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ABSTRACT 
 
The existing method for sampling a modulated signal is the same 
as that for a non-modulated message signal. Therefore the 
quadrature sampling rate for a modulated signal must be larger 
than its bandwidth. However, a new algorithm, which can recover 
completely a DC-free message signal from an FM signal at a 
sampling rate less than its bandwidth, is presented in this paper. 
The new sampling rate limit is also discussed. The investigation 
shows that the current sampling theorem does not present an 
optimal sampling rate for recovering the message signal from an 
FM signal and further modification of the theorem might be 
needed. 
 

1.INTRODUCTION 

 
The sampling theorem is fundamental for signal processing and 
modern communications. The sampling techniques vary with the 
properties of the signals to be sampled. These properties are 
categorized in several ways: real or analytic [1], modulated or 
non-modulated (also called message), baseband or passband. 
Sampling an analytic signal is practically implemented by a 
technique called quadrature sampling [2]. In this paper, we only 
use the first term, analytical signal sampling, for convenience. 
Sampling a modulated signal in a different way is the major 
contribution of this paper.  

The current sampling theorem, for modulated or non-modulate, 
baseband or passband, is that the sampling frequency must be 
larger than 2B Hz to reconstruct the signal from its samples (in 
some cases, for a real passband signal, the sampling rate can be 
higher than one above) for a real signal with a bandwidth of B Hz. 
If the signal is analytic, the sampling rate must be larger than B Hz 
[2].   

In some modulation schemes, for example, FM, FSK CDMA, 
etc., a modulated signal might have a wider bandwidth BM Hz than 
that of the corresponding message signal, i.e. B Hz..  As a result, 
the sampling rate for such a modulated signal is higher than that 
for a message signal. However, this conclusion is drawn under the 
assumption that the message signal cannot be recovered if 
spectrum aliasing (also called overlap) of the modulated signal 
occurs when under-sampled. In fact, spectrum aliasing of the 
modulated signal does not necessarily lead to spectrum aliasing of 
the message signal. Hence, even though the modulated signal 
cannot be recovered, it is still possible to reconstruct the message 
signal.  

As the modulation schemes are different, each reconstruction 
method should be designed individually. In this paper, we only 
discuss the case of sampling an FM signal.  

2. FM SIGNAL MODEL 

 
In an FM communication system, we consider the modulating 
signal as an arbitrary message signal m(t), produced by an 
information source. It is assumed in this paper that (1) this 
signal is band-limited, with a bandwidth of B Hz; (2) its 
envelope is upper-bounded by mp, that is 

pmtm ≤)(                                         (1) 

(3) the message signal has no DC component, otherwise the 
recovered signal has a DC bias, and fortunately, this assumption 
is true in most FM communications systems; and (4) there is no 
noise interference in the channel. 
 

 We denote the Fourier transform of m(t) as M(Ω),then 
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An analytic FM modulated signal is given as  

              )])((exp[)( ααωφ dt 
0 mfktcjAtFM ∫+=           (4) 

 where  
A   the amplitude of the sinusoidal signal 
ωc  the carrier frequency and  
kf   the frequency modulation constant. 

As a consequence, the frequency deviation ∆f in Hz is  

π2
pf mk

f =∆                                          (5) 

and the deviation ratio β is  

B
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Therefore, according to Carson’s rule [3], the bandwidth of 
the modulated signal can be approximated to  
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For convenience, we define  
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Without loss of generality, we can assume ωc equals to zero, 
which means that the discussion is focused on the baseband FM 
signal. This assumption can be realized via a mixer to shift the 
carrier frequency to zero. Hence, the equation (4) becomes  

)](exp[)( tjAtFM Θ=φ                            (9) 
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3. THE UNWRAPPING DEMODULATION ALGORITHM 

3.1. Equivalent FM System Model 

 
If the periodic sampling frequency is fs, and the sampling period is 
T=1/fs, then the sampling discrete-time analytic signal is 

)](exp[)()( nTjAnTn FMFM Θ== φψ              (10) 

Where Θ(nT) stands for the sampled instantaneous phase and is an 
unlimited real number rather than a phase between –π and π. Then, 
there must exist an integer number ln , a wrapping index, which 
satisfies 

ππππ +<Θ≤− nn lnTl 2)(2                     (11) 

Unfortunately, the unlimited instantaneous phase Θ(nT) cannot 
be reconstructed directly from the analytic signal )(nFMψ . 

