ADAPTIVE ESPRIT ALGORITHM BASED ON THE PAST SUBSPACE TRACKER

Roland Badeau, Gaél Richard and Bertrand David

Ecole Nationale Supérieure des Télécommunications
46 rue Barrault, 75634 Paris Cedex 13 France
roland.badeau, gael.richard, bertrand.david@enst.fr

ABSTRACT

The Estimation of Signal Parameters via Rotational Invari-
ance Techniques (ESPRIT) algorithm is a subspace-based analysis
method used in source localization or frequency estimation, orig-
inally designed in a block signal processing context. In other re-
spects, the Projection Approximation Subspace Tracker (PAST) is
a fast and robust subspace tracking method. This paper introduces
a new frequency estimation and tracking algorithm, which relies
on the PAST subspace tracker and a fast adaptive implementation
of the ESPRIT algorithm.

1. INTRODUCTION

The Exponentially Damped Sinusoidal (EDS) model represents a
signal as a sum of damped sinusoids [1]. Although the Fourier
transform remains a prominent tool for frequency estimation, the
ESPRIT algorithm [2] overcomes the resolution limit of the Fourier
analysis and provides straight estimates of the model parameters.
This method relies on the rotational invariance property of the sig-
nal subspace spanned by the damped sinusoids. Its main drawback
is a high computational cost. Consequently, in an adaptive context,
tracking the model parameters by recursively applying the ESPRIT
algorithm would be very time consuming. Therefore, there is a
clear need for fast implementations of ESPRIT that make the best
of the recent subspace tracking techniques.

Adaptive implementations of ESPRIT were already proposed
in the literature, based on specific subspace trackers. For example,
the adaptive ESPRIT technique presented in [3] relies on an SVD
updating algorithm [4], and that proposed in [5] is based on the
rank-revealing URV decomposition [6]. The complexity of these
methods is proportional to O(n?) operations for each time update,
where n is the dimension of the data vectors. In [7], other adap-
tive ESPRIT algorithms were proposed for use with the Loraf [8]
or the Bi-SVD subspace tracker [9]. In comparison with [3] and
[5], the complexity of these algorithms is reduced to O(nr?) or
O(nr), where r is the dimension of the signal subspace (in prac-
tice r << n). Concurrently, the PAST algorithm is a very light
and robust subspace tracker, which requires only O(nr) opera-
tions at each time step. The PAST estimation consists in the itera-
tive optimization of a specific cost function involving the estimated
covariance matrix of the signal, in combination with a projection
approximation hypothesis [10]. Relying on this very fast subspace
tracker, the adaptive ESPRIT algorithm presented below reaches
the linear complexity® O(nr).

Ln fact, the last step of this algorithm is the EVD of a 7 x r matrix,
which involves O(r3) operations. Such a computation is also required in
[5] and [7]. The latter proposes a fast eigenvalue tracking method.
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This paper is organized as follows. Section 2 briefly describes
the application of the ESPRIT method to the EDS model. Sec-
tion 3 summarizes the PAST algorithm. Section 4 introduces our
fast adaptive ESPRIT method, whose performance is compared to
that of the reference algorithm [7] in section 5. Finally, section 6
summarizes the main conclusions of this paper.

2. ESTIMATION OF SIGNAL PARAMETERSVIA
ROTATIONAL INVARIANCE TECHNIQUES

The noiseless EDS model defines the discrete signal z(t) as

T
z(t) = Z Am b,
m=1

where r is the order of the model, o, € C* are the complex
amplitudes, and z,, € C* denote the complex poles. The vector
zt) = [zt —n+1),...,2)]" (with n > r) belongs to the
r-dimensional subspace spanned by the Vandermonde matrix

1 1
Z1 Zr
V =
n—1 n—1
2 cee Zp

The poles can be calculated by exploiting the rotational invari-
ance property of this subspace, referred to as the signal subspace.
The classical way of obtaining a n x » matrix U which spans the
signal subspace consists in computing the singular value decom-
position (SVD) of a data matrix, or the eigenvalue decomposition
(EVD) of a covariance matrix, which requires O(n®) operations.

Let U, be the matrix extracted from U by deleting the last
row. Similarly, let U be the matrix extracted from U by deleting
the first row. Then consider the r x r matrix ® = (U,)' U,
(where the symbol t denotes the Moore-Penrose pseudo-inverse).
It can be shown that the eigenvalues of @ are exactly the complex
poles of the signal. Therefore, the ESPRIT algorithm [2] consists
in:

e computing & (which requires O(nr?) operations),

e extracting the estimated poles 2,, as the eigenvalues of &

(which can be achieved in O(r) operations).

3. PROJECTION APPROXIMATION SUBSPACE
TRACKING

The PAST algorithm for signal subspace tracking [10] requires

only O(nr) operations at each time step (instead of O(n®) for
a full EVD).
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Table 1. PAST algorithm

for each time step do

PAST main section

input vector : (t)

y(t) =U(t — 1)"=(t)

h(t) = Z(t — 1) y(t)

") = Fremm

g(t) =v(t) h(t)

Z(t) = 5 (2(t—1) - g(t) h()H)
e(t) ==z(t) - Ut —1)y(?)

