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Abstract

A single ADC is often used to digitize several chan-
nels. In this application, the channels are sampled
sequentially in time. This results in signals that are
correlated but are not sampled at the same time. Ban-
dlimited interpolation can be used to obtain signals
with the same sampling times. However, methods that
were recently developed for digital cameras can be used
to achieve resolution beyond the Nyquist limit of the
sampling rate of a single channel. This work demon-
strates the effectiveness of this method on stereo sig-
nals and shows it to be robust to estimations of the
modelling parameters.

1 Introduction

There are several sampling devices that use a sin-
gle analog-to-digital converter when sampling multi-
ple channels. The methodology for this is to switch
sequentially through the channels, digitizing each one
in turn. The sampling of the channels, then, does not
occur simultaneously. Operations that require com-
parisons between channels, e.g., correlations, should
take this timing difference into account. The common
way to do this is to use bandlimited interpolation on
the channels and resample the signals on the same
time base.

If the channels are correlated and not bandlim-
ited, it is possible to obtain resolution beyond the
bandlimit. This is a common problem in color im-
age processing, where the three colors represent three
correlated channels. In addition, video imaging pro-
vides another application where images at different
times can be considered as different channels. Some
previous work in this area is discussed in [1, 2]. A
monochrome image that is sampled by multiple CCD
arrays can be considered as a multichannel signal with
interleaved samples [3]. This work uses a least squares
method, derived from an image processing technique
to obtain high resolution color images from a digital
camera [4], to estimate interpolated samples. This is
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the only known demosaicking methods that can be ap-
plied to this problem, as the other published methods
rely on unique properties of color images.

2 Mathematical Statement of Problem

For ease of notation, we will formulate the prob-
lem using a discrete system. We assume that the full-
resolution data recording system for a single channel
is modeled by

ynx1 = Hyxny Xvxi +18x1, (1)

where x is the original signal that is bandlimited to
the sampling rate that produced the samples in the
vector, H is the matrix that represents the distortion
of the channel, an impulse response of length K <<
N, and 7 represents signal independent noise. For ease
of computation, we pad the signal and use circular
convolution. This lets us use the DFT and makes the
matrices square.

For a P-channel system, each channel can be mod-
eled as eq.(1). If the channels are independent, that
is, there is no cross-talk, the multi-channel system can
be represented using stacked notation.

[ yo(O) 1 i .%’0(0) 1
yO(]-) 1’0(1)
yo(]V.— 1) To ]V.— 1)
y1(0) 1(0)
YNPx1 = (1) =Hp x1(1)
y(N - 1) (V= 1)
y2(0) 2(0)
L yP—1(N— 1) | i ZL’P—1(N— 1)
(2)
ICASSP 2003




The matrix Hypy yp has the form

H, 0 ... 0
0 H, ... O
0 0 ... Hp

where Hy, is N x N. If the blurs can be approximated
by the same matrix, Hxy = H for all k£ then the large
matrix can be represented by the Kronecker (outer)
product

Hr=1p®H,

where subscript on the Ip represents the size of the
identity matrix.

The sequential sampling with equally spaced sam-
ples can be modeled by a matrix multiply. The 1:2
sampling malrix for a one-dimensional signal is repre-
sented by diagonal matrices

1000 ...0
0000 ... 0

0010 ...0
Co=10000 ... 0

(00 00 0 |

or _ _
00 0 0 0

01 00 0

00 0 0 0

c,=|0 001 0

00 0 0 0
(0000 ... 1]

The diagonal matrices can be represented more con-
cisely by using

CO = diag(17071a0a' "71?0)
and
C; = diag(0,1,0,1,---,0,1)

The extension to 1:M sampling, where N is an inte-
gral multiple of M, is straightforward with every M®"
diagonal element equal to unity. Note that we have
the constraint

M-1
Y Cp=I (3)
k=0

When we combine this with the stacked notation, the
full sampling matrix is given by

Cr = diag(Co,Cy,...,Cp_1), (4)

The multichannel model can now be written
vy = Cr[Hpxr + nr].

where the subscript F' indicates the stacked notation.
Finally, we can state the problem as

minimize &(D) = E{||x — Dy||*}
with respect to the deconvolution matrix D. To solve
this we will use the following matrices.

Hr=1I%H
We assume that all channels responses are equal.
Wr=1I0W

This is the DFT matrix. It takes the DFT of each
channel.
KIIA = KA & Kzz

This is the cross-correlation matrix of the channels. It
is assumed separable for computational purposes.

