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ABSTRACT 
 
Interpolation filters are used to calculate new samples at 
arbitrary time instants in between existing discrete-time 
samples. Polynomial-based interpolation filters can be 
efficiently implemented using Farrow structure. Lagrange 
coefficients are often used to describe such classical 
polynomial interpolators. Previous references have 
concluded that there must be an even number of samples 
in the basepoint set to perform interpolation in order to 
satisfy linear phase requirement. This paper introduces a 
new method to construct linear phase Lagrange 
interpolator using an odd number of basepoints. Although 
the conceptual analog reconstruction filter does not have a 
time-continuous impulse response, it can be proved that 
the interpolation results are time-continuous within the 
approximation error of polynomial-based interpolation. 

 

1. INTRODUCTION 
 
Interpolation filters are used to calculate new samples at 
arbitrary time instants in between existing discrete-time 
samples. They are required whenever there is a need to 
change from one sampling rate to another [1], e.g., the 
digital interfaces between different digital audio 
equipment [2], or to change from one sampling instant to 
another, e.g., the symbol synchronizations in digital 
receivers [3] and [4]. 

One possible implementation of such interpolation 
filters is to use traditional FIR filter structures to calculate 
x[(n+µ)Ts] from series of input samples x[nTs]; µ ∈ [0,1) 
and is often referred as fractional interval. For a limited 
number of {µk}, the filter coefficients can be pre-
computed and stored in the memory for each individual µk. 
When the number of {µk} becomes very large to meet fine 
resolution requirement of interpolation interval, the size of 
the memory can become very large thus making this 
technique more expensive to implement. 

Classical polynomial interpolation methods provide 
another way to implement such interpolation filters. 
Polynomial-based filters do not have the optimum filter 

response, but they can eliminate the need to store pre-
computed coefficients since they can be computed on-line 
based on the interpolation interval µk. In addition, a 
special FIR structure, known as Farrow structure and 
permits simple handling of the coefficients, is only 
applicable for polynomial based filters [4]. 

Previous references concluded that in order to 
construct a linear phase interpolation filter, there must be 
an even number of samples in the basepoint set [1] and 
[4]. The advantage of using linear phase interpolation 
filter is to avoid delay distortion. In this paper, we 
introduce a method to construct linear phase Lagrange 
interpolation filter using odd number of samples in the 
basepoint set. Although the impulse response of the 
conceptual analog reconstruction filter is not time-
continuous, it can be proved that the interpolation results 
are time-continuous within the approximation error of 
polynomial-based interpolation.  
 

2. INTERPOLATIONS AND LAGRANGE 
POLYNOMIAL-BASED INTERPOLATIONS 

 
In many applications of digital communications and digital 
signal processing (DSP), what is known about the signal is 
the frequency band of interest rather than its deterministic 
function with respect to time. It is often preferred to 
analyze the frequency domain behavior of the 
interpolation filter, in addition to the time domain 
behavior.  Because interpolation is essentially a 
reconstruction problem, the interpolation filters can be 
analyzed using the hybrid analog/digital conceptual model 
shown in Fig. 1 [5]. In this model, the interpolated outputs 
are obtained by sampling the reconstructed analog signal 
ya(t) at the time instants t=kTout=(nk+µk)Tin, where Tin and 
Tout are the input and output sampling intervals 
respectively. This model is only a conceptual model since 
almost all interpolators are implemented in an all-digital 
fashion. 

One of the frequency domain behaviors of 
interpolation is to remove the images of the signal 
spectrum that are located at integer multiples of 2π/Tin. 
The underlying analog filter with impulse response ha(t) is 
the prototype lowpass filter (LPF) that can be used to 
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evaluate such behavior. The sampled form of this analog 
filter can be used to calculate the new interpolated samples 
entirely digitally [3]. 

