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ABSTRACT

The continuous prolate spheroidal wave functions (Slep-
ian functions) were found to be useful for analog signal
processing several decades ago. But the digital revolu-
tion left them in the dust since they did not seem natu-
rally adapted to discrete analysis. Yet they have many
desirable, even unique, properties that originally made
them fascinating and could lead to some applications
in digital and analog-digital signal processing practice.
The simplest such applications involve the conversion
of a digital signal to an analog signal and recovery of
a band-limited signal from their values at countable
many distinct points on the real line. The Shannon
sampling theorem, which is based on the sinc expan-
sions, plays the most important theoretical foundation
in such approaches. In this work, by using the nat-
ural connection between the Slepian functions and sinc
function, several new formulae based on integer values
of Slepian functions are developed. These formulae are
then used to replace the sinc function in sampling the-
orems for digitizing band-limited signals. Finally, they
are used to construct analysis and synthesis filter banks
for sampled values of a band-limited signal.

1. INTRODUCTION

The continuous prolate spheroidal wave functions (Slep-
ian functions), because of a “lucky accident” [2], were
found to be quite useful for analog signal processing
several decades ago. But the digital revolution left
them in the dust since they did not seem naturally
adapted to discrete analysis. Yet they have many de-
sirable, even unique, properties that originally made
them useful and could lead to useful new digital and
analog-digital techniques. The simplest such involves
the conversion of a digital signal to an analog,.

One way of doing this is by means of the Shannon

0-7803-7663-3/03/$17.00 ©2003 IEEE

VI -241

Xiaoping Shen

Ohio University
Department of Mathematics

Athens, Ohio 45701, USA

sampling theorem [1] given by the formula

0 o= S fenmet=rh g

Nt o(t —nT)
= Z fnT)S(/T —n)

where T'= 7 /0, which is valid for c— bandlimited func-
tion with finite energy, that is, for continuous func-
tions in Lo(R) whose Fourier transform has support
in [—0,0]. These are signals which are invariant un-
der a perfect filter with frequency no greater than o.
This theorem has become a well-known part of both the
mathematical and engineering literature (see the recent
book by Higgins [1] or the paper by Vaidyanathan [3]).
It also falls naturally into a “wavelet” setting since the
sinc function appearing in (1.1), S(t) = sinnt/7t, is
a particular example of a “scaling function” appear-
ing in wavelet theory [4]. This sinc function is also
closely related to the Slepian functions {¢, } (some-
times called Slepian functions) which themselves have
some interesting sampling properties which will be the
chief subject of this work.

The {p,,} constitute an orthonormal basis of the
space of o—bandlimited functions on the real line just
as the translates of S(¢), {S(/T — n)} do. There are
several ways of characterizing them; they can be de-
fined by the integral equation

[ ‘p”(x)%s(t ;x)dx =Ann(t),  (12)

.
or by the differential equation
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or as the maximum energy concentration of a c—bandlimited

function on the interval (-7,7); that is ¢ is the func-
tion of total energy 1 such that
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is maximized, ¢, is the function with the maximum
energy concentration among those functions orthogonal
to ¢y, ete.

2. SOME PROPERTIES OF SLEPAIN
FUNCTIONS.

The {¢p,} discussed above depend on a parameter T
which comes from the interval of concentration and
on ¢ since they are o— bandlimited functions. We
shall usually suppress these parameters, but sometimes
when needed, we shall use the notation ¢, = ¢, ; ;.

In addition to the equation (1.2), the {¢,, } satisfy
an integral equation over (—oo, 00) as well:

o 1 t—=x
=9 dr = t). 2.1
| ea@ps( Gt =g, 21
This leads to a dual orthogonality
[ een@ds = Nswm @)

o0
| e@en@i
— o0
In fact, they constitute an orthogonal basis of L? (—7,7),
and an orthornormal basis of the subspace B, of LQ(—
00,00), the Paley — Wienerspaceo fallo —bandlimited
functions.

These equations lead to still another type of orthog-
onality for the Slepian functions, two discrete orthogo-
nality conditions of the form

n=0
T Z (kT)@,, (kT) = Emn.
k=—oc0

The first result may be used to find the expansion co-
efficients for other o—bandlimited functions by using
only the sampled values at the integers.

Proposition 1 Let f € By, let {¢,,} denote a sequence
of o—bandlimited Slepian functions with any concen-
tration interval (—7,7) with 7 > 0; let T'= 7/0; then

Z{ Z T, (KT)f

n=0 k=—o0

SED) Yo (1), (24)

The orthogonality on the interval (-7, 7) can be used
to get another set of formulae. One such is Parseval’s
equality for a function f € B, restricted to this interval

/ @) Pdr =S Anlan?.
-7 n=0

This latter series may be well approximated by a finite
sum because of the unique behavior of the eigenvalues
Ao > A1 > Ag > ... > 0. The first [o7] are relatively
close to 1 while the remaining ones are close to 0 [2]
from which it follows that

T [o7]
| @ =3 AP
-7 n=0

to a high degree of approximation.

(2.5)

3. A SAMPLING THEOREM BASED ON
SLEPIAN FUNCTIONS

We consider first a 7—bandlimited signal f(t) (i.e. 0 =
7) for simplicity whose energy is mainly concentrated
on (-7,7). It cannot have a higher proportion of its
energy on this interval than does ¢y of course. But if
we try to use the standard sampling theorem (1.1), we
see that the sampling approximation does not reflect
this concentration since the partial sums have a high
proportion of their energy outside of the interval. This
happens since we have the following inequality for the
sinc function
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Thus it appears that the use of the sinc function for
sampling such a signal is not very efficient.

