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ABSTRACT 

In some applications the observed samples are inherently 
nonuniform. In contrast to that in this paper we take 
advantage of deliberate nonuniform sampling and perform 
DSP where the classical approaches leave off. For 
instance think about mobile communication or digital 
radio. Deliberate nonuniform sampling promises 
increased equivalent sampling rates with reduced overall 
hardware costs. The equivalent sampling rate is the 
sampling rate that a uniform sampling device would 
require in order to achieve the same processing 
bandwidth. While the equivalent bandwidth of a realizable 
system may well extend into the GHz range its mean 
sampling rate is usually in the MHz range. Current 
existing prototype systems achieve 40 times the 
bandwidth of a classic DSP system that would operate 
uniformly (cf. [3] and [4]). Throughout the literature on 
nonuniform sampling (e. g. [1], [2] and [5]) many 
sampling schemes have been investigated. In this paper 
the authors discuss a nonuniform sampling scheme that is 
especially suited to be implemented in digital devices, 
thus, fully exploiting state-of-the-art ADCs without 
violating their specifications. An analysis of the statistical 
properties of the algorithm is given to demonstrate 
common pitfalls and to prove its correctness.  

1. INTRODUCTION 

At the heart of a deliberate nonuniform sampling device 
there is the sampling driver (SD) core generating the 
sampling pulse train used to digitize the analog signal. To 
realize a SD in digital circuits obviously a synchronous 
design is desirable. According to sampling theory [1] a 
straightforward implementation of a SD core produces 
periodic sampling with jitter. A pseudo random number 
generator (PRNG) usually generates numbers that are 
passed to a counter that when digitally controllable delay 
line (DCDL) together with sampling pulses produced by a 
central control unit. Every digital circuit, driving an ADC, 
performs periodic sampling with jitter due to phase noise 
that is always present. However, a simple SD core 

realization depicted in Fig. 3 (without grayed elements) 
does it deliberately. The time axis can be thought of as 
being separated into time slots having system clock 
duration Tclk. Inside every slot a sampling instance tk is 
produced. It is important to note that a vital property of a 
successful SD design must realize equal probability to 
produce the sampling point anywhere in the k-th time slot. 
Then the density of sampling points is equal anywhere 
along the time axis. Failure to do so will result in an 
undesired spectrum of the sampled signal containing 
spurious frequencies, a result of the convolution of the 
spectra of the sampling process and the analog signal.  

A real design will not be able to produce sampling 
points at arbitrary moments in time but will rather realize 
time increments of so called time quantum size TQ. The 
equivalent sampling rate then is given by  

Q
Q T

f 1
= . (1) 

Because of the time quantum the PDF of a particular 
sampling instance becomes a discrete PDF as depicted in 
Fig. 1. Since there is a limited amount of time increments 
within one time slot one can define the system clock 
period to time quantum ratio M  

Q

clk

T
T

M = . (2) 

M is a key parameter of a sampling driver since it 
represents the factor about which the processing 
bandwidth of the digital system is increased if sampling 
takes place like described in equation (3). 
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Fig. 1: PDF of sampling instances at k-th time slot. 
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It is convenient to keep M a power of two. The process of 
sampling instant generation is well known as periodic 
sampling with jitter (cf. [1]) and can be described by  

MkTkTt kkQkclkk <≤∈+= εεε 0, N  (3) 

where εk is a pseudo random number produced by the 
PRNG at the k-th time slot. Unfortunately, equation (3) 
has an undesirable property. Two successive samples may 
be separated by only the time quantum TQ. To further 
quantify this we make the following derivations. Let Ts be 
the time between to successive samples, the intersample 
time  

1−−= kks ttT . (4) 

Thus the intersample time is a derived random variable. 
For convenience we define the Laplacian random 
experiment E0  
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Here (in, jn) denotes the event that εk-1 takes on value in 
and εk takes on value jn. It is easy to see that there are M 2 
such events. Assuming that both εk-1 and εk have uniform 
distribution and are statistically independent, it 
immediately follows that the events (in, jn) have equal 
probability 1/M 2. One can now define a different random 
experiment E1 with a set Ω1 of 2M elementary events 
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where the l-th event in Ω1 denotes the event that Ts takes 
on value lTQ. Unlike the events in Ω0 the events in Ω1 do 
not occur with equal probability. However, these 
probabilities can be obtained from E0 by 
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But when is an event in Ω0 said to be a favorable event in 
terms of an event in Ω1? Fortunately using (2), (3) and (4) 
this is easily stated as  

nnln iMjlif −+=∈ )1()0( ωω . (8) 

Applying (7) and (8) one can calculate probabilities for all 
events in Ω1 and hence the discrete PDF of Ts. It assumes 
the discrete PDF sketched in Fig. 2.  
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Fig. 2: PDF of intersample time. 

The system clock period Tclk is usually matched to the 
minimum conversion time of the attached ADC  

}min{ ENCODEclk TT = . (9) 

This is justified by the design decision to operate the 
sampling driver also in a uniform mode (εk constant) in 
which case the minimum ADC sampling period should be 
fully utilized. The intersample time constraint  

Qs

clkkk

MTT
Ttt

≥
≥− −1  (10) 

must always be met. Given (7) and (8) we can calculate 
the probability that (10) is not met. In case of this 
straightforward design the probability to violate the 
constraints is 47%. Since this probability is non-zero we 
conclude that such a design is unusable as a SD.  