Actually )(nFMψ  is represented by its real and imaginary parts 

when Θ(t) is sampled. So the directly recovered phases are 
bounded in a range between –π and π, that is 

))(arg()( nn FMψθ =                                 (12) 

where )arg(•  denotes the angle of the quantity in radians between 

–π and π. Considering the inequality (11), we have 

 πθ nlnTnTjAn 2)()])(exp[arg()( −Θ=Θ=        
(13) 

This means that )(nθ  is wrapped from the unlimited 

instantaneous phase )(nTΘ into a phase between –π and π. For 

example, when )(nTΘ  is 4.8 π, )(nθ will be 0.8 π, and ln will be 

2. 
Compute the consecutive wrapped phase difference, we obtain  

)1()()( −−= nnnd θθ                            (14) 

)(2))1(()( 1−−−−Θ−Θ= nn llTnnT π  

d(n) has a range of [-2 π, 2π). We can wrap it into the range of [- 
π, π), that is 

πdlndny 2)()( −=                                (15)      

and                                    ππ <≤− )(ny                                (16) 

Where ld is the wrapping index. From (15), 

 )(2))1(()()( 1 dnn lllTnnTny −−−−Θ−Θ= −π         (17) 
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where kn=ln-ln-1-ld is the wrapping index for y(n), which has 
combined all the wrapping effect. Define the integral term as  
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=
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 It is easy to verify that   

)()()( tgtmktx fc ∗=                               (19)  

where (*) denotes a convolution integral, and g(t) is a gate 
function defined as 
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Therefore (18) can be expressed as 

nc knTxny π2)()( −=                                 (21)   

nnTtf ktgtmk π2)]()([ −∗= =
                (22) 

Eq. (22) clearly shows that the discrete time signal y(n) can be 
considered as a sampling sequential of an analogue signal xc(t) 
with a sampling period of T, while having a bias of 2πkn .  

 

 
Fig. 1.  The equivalent systems using Oppenheim time 
normalization model (a) the model for equation (22)  (b) the 
FM reconstruction model  (c) sampling a non-modulated signal 
(d) the reconstruction of a sampled non-modulated signal 
 

 The signal xc(t) is a result of the message signal  m(t) passing 
through a multiplication with a coefficient of kf, and an LTI 
system with a  rectangular impulse response g(t). 

Using the Oppenheim time normalization model [4] to 
analyse the conversion of an analogue signal into a discrete-time 
signal or vice versa, the above sampling and relevant FM 
processing can be simplified to an equivalent model as Fig 1(a). 
Where p(t) is the sampling function, an impulse train, that is 

∑
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The part of the multiplying between xc(t) and p(t), and the 
conversion of the impulse train to discrete-time sequence can be 
considered as an ADC device converting the analogue signal 
xc(t) to a discrete–time sequence x(n). That is 

∫ −
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Similarly for a non-modulated signal as shown in figure 1 (c), 
we have 

)()()( nTmtmnm
nTt

==
=

 

As g(t) is an LTI system, so the Fourier transform of xc(t) is 
the product of kfM(Ω)G(Ω), where G(Ω) is the Fourier 
transform of g(t). When T<1/B, the main lobe of G(Ω) is wider 
than the bandwidth of M(Ω), hence the bandwidth of xc(t) is the 
same as that of M(Ω). Consider that xc(t) is still a real baseband 
signal, we have 

Bf s 2>                                         (24) 

Where B is the bandwidth of the message signal rather than 
the bandwidth BFM of the modulated signal. However, the final 
sampling rate requirement must also confirm with (24) as well 
as the following unwrapping requirement in section 3.2.  

