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ABSTRACT

Interpolation filters are used to calculate new samples at
arbitrary time instants in between existing discrete-time
samples. Polynomial-based interpolation filters can be
efficiently implemented using Farrow structure. Lagrange
coefficients are often used to describe such classical
polynomial interpolators. Previous references have
concluded that there must be an even number of samples
in the basepoint set to perform interpolation in order to
satisfy linear phase requirement. This paper introduces a
new method to construct linear phase Lagrange
interpolator using an odd number of basepoints. Although
the conceptual analog reconstruction filter does not have a
time-continuous impulse response, it can be proved that
the interpolation results are time-continuous within the
approximation error of polynomial-based interpolation.

1. INTRODUCTION

Interpolation filters are used to calculate new samples at
arbitrary time instants in between existing discrete-time
samples. They are required whenever there is a need to
change from one sampling rate to another [1], e.g., the
digital interfaces between different digital audio
equipment [2], or to change from one sampling instant to
another, e.g., the symbol synchronizations in digital
receivers [3] and [4].

One possible implementation of such interpolation
filters is to use traditional FIR filter structures to calculate
x[(n+w)T,] from series of input samples x[nT;]; L € [0,1)
and is often referred as fractional interval. For a limited
number of {u}, the filter coefficients can be pre-
computed and stored in the memory for each individual L.
When the number of {u} becomes very large to meet fine
resolution requirement of interpolation interval, the size of
the memory can become very large thus making this
technique more expensive to implement.

Classical polynomial interpolation methods provide
another way to implement such interpolation filters.
Polynomial-based filters do not have the optimum filter
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response, but they can eliminate the need to store pre-
computed coefficients since they can be computed on-line
based on the interpolation interval . In addition, a
special FIR structure, known as Farrow structure and
permits simple handling of the coefficients, is only
applicable for polynomial based filters [4].

Previous references concluded that in order to
construct a linear phase interpolation filter, there must be
an even number of samples in the basepoint set [1] and
[4]. The advantage of using linear phase interpolation
filter is to avoid delay distortion. In this paper, we
introduce a method to construct linear phase Lagrange
interpolation filter using odd number of samples in the
basepoint set. Although the impulse response of the
conceptual analog reconstruction filter is not time-
continuous, it can be proved that the interpolation results
are time-continuous within the approximation error of
polynomial-based interpolation.

2. INTERPOLATIONS AND LAGRANGE
POLYNOMIAL-BASED INTERPOLATIONS

In many applications of digital communications and digital
signal processing (DSP), what is known about the signal is
the frequency band of interest rather than its deterministic
function with respect to time. It is often preferred to
analyze the frequency domain behavior of the
interpolation filter, in addition to the time domain
behavior. Because interpolation is essentially a
reconstruction problem, the interpolation filters can be
analyzed using the hybrid analog/digital conceptual model
shown in Fig. 1 [5]. In this model, the interpolated outputs
are obtained by sampling the reconstructed analog signal
ya(t) at the time instants t=kT,,=(n )T, where T;, and
Tow are the input and output sampling intervals
respectively. This model is only a conceptual model since
almost all interpolators are implemented in an all-digital
fashion.

One of the frequency domain behaviors of
interpolation is to remove the images of the signal
spectrum that are located at integer multiples of 27m/Ty,.
The underlying analog filter with impulse response h,(t) is
the prototype lowpass filter (LPF) that can be used to
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evaluate such behavior. The sampled form of this analog
filter can be used to calculate the new interpolated samples
entirely digitally [3].

Polynomial-based interpolation is a classical
numerical technique to fit the original Q samples with a
polynomial having an order of Q-1. Lagrange coefficients
are often used to describe such polynomials. The impulse
response of the analog conceptual reconstruction filter can
be constructed by applying Lagrange coefficient formulas
in each interval between basepoints (original sampling
instants), thus the filter response is a piecewise polynomial
of W [1]. The impulse response h,(t) is non-zero only in the
intervals limited by the Q original sampling points. Fig. 2
shows the construction of such piecewise polynomial
based on Lagrange coefficients A, 2(1), where W is the
aforementioned fractional interval. The Lagrange
coefficients A, (1) are given by the equations [1]
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Fig. 3 shows an impulse response of a cubic
interpolator using (1a) and the process described in Fig. 2.

3. LINEAR PHASE LAGRANGE INTERPOLATOR
USING ODD NUMBER OF BASEPOINTS

What is shown in Fig. 3 is a polynomial-based interpolator
using an even number (Q=4) of basepoints, which implies
a polynomial of odd degree (Q-1). It is obvious to see such
filter has an even symmetrical impulse response about t=0,
i.e., hy(t) = hy(-t). Schafer and Rabiner [1] and [4] showed
that in order to obtain a unique basepoint set for an
interpolant and avoid delay distortion as well: 1) there
must be an even number of samples in the basepoint set
and 2) interpolation should be performed only in the
central interval of the basepoint set. They [1] also
concluded that when the number of original samples in the
basepoint set (Q) is odd, the impulse response of Lagrange
interpolation does not have linear phase if the filter is
constructed using the process described in Fig. 2.

An intuitive explanation is that there are an odd
number of intervals between the basepoints when using an
even number of basepoints, so there is a central interval. If
an odd number of basepoints are selected, no central

interval exists since the number of intervals between the
basepoints is even.