K,y = 19021

The noise is assumed signal-independent within the
channels and independent across channels.

3 Solution
The solution to the problem is given by

D = K, HECT[CHr K, \HECT + CK,,,CT!

(%)
where the 1 indicates the pseudoinverse. In order to
compute this numerically, it is advantageous to trans-
form the problem to the Fourier domain. Because we
have assumed circular convolutions, the DFT matrix
diagonalizes the system response matrix and the cor-
relation matrices. The transform of the subsampling
matrices is a block structure with a phase factor. As-
sume the first sampling starts at the origin; then the
Fourier transform of the k** shifted sampling in one
dimension is

WC,W™! = 0,WC,W™'0;,
where

@k — d’iag([Le_jQFk/N,e_jQWQk/N, o ’e—jQWNk/N])

and the * represents the complex conjugate. For the
case of M=2,

111 1 1711 1
L Inge Ingpe | L ‘
WCW =5 [ 1 P 1 P ] =3 [ 11 ]®IN/2-
(6)

VI -250




For other values of M, eq.(6) can be generalized. If we
define the diagonal phase matrix as

I 0 O 0

0 ®& 0 0
b =

0 0O . 0

0 0 0 Op,

then C can be written
C=o(IpxCHd"

where the represents the Fourier transform of the spa-
tial domain quantity.

Taking the Fourier transform of the restoration ma-
trix in eq.(5), we have

D = K, (K,,HC*.
[C(K)) & (HK,,H") + K,,)C*|f

At this point, the computation of the solution follows
the same path as that given in [4]. The bookkeeping
is much simpler.

The computation, as shown in [4], is made tractable
by using partitioning of the matrices. The details of
that manipulation are not presented here. The ma-
jor result is that the solution of an M-channel system
with N samples requires only M x M matrix oper-
ations after taking the DFT of each of the channels.
The simple form of the subsampling matrices and their
DFTs makes finding the pseudoinverses easy.

4 Simulation

The method was simulated in MATLAB for the
two-channel case. The baseline comparison is with
the bandlimited reconstruction (MSE BL) obtained
by assuming the signal is limited to the Nyquist fre-
quency of the sampling matrix Cy. The bandlimited
reconstruction is obtained by treating each channel in-
dependently. This is the reconstruction that would be
obtained if no knowledge of the other channels was
available. The error of the estimate from our method
is denoted MSE IL (interleaved).

From eq.(7), we see there are four parameters that
will affect the quality of the solution: the impulse re-
sponse of the sampling system, the temporal and be-
tween channel correlation of the signals and the corre-
lation of the noise. The extent of the impulse response,
H, is determined by the circuitry that performs the ac-
tual sampling. While the ideal sampling would extend
only to a single sample interval, practical considera-
tions make the extent slightly larger. We have mod-
elled this impulse response by an exponential, similar

to the classic RC circuit. The time constant associated
with this impulse ranges from 1 to 10 samples.

An important assumption that permits a tractable
solution is the separability of the signal correlation
into its temporal and between channel parts. The be-
tween channel correlation is given by an M x M ma-
trix; the temporal correlation is given by an N x N
matrix. For the simulations in this paper, the tem-
poral correlation was obtained by passing white noise
through a FIR filter, similar to the RC filter used for
the system impulse response. The correlation of the
signal is much longer, ranging from 8 to 16 samples.

The between channel correlation was modelled by
using linear combinations of two uncorrelated signals.
First we generate three temporally correlated signals,
s1(t), s2(t) and s3(t), from uncorrelated, white Gaus-
sian noise inputs with unit variance. The two channels
are then generated by z1(t) = (1—a)s1(t)+ass(t) and
xz2(t) = (1 — a)s1(t — to) + sz (). The relative mag-
nitude of & controls the between channel correlation.
The parameter ¢y controls the time delay, so we can
simulate the physical offset of two microphones that
record the same signal.

The additive noise that simulates recording crrors
is uncorrelated with the M-channel signal and has a
Gaussian distribution, K, = o1

To test the effect of bandwidth of the signals, we
ran cases with the raw signals, which are assumed
bandlimited to the Nyquist limit associated with the
sampling rate, and with bandlimited signals that were
filtered to have no power above the bandlimit of sub-
sampled signals. For the bandlimited case, the addi-
tional channel correlation will improve the reconstruc-
tion only to the extent of overcoming the degradation
caused by the additive noise.