U(t) =U(t 1) +e(t)g(t)?

The dominant subspace estimation consists in minimizing the
approximated scalar cost function

J(Ut) = Zﬁmllm(i) —U®)yOl’

where {x(7)} is a sequence of n x 1 data vectors, 3 is the forget-
ting factor, and y (i) = U (i — 1) (3) (where the superscript ¥
denotes the transpose conjugate of a matrix).

B. Yang showed that the solution U(t) € C**" (with r <
n) could be updated with few computations (see table 1)>3. The
update of U (t) is just a rank-1 modification:

Uit)=U(t—1)+e(t)gt)"” @)

where e(t) and g(t) are respectively n and r dimensional vectors.

4. ADAPTIVE ESPRIT ALGORITHM

The EDS model relies on the assumption of non varying signal pa-
rameters within the observation window. However, slow variations
of these parameters can be taken into account in the analysis pro-
cess. The main idea of this paper consists in tracking these time
variations by applying the ESPRIT algorithm to the matrix U (t)
estimated by the PAST algorithm (instead of a classical EVD or
SVD). Thus, at each time step, the matrix ®(t) is given by the
equation
B(t) = UL()' Us(t). @
The complexity of this semi-adaptive ESPRIT algorithm is
O(nr?) because of the complete computation of the matrix & (¢).
In fact, this time-consuming operation can be avoided by recur-
sively updating ®(t). This fast update can be obtained after a few
mathematical derivations. First, equation (1) yields

Uy(t) = Uyt —1) + ey (t) g(1)" ®

21, denotes the r x r identity matrix.
3Note that 8 > 0 and h(t)7 y(t) > 0, so that y(t) is always defined.

and

Up(t) = Ur(t—1) +er(t) g(t)". 4
Consider the » x r hermitian matrix
C(t)=U,t)"U,@). ®)

From now on, suppose that U | (¢) is always full rank (the rank
deficiency case will be discussed later). Since in this case C(t) is
non-singular, consider the r x r hermitian matrix

W(t)=C()™" (6)
so that
U, =weyu,m". 0]
Substituting equation (3) into equation (5) yields
Ct)=C@t—1)+F(t)J(t)F(t)" (8)
where F'(t) is the » x 2 matrix
Fit)=[ Uit-1)"et) | 9(t) ] ©)
and J (¢) is the 2 x 2 non-singular matrix
0 1
70 = [T ertor ) (9

Then the following matrix inversion lemma [11, pp. 18-19]
will transform equation (8) into a recursion involving W (¢).

Lemmal Let A be ar x r non-singular complex matrix. Con-
siderther x rmatrix B= A+ X JY ,where X isrxm, Y is
m x r,and J is m x m and non-singular. Then B is non-singular
ifand only if J~! +Y A~! X is non-singular, and in this case

Bl=A"'-A'X@J'+vAa'X) 'vyal

Lemma 1 applied to equation (8) shows that W () satisfies

W(t)=W(t—1)— S(t)A(t) St)" (11)
where S(t) is the » x 2 matrix
S(t)=W(t—1)F(t) (12)

and A(t) is the 2 x 2 matrix
A(t) = (J(t)‘1 + S(t)HF(t)) - (13)

Note that lemma 1 also proves that C(¢) is non-singular if and
only if the 2 x 2 matrix J(t)~* + S(t)™ F(t) is non-singular.
Therefore, detecting the non inversibility of J(t) 1 + S(t)? F(t)
is a fast way of detecting the rank deficiency of U ;(¢). In the
following developments, the full-rank case will be presented first.
After some calculations (see the appendix), the following lemma
can be derived:

Lemma 2 The matrix U (¢) satisfies the recursion

Ut) =U,t-1)" +Rt) T ()" (14)
where R(t) is the r» x 2 matrix
R(t) = S(t) A(t) (15)
and T'(t) is the (n — 1) x 2 matrix
T(t)=e()[ 1|0 ]-U(t-1)5®).  (16)
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Now, substituting equations (14) and (4) into equation (2) yields

B(t)=2(t-1)+PHQM" 1
where P(t) is the r x 3 matrix
P(t)=[ Ut -1 est) | R(t) ] (18)
and Q(¢) is the r x 3 matrix
Q) =1[g@) | U®)"T®) ]- (19)

Note that equation (17) shows that the update of the matrix & is
a rank-3 modification. The whole processing requires only O(nr)
operations. Finally, the complete pseudo-code for the adaptive ES-
PRIT algorithm is given in table 2.