Polynomial-based interpolation is a classical 
numerical technique to fit the original Q samples with a 
polynomial having an order of Q-1. Lagrange coefficients 
are often used to describe such polynomials. The impulse 
response of the analog conceptual reconstruction filter can 
be constructed by applying Lagrange coefficient formulas 
in each interval between basepoints (original sampling 
instants), thus the filter response is a piecewise polynomial 
of µ [1]. The impulse response ha(t) is non-zero only in the 
intervals limited by the Q original sampling points. Fig. 2 
shows the construction of such piecewise polynomial 
based on Lagrange coefficients Ak

Q(µ), where µ is the 
aforementioned fractional interval. The Lagrange 
coefficients Ak

Q(µ) are given by the equations [1] 
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Fig. 3 shows an impulse response of a cubic 
interpolator using (1a) and the process described in Fig. 2.  

 
3. LINEAR PHASE LAGRANGE INTERPOLATOR 

USING ODD NUMBER OF BASEPOINTS 
 
What is shown in Fig. 3 is a polynomial-based interpolator 
using an even number (Q=4) of basepoints, which implies 
a polynomial of odd degree (Q-1). It is obvious to see such 
filter has an even symmetrical impulse response about t=0, 
i.e., ha(t) = ha(-t). Schafer and Rabiner [1] and [4] showed 
that in order to obtain a unique basepoint set for an 
interpolant and avoid delay distortion as well: 1) there 
must be an even number of samples in the basepoint set 
and 2) interpolation should be performed only in the 
central interval of the basepoint set. They [1] also 
concluded that when the number of original samples in the 
basepoint set (Q) is odd, the impulse response of Lagrange 
interpolation does not have linear phase if the filter is 
constructed using the process described in Fig. 2.  

An intuitive explanation is that there are an odd 
number of intervals between the basepoints when using an 
even number of basepoints, so there is a central interval. If 
an odd number of basepoints are selected, no central 

interval exists since the number of intervals between the 
basepoints is even. 

But there is a central point when an odd number of 
basepoints are employed, an intuitive alternative to divide 
the interpolation interval is: instead of dividing the 
interpolation intervals from (n-1)Ts to nTs, where n is any 
integer and Ts is the original sampling interval, divide  
them from (n-1/2)Ts to (n+1/2)Ts. With this method, a 
central interval is constructed spanning from half sampling 
interval before central point to half sampling interval after 
it. Fig. 4 shows the construction of such piecewise 
polynomial using proposed interpolation intervals when Q 
is odd. Equation (1b) will still be used as the formula to 
calculate Lagrange coefficients. The difference is when Q 
is odd, the basepoint index [3] should be derived  by 
round[kTout/Tin] rather than int[kTout/Tin], where round[z] 
means the common rounding operation of z and int[z] 
means the largest integer not exceeding z [3]. In addition, 
the described method suggests the fractional interval 
belongs to [-0.5, 0.5) instead of [0, 1) as used in many 
references [3], [4] and [6].  

From Fig. 4, we can see that in order for such a filter 
to have an even symmetrical impulse response about t=0, 
the piecewise polynomial given by (1b) must satisfy: 
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From (3), the impulse response of the reconstruction 
filter is symmetrical about t=0. Therefore, a linear phase 
interpolation filter based on proposed Lagrange piecewise 
polynomial with odd number of samples in the basepoint 
set can be constructed. Fig. 5 shows an impulse response 
of a 4th order interpolation filter using (1b) and the process 
described in Fig. 4. 
 
4. CONTINUITY OF INTERPOLATION RESULTS 

USING PROPOSED FILTER 
 
The impulse response ha(t) constructed by proposed 
Lagrange piecewise polynomial shown in Fig. 5 is not a 
continuous function of t. It can be seen from (1b) that  
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In this section, Q is assumed to be odd unless specified 
otherwise. 