But there is a central point when an odd number of
basepoints are employed, an intuitive alternative to divide
the interpolation interval is: instead of dividing the
interpolation intervals from (n-1)T; to nT, where n is any
integer and T, is the original sampling interval, divide
them from (n-1/2)Ts to (n+1/2)T,. With this method, a
central interval is constructed spanning from half sampling
interval before central point to half sampling interval after
it. Fig. 4 shows the construction of such piecewise
polynomial using proposed interpolation intervals when Q
is odd. Equation (1b) will still be used as the formula to
calculate Lagrange coefficients. The difference is when Q
is odd, the basepoint index [3] should be derived by
round[KT,./T;,] rather than int[kT,./T;,], where round[z]
means the common rounding operation of z and int[z]
means the largest integer not exceeding z [3]. In addition,
the described method suggests the fractional interval
belongs to [-0.5, 0.5) instead of [0, 1) as used in many
references [3], [4] and [6].

From Fig. 4, we can see that in order for such a filter
to have an even symmetrical impulse response about t=0,
the piecewise polynomial given by (1b) must satisfy:
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From (3), the impulse response of the reconstruction
filter is symmetrical about t=0. Therefore, a linear phase
interpolation filter based on proposed Lagrange piecewise
polynomial with odd number of samples in the basepoint
set can be constructed. Fig. 5 shows an impulse response
of a 4™ order interpolation filter using (1b) and the process
described in Fig. 4.

4. CONTINUITY OF INTERPOLATION RESULTS
USING PROPOSED FILTER

The impulse response h,(t) constructed by proposed

Lagrange piecewise polynomial shown in Fig. 5 is not a

continuous function of t. It can be seen from (1b) that
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In this section, Q is assumed to be odd unless specified
otherwise.

As illustrated in previous section, the interpolation
interval | ranges between —0.5 and 0.5 when an odd
number of basepoints are employed, so the discontinuity in
h,(t) locates at the boundary of interpolation intervals
shown in Fig. 4. Since interpolation is a time invariant
process, it can be assumed the interpolation is performed
in the interval between 0 and 1 without losing generality.
In order to prove the continuity of the interpolation results,

it needs to prove that x(0.57) = x(0.5"), where x(0.5") is

the left-hand limit of the interpolation results x(t) at t=0.5,
and x(0.5") is the right-hand limit.

As shown in Fig. 6, the calculation of x(0.5") and
x(0.5") involves 2 different sets of basepoints, both
consisting of Q original samples. As described in [1], these
two interpolants can be evaluated by
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Combine (6), (7) and (9), we have
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where A denotes the differentiation operation in discrete-
time. The final approximation is reasonable if the original
signal can be approximated with negligible error using a
(Q-1)-degree polynomial. In other words, the difference
between the left-hand limit and right-hand limit at t=0.5 is
in the same order as polynomial interpolation error of any
other time instant. Therefore, it can be concluded that the
interpolation results are continuous if the interpolation
approximation error can be neglected.

5. EXAMPLE

We assume that a received signal is BPSK modulated
baseband signal being sampled at twice the symbol rate.
The pulse shaping filter used is a raised-cosine filter with
excess bandwidth of 40%. The received signal is limited to
the bandwidth of [0, 0.35f;], where f; is the sampling
frequency. In theory, the original signal can be perfectly
reconstructed by using an ideal reconstruction filter from
two samples per symbol period.

The received signal is obtained at different sampling
phases, with timing errors ranging from 0 to 0.5T from
the optimum symbol and mid-symbol sampling points.
These sampling phases correspond to different fractional
intervals from 0 to 0.5. We then use Lagrange polynomial
interpolation filters to recover the symbols at the symbol
timing strobe. The approximation errors can be determined
by calculating the mean square error (MSE) at these
decision points for different values of sampling timing
error [6]. No noise is added to the signal such that the
interpolation is the only error source. The results of this
simulation are shown in Fig. 7. When the timing errors are
between 0.5T and T (when an even number of basepoints
are used), or between —0.5T and 0 (when an odd number
of basepoints are used), the MSE results are identical to
what have been shown for pe[0, 0.5]. In general, the
higher order of a Lagrange interpolator, the lower MSE of
the interpolation results are, because of their better image
rejection. But for this test case, it is worth notice that an
odd-order interpolator using more basepoints (Q=4) does
not necessarily result in smaller MSE when compared to
an even-order interpolator using fewer basepoints (Q=3).

6. CONCLUSION
Previous references concluded that a polynomial based

interpolation filter must have even number of samples in
its basepoint set in order to have linear phase filtering. A
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new method is proposed in this paper to construct linear
phase Lagrange polynomial-based interpolation filter
using odd number of basepoints. Although the impulse
response of the conceptual analog reconstruction filter is
not time-continuous when the hybrid analog/digital model
is employed to analyze the interpolation process, it is
proved that the interpolation results are time-continuous
within the approximation error introduced by such
interpolation.
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Fig. 2 Construct analog reconstruction filter based on
Lagrange polynomial (Q=4)
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Fig. 3 Impulse response of cubic interpolator (Q=4)
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Fig. 4 Construct analog reconstruction filter based on
proposed Lagrange polynomial method (Q=5)
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Fig. 5 Impulse response of 4ths order interpolator (Q=5)
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Fig. 6 Calculation of interpolants x(0.57) and x(0.5")
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Fig. 7 MSE at symbol decision point using Lagrange
interpolator of different orders
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