2. PHASE SHIFTING 

In this Section we propose a sampling scheme that 
deliberately introduces phase shifts at times when 
consecutive samples occur too close for the ADC to 
handle.  
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Fig. 3: Deliberate (phase shift) SD building block. 

Fig. 3 shows the modified SD building block. A phase 
shift of the sampling pulse means that it is deferred one 
SD system clock period (i. e. 360°). The modified 
sampling scheme can be described recursively as 
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The process of phase shifting fundamentally changes the 
character of the sampling scheme. What was periodic 
sampling with deliberate jitter before becomes additive 
random sampling. This is also expressed by the fact that 
the index of the sampling instance k is no longer identical 
to the index of the system clock m (see Fig. 4).  
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Fig. 4: PDF of sampling instance with phase shift. 

Fortunately, any additive random sampling scheme will 
produce a sampling point density function (SPDF) that 
approaches a constant value after a transient phase. This 
property (based on the central limit theorem) is stated here 
without further proof and the interested reader is referred 
to [1] for a detailed treatment. We verify this property for 
the proposed algorithm in Section 4. Due to the randomly 
occurring phase shift the PDF of a particular sampling 
instance is stretched like shown in Fig. 4. The PDF of the 
derived random variable Ts looks different than that 
obtained in Section 1. First, using (4) and (11) one can 
write  
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Observing that (12) will never deliver a period greater 
than 3M, for convenience, an experiment E2 with a set Ω2 
of 3M elementary events is defined  
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Since the underlying random process is the process that 
generates events in Ω0 one can determine the probabilities 
of events in Ω2 a priori  
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The probabilities obtained are depicted in Fig. 5. As can 
be seen from these calculations the probability to produce 
intersample times less than MTQ is around 11% and thus 
non-zero. 
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Fig. 5: PDF of intersample time with phase shift. 

The property of such a sampling driver is certainly better 
but would still be too demanding for an attached ADC 
being operated at its limits as described above.  

In the next Section we pursue a way to obtain a 
sampling driver algorithm that will deliver intersample 
times never violating the constraints set by (9) and (10). 

3. RANDOM NUMBER CORRELATION 

Until now it was assumed that two consecutive numbers 
produced by the PRNG are statistically independent. 
While this seems desirable at first glance we will show 
here that correlation between random numbers can be 
beneficial. 

When generating pseudo random numbers maximum 
length linear feedback shift registers (LFSR) are very 
commonly used (see [6]). These registers seem to be very 
suitable to be incorporated into the implementation of a 
sampling driver. Using a slice of bits from a long LFSR 
one can write for two consecutive random numbers εk-1 
and εk  

{ }1,0,2mod)2( 1 ∈∈+= − kk
n

kkk k τετεε N  (15) 

where τk is a binary random number assumed to be evenly 
distributed and n is the dimension of the vector passed as 
random number to the DCDL. It is important to note that, 
given (15), the probabilities for events in Ω0 are no longer 
evenly distributed. Some events ω(0) may even never be 
observed. However, it is easy to determine the distribution 
of Ts through simulations when two successive random 
numbers are correlated as given by (15). The resulting 
PDF is shown in Fig. 6.  
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Fig. 6: PDF of intersample time with phase shift and 
correlated random numbers. 

The simulation results clearly reveal that this time the 
PDF of the intersample time satisfies the constraints set by 
(9) and (10).  

4. ASSESSING THE SPDF 

While the distribution of the intersample time is a very 
important property it is necessary to assess the generated 
sampling point density function as well  
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As said in the introduction, when designing the sampling 
algorithm of a SD, the SPDF, which determines how 
samples are placed on the time axis, should be a const 
function. This is due to the convolution in the frequency 
domain of both, the spectrum of the SPDF and the 
spectrum of the sampled signal. To check for the 
properties of the generated SPDF the sampling pulse train 
for every possible seed of the PRNG was recorded and 
thus we obtained an estimate of the SPDF produced by the 
proposed algorithm. The results are presented in Fig. 7.  
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Fig. 7: Estimated discrete SPDF.  

After a transient phase the SPDF remains constant at a 
value given by the inverse of the mean intersample time. 
This result confirms theoretical considerations given e. g. 
in [1]. The noise observed in Fig. 7 is easily explained 
because of the deliberate correlation of the random 
numbers taken to produce the sampling pulse trains. 
Because of this not all combinations of random numbers 

can be observed and a deviation from the perfect const 
line is the result. 

CONCLUSIONS 

In this paper we have derived an efficient sampling 
algorithm for deliberate random sampling. The type of 
nonuniform sampling performed must be classified as 
additive random sampling. The sampling point density 
generated by the algorithm has a const value. It is given 
by the inverse of the mean intersample time. The 
algorithm is well suited to fully utilize the conversion rate 
of an ADC (i. e. if the sampling drivers system clock is 
matched to the minimum conversion time given by the 
specification of the ADC). The algorithm is easily 
implemented in hardware. 

It was shown that introducing deliberate correlation 
into the process of random number generation has a 
beneficial effect. It will create exactly the sampling pulse 
train that best utilizes a given ADC. In our case the 
introduced correlation coefficient between two 
consecutive random numbers is 0.5. 

The DCDL solution presented here is superior to 
other architectures that use only synchronous logic to 
generate sampling pulses. The processing bandwidth of 
such systems is bound to half of the system clock rate 
demanding for much higher clock rates. In contrast to that 
the bandwidth of a system presented here is given by 
1/2TQ. Time quantum steps in the range of Pico seconds 
can be realized.  
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