Table 2. Adaptive ESPRIT algorithm
PAST initialization (cf. table 1)
ESPRIT initialization
WO =I,20) U000
for each time step do

’- PAST main section (cf. table 1)
ESPRIT main section

F)=[ Uyt-1)fe,t) | a(t) | ©

St)=W({t—1)F(¢) (12)

S0 - [ “lley (Ol | 1 ] rom (10
1 0

A(t)= ()" + S@®HF(®) (13)

R(1) = S(t) A() (15)

W(t) = W(t—1) — R(t) S(t)H from (11)
T =e,)[ 1|0 ]-Ut-1S®) 19

P)=[ Uyt-1iert) | RO | (18)
Qv = g | us T | (19)
Ut =t -1+ Rt) T (14)
®(t) = @(t— 1)+ P(t) Q)7 17)

\_ {Zm}1<m<r = eig (®(t))

If U (¢) is rank deficient, ®(¢) can no longer be updated with
equation (17), since C(t) is singular. In this case, the pseudo-
inverse of U | (t) must be explicitly computed. In equation (7),
W (t) is now defined as the pseudo-inverse of C(t):

w(t) =c@)'.

This pseudo-inverse is obtained by computing the EVD of
C(t), which can be achieved in O(r®) operations. Then ®(t)
is given by equation (2), which requires O(nr?) operations. In the
following time steps, W (¢) and ®(¢t) are computed in the same
way, while C(¢) remains singular (note that C(¢) can be updated
using equation (8)). When C(t) becomes full rank again, the al-
gorithm can switch back to the fully adaptive processing.

5. SIMULATION RESULTS

The test signal of Figure 1-a is a sum of » = 4 complex sinu-
soidal sources plus a complex white gaussian noise (the SNR is
5.7 dB). The frequencies of the sinusoids vary according to a jump
scenario originally proposed by P. Strobach in the context of Di-
rection Of Arrival estimation [7]: their values abruptly change at
different time instants, between which they remain constant. Their
variations are represented on Figure 1-b.

Figure 2-a shows the frequency tracking result, with param-
eterspn = 80 and 8 = 0.99. The dotted line indicates the true
frequency parameters, while the solid line indicates the estimated
frequencies. Here, an orthonormal version of PAST [12] was used
instead of the classical PAST algorithm. Indeed, OPAST outper-
forms PAST without increasing the computational cost, and it can
be used without modifying the ESPRIT main section.

The performance of the subspace estimation is also analyzed
in figure 2-b in terms of the maximum principal angle between
the true dominant subspace of the data matrix (obtained via an
exact singular value decomposition), and the estimated dominant
subspace of the same data matrix (obtained with the tracker). This
criterion was originally proposed by P. Comon and G.H. Golub
as a measure of the distance between equidimensional subspaces
[13].

It can be noticed that the adaptive ESPRIT algorithm robustly
tracks the abrupt frequency variations. The time delay before con-
vergence in transient regions is mainly due to the exponential for-
getting nature of the analysis window and could be strongly short-
ened with a sliding window (as shown in [10]).

Finally, these results can be compared to that shown in fig-
ure 3, obtained with the O(nr?) adaptive ESPRIT algorithm [7]
associated to the O(nr?) Bi-SVD1 subspace tracker [9] with the
same parameters n and 8. It can be seen that the performance is
very similar to that shown in figure 2. However, the computational
cost is an order of magnitude higher, and the faster O(nr) adap-
tive ESPRIT algorithm proposed in [7], associated to the O(nr)
Bi-SVD3 subspace tracker [9], proved to be unstable on this test
signal.
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Fig. 1. (a): Test signal; (b): Normalized frequencies of the sinu-
soids.
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Fig. 2. OPAST / ESPRIT tracking: (a): Frequency tracking; (b):

Maximum principal angle trajectory.
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Fig. 3. Bi-SVD1/ ESPRIT tracking: (a): Frequency tracking; (b):
Maximum principal angle trajectory.

6. CONCLUSIONS

In this paper, an adaptive implementation of the ESPRIT algorithm
for frequency estimation and tracking has been derived, relying on
the PAST subspace tracker. This fast algorithm reaches the linear
complexity O(nr) (or O(nr?) in the rank deficiency case, which
is seldom encountered in practice), except for the final extraction
of the parameters, which requires the eigenvalue decomposition of
a small matrix (O(r®) operations). The technique proved to ro-
bustly track abrupt frequency variations. The time delay before
convergence in transient regions can be strongly reduced by us-
ing a sliding window version of the PAST algorithm (which was
not presented here because of a lack of space). Future work will
include a fast tracking of the eigenvalues of the small matrix, in
order to make the overall complexity linear.

7. APPENDIX: PROOF OF LEMMA 2

Substituting equations (11) and (3) into equation (7) yields

Uty = U t-1)f -8 Al) UL t—1)S1)"
+ (W(t—1)—S(t)At)S(t)") g(t) ei(t)f(’z-0

Note that equation (9) yields g(t) = F(t) [ (1] . Therefore,
equation (20) becomes
U, = ULt-1D"-SE)A®) Ut—-1)SE)"
+ S(t) (I, — At) S(t)" F(t)) [ ’ ]ei(t)H.
(21)
In the second member of (21), note that equation (13) yields
L —A@)ST@)F(t) = A@)J@)". (22)
Then, it can be seen that equation (10) yields
J(t)*l[‘l]]z[(l)]. (23)

By substituting equations (22) and (23) into equation (21), equa-
tion (14) is finally derived.
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