As illustrated in previous section, the interpolation 
interval µ ranges between –0.5 and 0.5 when an odd 
number of basepoints are employed, so the discontinuity in 
ha(t) locates at the boundary of interpolation intervals 
shown in Fig. 4. Since interpolation is a time invariant 
process, it can be assumed the interpolation is performed 
in the interval between 0 and 1 without losing generality. 
In order to prove the continuity of the interpolation results, 
it needs to prove that )5.0()5.0( +− = xx , where x(0.5-) is 
the left-hand limit of the interpolation results x(t) at t=0.5, 
and x(0.5+) is the right-hand limit. 

As shown in Fig. 6, the calculation of x(0.5-) and 
x(0.5+) involves 2 different sets of basepoints, both 
consisting of Q original samples. As described in [1], these 
two interpolants can be evaluated by 
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Subtract (5b) from (5a) 
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where Dk
Q=Ak

Q(0.5)-Ak-1
Q(-0.5), k∈[-(Q-3)/2, (Q-1)/2].  

According to (1b) and (3), 
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Let l = k + (Q-1)/2, or k = l – (Q-1)/2, hence (8) becomes 
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Combine (6), (7) and (9), we have 
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where ∆ denotes the differentiation operation in discrete-
time. The final approximation is reasonable if the original 
signal can be approximated with negligible error using a 
(Q-1)-degree polynomial. In other words, the difference 
between the left-hand limit and right-hand limit at t=0.5 is 
in the same order as polynomial interpolation error of any 
other time instant. Therefore, it can be concluded that the 
interpolation results are continuous if the interpolation 
approximation error can be neglected. 
 

5. EXAMPLE 
 
We assume that a received signal is BPSK modulated 
baseband signal being sampled at twice the symbol rate. 
The pulse shaping filter used is a raised-cosine filter with 
excess bandwidth of 40%. The received signal is limited to 
the bandwidth of [0, 0.35fs], where fs is the sampling 
frequency. In theory, the original signal can be perfectly 
reconstructed by using an ideal reconstruction filter from 
two samples per symbol period. 

The received signal is obtained at different sampling 
phases, with timing errors ranging from 0 to 0.5Ts from 
the optimum symbol and mid-symbol sampling points. 
These sampling phases correspond to different fractional 
intervals from 0 to 0.5. We then use Lagrange polynomial 
interpolation filters to recover the symbols at the symbol 
timing strobe. The approximation errors can be determined 
by calculating the mean square error (MSE) at these 
decision points for different values of sampling timing 
error [6]. No noise is added to the signal such that the 
interpolation is the only error source. The results of this 
simulation are shown in Fig. 7. When the timing errors are 
between 0.5Ts and Ts (when an even number of basepoints 
are used), or between –0.5Ts and 0 (when an odd number 
of basepoints are used), the MSE results are identical to 
what have been shown for µ∈[0, 0.5]. In general, the 
higher order of a Lagrange interpolator, the lower MSE of 
the interpolation results are, because of their better image 
rejection. But for this test case, it is worth notice that an 
odd-order interpolator using more basepoints (Q=4) does 
not necessarily result in smaller MSE when compared to 
an even-order interpolator using fewer basepoints (Q=3). 
 

6. CONCLUSION 
 
Previous references concluded that a polynomial based 
interpolation filter must have even number of samples in 
its basepoint set in order to have linear phase filtering. A 
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new method is proposed in this paper to construct linear 
phase Lagrange polynomial-based interpolation filter 
using odd number of basepoints. Although the impulse 
response of the conceptual analog reconstruction filter is 
not time-continuous when the hybrid analog/digital model 
is employed to analyze the interpolation process, it is 
proved that the interpolation results are time-continuous 
within the approximation error introduced by such 
interpolation. 
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Fig. 1 The hybrid analog/digital model for interpolation 
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Fig. 3 Impulse response of cubic interpolator (Q=4) 
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Fig. 4 Construct analog reconstruction filter based on 
proposed Lagrange polynomial method (Q=5) 
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Fig. 5 Impulse response of 4th order interpolator (Q=5) 
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Fig. 6 Calculation of interpolants x(0.5-) and x(0.5+) 
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Fig. 7 MSE at symbol decision point using Lagrange 

interpolator of different orders 
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