed and # is the dimension of the vector passed as
random number to the DCDL. It is important to note that,
given (15), the probabilities for events in €, are no longer
evenly distributed. Some events ®® may even never be
observed. However, it is easy to determine the distribution
of T, through simulations when two successive random
numbers are correlated as given by (15). The resulting
PDF is shown in Fig. 6.

& =& +7,)mod2" k,e, eN
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Fig. 6: PDF of intersample time with phase shift and
correlated random numbers.

The simulation results clearly reveal that this time the
PDF of the intersample time satisfies the constraints set by
(9) and (10).

4. ASSESSING THE SPDF

While the distribution of the intersample time is a very
important property it is necessary to assess the generated
sampling point density function as well

spdf (t)= Y P(t, (1) (16)

k=0

As said in the introduction, when designing the sampling
algorithm of a SD, the SPDF, which determines how
samples are placed on the time axis, should be a const
function. This is due to the convolution in the frequency
domain of both, the spectrum of the SPDF and the
spectrum of the sampled signal. To check for the
properties of the generated SPDF the sampling pulse train
for every possible seed of the PRNG was recorded and
thus we obtained an estimate of the SPDF produced by the
proposed algorithm. The results are presented in Fig. 7.
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Fig. 7: Estimated discrete SPDF.

After a transient phase the SPDF remains constant at a
value given by the inverse of the mean intersample time.
This result confirms theoretical considerations given e. g.
in [1]. The noise observed in Fig. 7 is easily explained
because of the deliberate correlation of the random
numbers taken to produce the sampling pulse trains.
Because of this not all combinations of random numbers

can be observed and a deviation from the perfect const
line is the result.

CONCLUSIONS

In this paper we have derived an efficient sampling
algorithm for deliberate random sampling. The type of
nonuniform sampling performed must be classified as
additive random sampling. The sampling point density
generated by the algorithm has a const value. It is given
by the inverse of the mean intersample time. The
algorithm is well suited to fully utilize the conversion rate
of an ADC (i. e. if the sampling drivers system clock is
matched to the minimum conversion time given by the
specification of the ADC). The algorithm is easily
implemented in hardware.

It was shown that introducing deliberate correlation
into the process of random number generation has a
beneficial effect. It will create exactly the sampling pulse
train that best utilizes a given ADC. In our case the
introduced  correlation  coefficient between  two
consecutive random numbers is 0.5.

The DCDL solution presented here is superior to
other architectures that use only synchronous logic to
generate sampling pulses. The processing bandwidth of
such systems is bound to half of the system clock rate
demanding for much higher clock rates. In contrast to that
the bandwidth of a system presented here is given by
1/2Tq. Time quantum steps in the range of Pico seconds
can be realized.
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