To reconstruct the original signal, for normal sampling, a 
DAC and a lowpass filter is needed as shown in figure 1(d). The 
DAC can be considered as a device converting the discrete-time 
sequence to an impulse train. The lowpass filter has a stop 
frequency of B. 

VI - 246

➡ ➡



  

Thus, we can design the reconstruction model for an FM signal 
as shown in Fig 1 (b). Three more operations are needed besides 
the DAC and the lowpass filter.  

(1). the first operation is to cancel (we call it  unwrapping) the 
phase bias, if it exists, by adding a number of 2π kn

d. That is, 
)(2)()( n

d
n kknxnz −+= π                     (25) 

It is obvious that if the unwrapping integer number kn
d is 

exactly the same as kn,, the reconstructed signal z(t) from the FM 
signal will be the same as m(t). If (kn

d –kn) is a nonzero constant, 
which is independent of n, then zc(t) has a DC difference from m(t). 
However, after removal of the DC component of zc(t), m(t) can be 
recovered completely. The implemention of the above addition 
will be discussed in detail in section 3.2.  

(2). The second operation is to cancel the effect introduced by 
g(t). This can be implemented by an LTI system which has a 
frequency response Gr(Ω) =1/G(Ω). Note that, as the signal of 
interest is in the frequency range between –B and B, the outside 
band response can be of any value.  

As long as T<1/ B, there will be no singularity points in Gr(Ω). 
Hence such an LTI system is realizable. 

(3). The last operation is to remove the DC component. 
 

3.2. The Phase Unwrapping  

In this section, we analyse the factors of the bias, the 
unwrapping method and the sampling rate limit for unwrapping.  

 
Theorem 1: if the sampling frequency satisfies fs>2∆f, then 

kn=0 for all n. 
From Theorem 1, it is apparent that when fs>2∆f , there is no 

phase bias between y(n) and x(n), so no unwrapping operation is 
needed. The whole system works similarly to a normal non-
modulated sampling system except g(t) and Gr(Ω). Recall from (2) 
that, in all cases, fs must also satisfy fs>2B, so the no-phase-bias 
sampling rate is determined by the larger one between B and ∆f. In 
a narrow-band FM system, as B>∆f, the minimum sampling rate is 
2B Hz. In a wide-band FM system, ∆f>B, the minimum sampling 
rate fs is 

FMFMs BBBff ≈−=∆= 22             (27) 

As a result, when the sampling frequency is larger than the 
modulated signal bandwidth BFM, no matter whether it is a narrow-
band or wideband signal, the message m(t) can be simply obtained 
from y(n).  

But, when ff s ∆< 2 , part of x(n) will be out of the range 

between -π and π, as part of y(n) has a bias to x(n) because of 
wrapping. Figure 2 shows an example,  

However, if the signal x(n) does not change fast enough, even 
though |x(n)|  exceeds π, it can also be recovered by unwrapping 
y(n).  For example, if z(n)=0.9π (note that the recovered signal is 
denoted as z(n) rather than x(n)) and y(n+1)= –0.8π, then we can 
get z(n+1)=1.2π rather than –0.8π or 3.2π. This unwrapping 
process has a mechanism, which selects automatically a proper 

number of 
d
nk  to match (not necessarily equal) kn, thus recovers 

x(n). 
 
Theorem 2: when the signal x(n) satisfies  

π<−+ )()1( nxnx                           (28) 
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Fig. 2.  the difference between x(n) and y(n) 

 
the unwrapping process of y(n), which restrict z(n) in the 

bound as π<−+ )()1( nznz  , automatically chooses the 

unwrapping index  d
nk  to satisfy 

 
z(n)=x(n)+2πc 

and                                      ckk n
d
n =−  

where  c is an integer constant, independent with n. 
As a result, when (28) holds, the recovered signal z(n) only 

has a DC difference from x(n) if the constant c is not zero. If the 
message signal is free of DC component, it is easy to reconstruct 
x(n) by removing the DC component from z(n). 