Table 1 below shows the eigenvalues (concentration
index) for 7 bandlimited Slepian functions with time
concentration interval (—7,7), 7 = 1,2. Note that for
7 = 1,the eigenvalues are negligible for & > 4, while
for 7 = 2, they are negligible for & > 7, and hence
the sum in (2.5) can be terminated after 5 and 8 terms
respectively for the two cases.

Table 1. Concentration index of Slepian functions

k A1, k) A2, k)

0  9.810463e-001  9.999428e-001
1 7.496202e-001  9.975617e-001
2 2435930e-001  9.593904e-001
3 2464655¢-002 7.217516e-001
4 1.066060e-003 2.746661e-001
5 2.741514e-005 4.301465¢-002
6 4.802783e-007 3.478239¢-003
7 6.133203¢-009 1.870286e-004
8 5971410011 7.465624e-006
9 4.582026e-013 2.324184e-007
10 2.843140e-015  5.820375e-009
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If we are interested in the behavior of our signal in
the interval (—7,7) only, then we have for T—bandlimited
f(t), a truncated version of the sampling formula (2.4)

fO = f_v.k)e,(0r  (3.1)

k=—o0

It holds within a degree of accuracy needed for N suf-
ficiently large.

While individual values of f(k)may be large, they
cannot be too large since they are Fourier coefficients
of f(w), and if the latter is sufficiently smooth, must
converge to zero rapidly. Thus it is plausible that f(t)

may be represented by the truncated series:

T 7]
J(t) = f-(t) = Z f(k?){z (k) () 1 (E)-
T (3.2)

The error in using the truncation in (3.2) in the
mean square sense may now be found when fis suffi-
ciently smooth (i.e. belongs to the Sobolev space H“
for & > p, where p is a positive integer). It can be

shown to satisfy

/T |f(t) = fr()Pde < CT2 2P

-7

for some constant C.

3.1. Discrete sequences

The previous discussion gives us a sampling theorem
suitable for analog signals, i.e., functions of a real vari-
able t. However, most of the modern applications in-
volve discrete sequences and their processing. Frequently,
one has only the sampled values of the signal which, in
the case of m— bandlimited signals, are given by the
series of Slepian functions

f(k) = Zan%(k)~
The inverse is given by the series

an =3 FR)en (k)

because of the orthogonality given by (2.3) which allow
us to find either series from the other.

Again, the two series may be truncated for signals
concentrated on [—7,7] so that the first becomes

[77]
FR) =3 anpnl®) (3.3)

and the second becomes approximately

tn= 3 FB)en ().

[kl <T

(3.4)

This allows us to interpret them as filter banks in which
(33) corresponds to the analysis filter bank, while (3.4)
gives the synthesis filter bank, with the concatenation
of the two giving (almost) perfect reconstruction.
These formulas can also be used in conjunction with
(3.2) to give interpolation much as has been done for
other sampling theorems [3]. We can use (3.2) to obtain

F/L) = anp,(k/L) (3:5)

for a finer sampling spacing 1/L. Thus we can proceed
by beginning with a sequence {f(k)} and use (3.4) to
find the sequence {a,} and then (3.5) for the interpo-
lated values.

4. MRA BASED ON SLEPIAN FUNCTIONS

Because of the discrete orthogonality, the series formula
for a o—bandlimited function may be given by

1) =3 bapn(0), by = S TF(RT), (KT)

for Slepian functions concentrated on (—7, 7). The re-
lation between the expansions at various frequency or
time scales may be found by using the integral equation
expression (2.1). By a straightforward change of scale
in the integral equation, we find that

(pn,ar,l(x) = (pn,a',T(Tx)'

We can also use the series expansions to get a re-
lation between, say, m and 27— bandlimited Slepian
functions since ¢,, . - € Ba;. We can express the for-
mer as

(pn,ﬂ',r(t) = Z C’ﬂk(pkﬁﬂ'ﬂ'(t)) (41)
k=0
where
1
Cnk = 5 ; (pn,ﬂ',r(m/2)(pk,2ﬂ',7(m/2)' (42)

This may be considered as one form of a dilation equa-
tion, which relates the various subspaces in a multires-
olution analysis (MRA) which appears in wavelet the-
ory. In fact the Paley-Wiener spaces constitute such
an MRA {V,,}, where V,;, = Bgm,, the space of 2™7—
bandlimited functions.
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Proposition 2 let f € Vj with Slepian functions series
in Vy given by

f(t) = Z a%(pkﬂTﬂ' (t)
k=0
and with Slepian functions series in V7 given by
f(t) = Z allc(pk,%r,r(t);
k=0
then the coeflicients are related by
ad = Z Cnka} (4.3)

where the ¢, are given by (4.2).

The formulae in this proposition extend to other
scales as well, but they only work if our function be-
longs to the space Vi, at the coarsest scale. If we wish
to emulate the decomposition and reconstruction algo-
rithms of wavelet theory [5], we need to find an asso-
ciated basis of the orthogonal complement of V{ in V;.
This is an interesting but not too difficult undertaking
and will be touched on in a separate work [6]. As in the
case of wavelets, we can find the rate of convergence of
either the sampled series or the standard orthogonal
series in V},, to a function with the required of smooth-
ness. This is also taken up in [6] where a number of
numerical examples illustrating the theory are found.
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