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ABSTRACT

The existing method for sampling a modulated signal is the same
as that for a non-modulated message signal. Therefore the
quadrature sampling rate for a modulated signal must be larger
than its bandwidth. However, a new algorithm, which can recover
completely a DC-free message signa from an FM signa at a
sampling rate less than its bandwidth, is presented in this paper.
The new sampling rate limit is also discussed. The investigation
shows that the current sampling theorem does not present an
optimal sampling rate for recovering the message signal from an
FM signal and further modification of the theorem might be
needed.

1INTRODUCTION

The sampling theorem is fundamental for signal processing and
modern communications. The sampling techniques vary with the
properties of the signals to be sampled. These properties are
categorized in several ways: real or analytic [1], modulated or
non-modulated (also caled message), baseband or passband.
Sampling an analytic signa is practicaly implemented by a
technique called quadrature sampling [2]. In this paper, we only
use the first term, analytical signal sampling, for convenience.
Sampling a modulated signal in a different way is the major
contribution of this paper.

The current sampling theorem, for modulated or non-modul ate,
baseband or passband, is that the sampling frequency must be
larger than 2B Hz to reconstruct the signal from its samples (in
some cases, for a real passband signal, the sampling rate can be
higher than one above) for areal signal with abandwidth of B Hz.
If the signal is analytic, the sampling rate must be larger than B Hz
[2].

In some modulation schemes, for example, FM, FSK CDMA,
etc., amodulated signal might have a wider bandwidth By, Hz than
that of the corresponding message signal, i.e. B Hz.. As aresult,
the sampling rate for such a modulated signa is higher than that
for a message signal. However, this conclusion is drawn under the
assumption that the message signal cannot be recovered if
spectrum diasing (also called overlap) of the modulated signal
occurs when under-sampled. In fact, spectrum diasing of the
modulated signal does not necessarily lead to spectrum aiasing of
the message signal. Hence, even though the modulated signal
cannot be recovered, it is still possible to reconstruct the message
signal.

As the modulation schemes are different, each reconstruction
method should be designed individualy. In this paper, we only
discuss the case of sampling an FM signal.
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2.FM SIGNAL MODEL

In an FM communication system, we consider the modulating
signal as an arbitrary message signal m(t), produced by an
information source. It is assumed in this paper that (1) this
signa is band-limited, with a bandwidth of B Hz;, (2) its
envelope is upper-bounded by my, that is

Im(t)| < m, @
(3) the message signal has no DC component, otherwise the
recovered signal has a DC bias, and fortunately, this assumption
istrue in most FM communications systems; and (4) thereis no
noise interference in the channel.

We denote the Fourier transform of m(t) as M(£2),then

m(t) = i]fe M () exp(jQ)d© @

M@= m(t)exp(- jQt)dt )
An analytic FM modulated signal is given as
; t
P (O = Aexplj(a t+ k¢ [ gm(a)da)] 4
where
A the amplitude of the sinusoidal signal
. the carrier frequency and
k: thefrequency modulation constant.
Asaconsequence, the frequency deviation Afin Hzis
kem,

Af = 6)

2
and the deviation ratio fis

Af
_Af ©
P B

Therefore, according to Carson’s rule [3], the bandwidth of
the modulated signal can be approximated to

k
B, =2B(B+1) =2(Af +B) = 2(%1‘# B) (V)
For convenience, we define
t
o(t) =k, jo m(e)der ®)

Without loss of generality, we can assume o, equals to zero,
which means that the discussion is focused on the baseband FM
signal. This assumption can be realized via a mixer to shift the
carrier frequency to zero. Hence, the equation (4) becomes

Pem (1) = Aexp[ jO(1)] 9
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3. THE UNWRAPPING DEMODULATION ALGORITHM

3.1. Equivalent FM System Model

If the periodic sampling frequency isf;, and the sampling period is
T=1/f,, then the sampling discrete-time analytic signal is
Yew (N) = gy (NT) = Aexp[ jO(nT)] (10)
Where &(nT) stands for the sampled instantaneous phase and is an
unlimited real number rather than a phase between — and z. Then,
there must exist an integer number |, a wrapping index, which
satisfies
Az-z<0(nT) <2 7+7 (11)
Unfortunately, the unlimited instantaneous phase &(nT) cannot
be reconstructed directly from the analytic signa ., (n) -
Actudly w,, (n) is represented by its real and imaginary parts
when @(t) is sampled. So the directly recovered phases are
bounded in arange between —r and z, that is
0(n) = argWey, (N)) (12)
where arg(e) denotes the angle of the quantity in radians between
— and z. Considering the inequality (11), we have
o(n) = arg(Aexp[ jO(NT)]) =0(NT) -2, 7  (13)
This means that @g(n) is wrapped from the unlimited
instantaneous phase @(nT) into a phase between — and = For
example, when @(nT) is 4.8 z, g(n) will be 0.8 x, and I, will be
2.
Compute the consecutive wrapped phase difference, we obtain
d(n)=6(n)-6(n-1) (14)
=0(nT)-6((n-)T)-27(,-1,.,)
d(n) has arange of [-2 =, 27). We can wrap it into the range of [-
7, 7), that is
y(n)=d(n)—2,7 (15)
and —z<yn)<nx (16)
Where 4 isthe wrapping index. From (15),
y(n) =6(nT)-e((n-HT)-2z(, -1, -1,) (17