 
Theorem 3: If  
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 then  

π<−+ )()1( nxnx  

The above bound (29) shows the link between the sampling 
period T and the structure of the message signal and other FM 
parameters. This is the key inequity to determine the sampling 
rate limit. It is easy to verify, when T<(1/2.7B), the function 

Ω
Ω− ))cos(22( T  is a monotonically increasing function in 

terms of Ω in the range between 0 and 2πB. In such a case 
T<(1/2.7B), the more energy in the higher frequency band, the 
larger the number 

MΦ  is.  The extreme case happens when the 

message m(t) is a sinusoidal signal with the highest frequency of 
2πB. That is  

)2cos()( 0θπ += Btmtm p
 

Using its Fourier transform as substitution into (29), we have 

π
π

π
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−
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B

BTkm fp
M 2

))2cos(1(2  

The solution to the inequality (33) in terms of T or fs is given by 
 

)
2

1cos(

2

β
π

π

−
>

acr

B
f s

                             (30) 

When  BTπ2 is very small, we can approximate cos(2πBT)  
to [1-(2πBT)2/2]. Then a slightly conservative estimate of fs 
(which explicitly shows the relationship with BFM) is 
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1

)2(
+

=>
β

πβπβ                        (31) 

From (30) or (31), it can be concluded that the sampling rate 
can be much lower (especially when β is large) than the 
conventional sampling rate, i.e.

FMB . Note that these bounds in 

(30) or (31) are derived under the assumption of T<(1/2.7B). If the 
sampling rate estimated from (30) or (31) is lower than 2.7B, then 
they are invalid. This happens when β is a small number less than 
1, and the valid rate can be determined only from (30). We define 
the reduction ratio η = min(fs)/BFM and the restriction ratio ρ 
=2.7B/BFM,, thus (30) and  (31) are only valid for ρ > η .  

Figure 3 shows the ratio ρ and the reduction ratio η derived 
from (30) or (31)  versus the deviation ratio β. 

Furthermore, if the message signal is not a single tone, then 
there are some components in the lower frequency and hence the 
sampling frequency can be further smaller. For example, when a 
signal has a uniformly distributed spectrum, the sampling 
frequency can be only 

FMs BBf
1

5.0
)2(5.0

+
=>

β
πβ

πβ  

It is only 70% of that for a single tone. If  β = 20, the sampling 
rate is 27% of  BFM. 
 
3.3. Summary of the algorithm 

The algorithm can be summarized as follows. 
1) Sample the modulated signal with a sampling rate 

constrained by (31), or more precisely by (309) to obtain 
the real part R(n) and imaginary part I(n) of ψFM(n). 

2) Compute θ(n)=arg[I(n)+jR(n)], which is the phase of 
ψFM(n), where 1−=j . 

3) Compute d(n)= θ(n)- θ(n-1). 

4) Compute ]5.0
2

)1()(
[ +−−−=

π
nznd

floorl d
n

. 

5) Unwrap d(n) to z(n), i.e. compute d
nlndnz π2)()( += . 

6) Filter the signal of z(n) by an FIR digital filter for which 
the corresponding analogue filter has a response of 
Gr(ω)H(ω). 

7) Remove the DC component. 

4. CONCLUSION 

 
An new algorithm for FM demodulation with an sampling rate less 
than a conventional one, i.e. the FM bandwidth, has been proposed. 
Using a simplified equivalent model, we have derived a new 
sampling rate limit for an FM signal. It has shown that even 
though spectrum overlap (aliasing) happens to the sampled FM 
signal, a DC-free message signal can still be recovered completely. 
Whether and how this undersampling concept can work for other 
modulation schemes need further investigation. 
 
 

 
Fig. 3  The reduction ratio η and the restriction ratio ρ versus 

the deviation ratio β. 
 
 
 

It has demonstrated in the paper that the current sampling 
theorem does not present an optimal sampling rate for recovery 
the message from its FM signal and further modification of the 
theorem is needed. The basic idea introduced in this paper may 
act as trigger for the further development of the sampling 
theorem, especially for sampling modulated signals. 
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