5 Results

The results of a sampling of the experiments are
summarized in Table 1. The columns of the table are
describes below:

1. Indicator of the input signal being bandlim-
ited (BL)or not (NBL), and an indicator of the
method of computing the correlation matrix.
EXCT indicates the correlation was computed us-
ing the actual simulated signal; APRX indicates
the correlation was computed using the statistical
model.

2. Signal-to-noise ratio in dB. Recall the noise is
white Gaussian.

3. Between channel correlation coefficient. Since we
are using a two channel system, this describes the
correlation between channels.
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4. Bandlimited Error measured in SNR with respect
to the original input signal. There is a column for
each channel.

5. Interleaved Error measured in SNR with respect
to the original input signal. There is a column for
each channel.

For this table, the time constant for the impulse
response for the correlation of the signal is 16 samples;
the time constant for the system impulse response is
3 samples. A complete test of the algorithm included
variations of the these parameters, as well as the delay
between channels and additional signal-to-noise ratios.

The qualitative results are as expected, which jus-
tifies the use of the abbreviated results presented in
Table 1. The complete results are available on the
web at http://wwwd.ncsu.edu/ hjt/. Comparing the
first case of bandlimited versus nonbandlimited input
with no noise, we see the advantage of using the sec-
ond channel to help obtain higher resolution. The
reconstruction based on the bandlimited assumption
will treat the aliased portion of the signal as noise,
whereas the interleaved method will treat it as infor-
mation.

We tested the effect of the estimation of the cor-
relation matrices by using estimates based on the ex-
act signals generated for the simulations and based
on the theoretical correlation derived from the signal
generation model. The results show that using the ap-
proximate correlation causes little degradation in the
performance.

6 Discussion

The demosaicking method based on baysian estima-
tion has shown to produce noticeable improvements in
the estimation of higher resolution sampling. Study of
the method will be continued with the lifting of various
constraints, such as the identical blur on each channel
and integral spacing of the sampling.
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Table 1: Results of Resolution Enhancement

BL/CorrEst | SNR o12 | BL Error SNR | IL Error SNR

BL/EXCT 40 1 | 35.64 35.64 | 41.66 | 41.66
NBL/EXCT 40 1 9.53 9.39 | 37.04 | 37.04
NBL/APRX 40 1 9.53 9.39 | 37.04 | 37.04

BL/EXCT 40 | 0.87 | 35.64 35.64 | 39.76 | 37.86
NBL/EXCT 40 | 0.87 9.09 10.29 | 13.98 | 14.53
NBL/APRX 40 | 0.87 9.09 10.29 | 13.89 | 14.56

BL/EXCT 40 | 0.71 | 35.64 35.64 | 39.75 | 37.86
NBL/EXCT 40 | 0.71 8.72 10.62 | 11.88 | 12.70
NBL/APRX 40 | 0.71 8.72 10.62 | 11.63 | 12.78

BL/EXCT 40 0.5 | 35.64 35.64 | 39.75 | 37.86
NBL/EXCT 40 0.5 8.26 10.73 | 10.38 | 11.87
NBL/APRX 40 0.5 8.26 10.73 | 10.13 | 11.74

BL/EXCT 20 1| 15.64 15.64 | 21.67 | 21.67
NBL/EXCT 20 1 9.14 8.00 | 17.13 | 17.13
NBL/APRX 20 1 9.14 8.00 | 17.11 | 17.11

BL/EXCT 20 | 0.87 | 15.64 15.64 | 19.94 | 18.01
NBL/EXCT 20 | 0.87 8.79 8.84 | 13.11 | 12.96
NBL/APRX 20 | 0.87 8.79 8.84 | 13.24 | 12.98

BL/EXCT 20 | 0.71 | 15.64 15.64 | 19.81 | 17.91
NBL/EXCT 20 | 0.71 8.44 9.20 | 11.48 | 11.79
NBL/APRX 20 | 0.71 8.44 9.20 | 11.40 | 11.80

BL/EXCT 20 0.5 | 15.64 15.64 | 19.78 | 17.88
NBL/EXCT 20 0.5 8.00 9.44 | 10.14 | 11.17
NBL/APRX 20 0.5 8.00 9.44 9.98 | 11.01

VI - 252