nT
=k, j oy @)~ 27, (18)

where K,=ly-lh1-lq is the wrapping index for y(n), which has
combined al the wrapping effect. Define the integral term as
t
X (1) =k; L_T m(e)do
It is easy to verify that
X, (t) =k m(t) = g(t) (19)

where (*) denotes a convolution integral, and g(t) is a gate
function defined as

1 0<t<T 20
o) = {O otherwise 0
Therefore (18) can be expressed as
y(n) = x,(nT) — 27k, (21)
=k M) * 9(O)]],-or —27K, (22)

Eq. (22) clearly shows that the discrete time signal y(n) can be
considered as a sampling sequential of an analogue signal x(t)
with a sampling period of T, while having a bias of 27k, .
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Fig. 1. The equivalent systems using Oppenheim time

normalization model (a) the model for equation (22) (b) the
FM reconstruction model (c) sampling a non-modulated signal
(d) thereconstruction of a sampled non-modulated signal

The signal x(t) is aresult of the message signa m(t) passing
through a multiplication with a coefficient of k;, and an LTI
system with a rectangular impulse response g(t).

Using the Oppenheim time normalization model [4] to
analyse the conversion of an analogue signal into a discrete-time
signal or vice versa, the above sampling and relevant FM
processing can be ssimplified to an equivalent model as Fig 1(a).
Where p(t) is the sampling function, an impulsetrain, that is

p(t) = 3 8(t - nT)

The part of the multiplying between x.(t) and p(t), and the
conversion of the impulse train to discrete-time sequence can be
considered as an ADC device converting the analogue signa
X¢(t) to a discrete-time sequence x(n). That is

X() = %, (O] or = ki [ :_m m(e)da (23)

Similarly for anon-modulated signal as shown in figure 1 (c),

we have
m(n) = m()|,_,, = m(nT)

As g(t) is an LTI system, so the Fourier transform of x(t) is
the product of kM(2)G(£2), where G(£) is the Fourier
transform of g(t). When T<1/B, the main lobe of G(£2) is wider
than the bandwidth of M(£2), hence the bandwidth of x(t) is the
same as that of M(£2). Consider that x.(t) is still area baseband
signal, we have

f.>2B (24)

Where B is the bandwidth of the message signal rather than
the bandwidth By, of the modulated signa. However, the final
sampling rate requirement must also confirm with (24) as well
as the following unwrapping requirement in section 3.2.

To reconstruct the original signal, for normal sampling, a
DAC and alowpass filter is needed as shown in figure 1(d). The
DAC can be considered as a device converting the discrete-time
sequence to an impulse train. The lowpass filter has a stop
frequency of B.
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Thus, we can design the reconstruction model for an FM signal
as shown in Fig 1 (b). Three more operations are needed besides
the DAC and the lowpassfilter.

(2). the first operation is to cancel (we call it unwrapping) the
phase bias, if it exists, by adding anumber of 27k.%. That is,

2(n) = x(n) + 2z (K ~k,) (25)

It is obvious that if the unwrapping integer number k.0 is
exactly the same as k,,, the reconstructed signa z(t) from the FM
signal will be the same as m(t). If (k." —ky) is a nonzero constant,

which isindependent of n, then z,(t) hasa DC difference from m(t).

However, after removal of the DC component of z(t), m(t) can be
recovered completely. The implemention of the above addition
will be discussed in detail in section 3.2.

(2). The second operation is to cancel the effect introduced by
g(t). This can be implemented by an LTI system which has a
frequency response G;(£2) =1/G(£2). Note that, as the signal of
interest is in the frequency range between —B and B, the outside
band response can be of any value.

Aslong as T<1/ B, there will be no singularity points in G,(£2).
Hence such an LTI systemisrealizable.

(3). Thelast operation isto remove the DC component.

3.2. The Phase Unwrapping

In this section, we analyse the factors of the bias, the
unwrapping method and the sampling rate limit for unwrapping.

Theorem 1: if the sampling frequency satisfies fs>24f, then
k,=0for al n.

From Theorem 1, it is apparent that when fs>24f , there is no
phase bias between y(n) and x(n), so ho unwrapping operation is
needed. The whole system works similarly to a normal non-
modulated sampling system except g(t) and G;(£2). Recall from (2)
that, in al cases, fs must aso satisfy fo>2B, so the no-phase-bias
sampling rate is determined by the larger one between B and Af. In
anarrow-band FM system, as B> Af, the minimum sampling rate is
2B Hz. In awide-band FM system, Af>B, the minimum sampling
ratefsis

f, = 2Af = By, - 2B =~ By, (27

As a result, when the sampling frequency is larger than the

modulated signal bandwidth By, no matter whether it is a narrow-

band or wideband signal, the message m(t) can be simply obtained
from y(n).

But, when f_ < 2Af , part of x(n) will be out of the range

between -7 and 7, as part of y(n) has a bias to x(n) because of
wrapping. Figure 2 shows an example,

However, if the signal x(n) does not change fast enough, even
though |x(n)| exceeds 7, it can also be recovered by unwrapping
y(n). For example, if z(n)=0.97 (note that the recovered signd is
denoted as z(n) rather than x(n)) and y(n+1)= —0.87, then we can
get z(n+1)=1.27x rather than —0.87 or 3.2z This unwrapping
process has a mechanism, which selects automatically a proper

number of k: to match (not necessarily equal) k,, thus recovers

x(n).

Theorem 2: when the signal x(n) satisfies
x(n+1) - x(n)| < 7 (28)

0 20 40 60 80 100 120 140 160

Fig. 2. the difference between x(n) and y(n)

the unwrapping process of y(n), which restrict z(n) in the
bound as \z(n+1)—z(n)\<7r , automatically chooses the

unwrappingindex k¢ to satisfy

z(n)=x(n)+2c
d
and k, —k,=c

where cisan integer constant, independent with n.

As a result, when (28) holds, the recovered signal z(n) only
has a DC difference from x(n) if the constant c is not zero. If the
message signd is free of DC component, it is easy to reconstruct
x(n) by removing the DC component from z(n).

Theorem 3: If
k _

@, :412$‘M(Q)‘%dg<” (29)
T J0 Q

then
X(n+1) - x(n)| < 7
The above bound (29) shows the link between the sampling
period T and the structure of the message signal and other FM

parameters. This is the key inequity to determine the sampling
rate limit. It is easy to verify, when T<(1/2.7B), the function
w is a monotonicaly increasing function in
Q

terms of £2 in the range between 0 and 2zB. In such a case
T<(1/2.7B), the more energy in the higher frequency band, the
larger the number @, is. The extreme case happens when the
message m(t) isasinusoidal signal with the highest frequency of
27B. That is

m(t) = m, cos(27Bt + 6,)
Using its Fourier transform as substitution into (29), we have

_ 2m K, (1-cos(278T)) <

M
27B
The solution to theinequality (33) interms of T or fsis given by
27B (30)
fS > 7”
acr cos(1-—
(-5 )

When 27BT is very small, we can approximate cos(27BT)

to [1-(27BT)%2]. Then a dightly conservative estimate of f,
(which explicitly shows the relationship with Bry,) is
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7
f.>\78(2B) = }gﬂl = (31)
From (30) or (31), it can be concluded that the sampling rate
can be much lower (especidly when £ is large) than the
conventional sampling rate, i.e. B, . Note that these bounds in

(30) or (31) arederived under the assumption of T<(1/2.7B). If the
sampling rate estimated from (30) or (31) is lower than 2.7B, then
they are invalid. This happens when S is a small number less than
1, and the valid rate can be determined only from (30). We define
the reduction ratio 7 = min(fy)/Bgy and the restriction ratio p
=2.7B/Bgy,, thus (30) and (31) are only vaidfor p> 7.

Figure 3 shows the ratio p and the reduction ratio 7 derived
from (30) or (31) versusthe deviation ratio .

Furthermore, if the message signal is not a single tone, then
there are some components in the lower frequency and hence the
sampling frequency can be further smaller. For example, when a
signa has a uniformly distributed spectrum, the sampling
frequency can be only

40.5
f. > /0578(2B) = 5 ’;ﬂ B.,
+
Itisonly 70% of that for asingletone. If A= 20, the sampling
rateis 27% of Bgy.

3.3. Summary of the algorithm

The agorithm can be summarized asfollows.

1) Sample the modulated signal with a sampling rate
constrained by (31), or more precisely by (309) to obtain
thereal part R(n) and imaginary part [(n) of wgu(n).

2) Compute &n)=arg[I(n)+R(n)], which is the phase of
wem(n), where j =4/—1.

3) Computed(n)= 4n)- &n-1).

4) Compute |d d(m-z(n-1)
" 2

= —floor[ +0.5]-

5) Unwrap d(n) to z(n), i.e. compute z(n) = d(n) + 2ﬂ|: .

6) Filter thesigna of z(n) by an FIR digital filter for which
the corresponding analogue filter has a response of
G(o)H(w).

7) Removethe DC component.

4. CONCLUSION

An new algorithm for FM demodulation with an sampling rate less

than a conventional one, i.e. the FM bandwidth, has been proposed.

Using a simplified equivaent model, we have derived a new
sampling rate limit for an FM signal. It has shown that even
though spectrum overlap (aliasing) happens to the sampled FM

signal, a DC-free message signal can till be recovered completely.

Whether and how this undersampling concept can work for other
modulation schemes need further investigation.

Fig.3  Thereduction ratio 7 and the restriction ratio p versus
thedeviation ratio f.

It has demonstrated in the paper that the current sampling
theorem does not present an optimal sampling rate for recovery
the message from its FM signal and further modification of the
theorem is needed. The basic ideaintroduced in this paper may
act as trigger for the further development of the sampling
theorem, especially for sampling modulated signals.
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