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ABSTRACT 

We propose a two-stage adaptive filtering process for 
canceling narrowband interference from a wideband signal 
process, based on a reference signal consisting of a Doppler 
shifted version of the interference. The first stage uses the time-
varying behavior of NLMS with large step-size to produce an 
estimate of the interference signal, in which the Doppler shift is 
mitigated. The second stage uses NLMS with small step-size, as 
an approximation to the Wiener filter, in order to modify 
amplitude and phase of the Doppler-mitigated reference signal so 
that an estimate of the interference signal is produced suitable for 
interference cancellation. Simulations with a wideband QPSK 
signal corrupted by strong sinusoidal interference, for which a 
Doppler shifted reference is available, show the performance of 
the proposed approach in terms of signal-to-interference ratio and 
bit-error rate improvement. 

 

1. INTRODUCTION 
One of the important and interesting applications of adaptive 

filtering is in adaptive noise, or interference, canceling (ANC). 
Fig. 1 shows the classical setup [1]. With sinusoidal interference, 
and a reference that can be derived from that sinusoidal 
interference by linear filtering, the adaptive filter weights tend to 
the Wiener filter weights as the step-size approaches zero. The 
overall filter acts like a notch filter centered at the interference 
frequency, with a notch bandwidth “proportional” to the 
adaptation step-size [2]. In order to benefit from adaptation to 
changes in the environment, the step-size has to be large enough 
to preserve a significant portion of the instantaneous error signal 
in the filter update. Consequently, the notch width entails a 
distortion of the wideband signal component. When the 
frequency of the reference and interference are not equal, as 
when the reference is a Doppler-shifted version of the 
interference, the Wiener filter weights are zero, and no 
cancellation of the interference takes place. The time-varying 
behavior of the normalized least-mean-square (NLMS) weights 
at large step-size [3] allows us to better estimate the desired 
signal in the ANC scenario. However, the desired signal for the 
ANC scenario, wideband signal plus strong interference, is not 
actually the signal-of-interest (SOI) to us. When the desired 
signal consists of a wideband SOI and an additive interference, it 
is difficult to remove the interference without signal distortion.  
In this paper a two stage filtering process is used to first improve 
the estimate of the interference frequency using the Doppler 
shifted reference signal, followed by using the improved estimate 

in the second stage to remove the interference with minimal 
signal distortion.  

The paper is organized as follows. Section II reviews the 
NLMS algorithm and some of its properties and relevant 
interpretations. Section III treats sinusoidal ANC and the inherent 
time-varying behavior of NLMS with large step-size in that 
scenario. Section IV defines the proposed two-stage ANC-NLMS 
approach, and simulation results illustrating the efficacy of the 
proposed approach are presented in Section V. A conclusion is 
provided in Section V. 

2. NLMS & PROPERTIES  
The NLMS adaptation algorithm is as follows: 
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When the desired signal nd  has the same structure as that used in 
the modeling process, i.e.  

 H
n o nd = w u  (2)  

for some fixed weight vector ow , then the NLMS adaptation 
converges to that weight vector (it produces a posteriori errors of 
zero and weight vector increment norms of zero). When there is 
noise added in (2), the weight vector converges to a 
neighborhood of ow , with the size of that neighborhood 
proportional to the stepsize used. The latter means that for small 
stepsizes the NLMS weight vector will be close to the best 
possible constant weight vector, i.e. the Wiener solution.  

Prominent time-varying NLMS weight behavior has been 
observed in situations where a large stepsize is chosen, for 
example 1µ = , so that adaptation is the fastest. For the latter, it 
can be shown that the a posteriori error equals zero [4], i.e. 

 1

0

H
n n n ndε += −
=

w u  (3) 

Another interpretation of the NLMS algorithm is that the a 
posteriori weight vector minimizes the norm of the weight vector 
increment, with (3) serving as a constraint [4]. Note from (1) that 
the change from nw  to 1n+w  is always in the direction of nu . 
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3. SINUSOIDAL ANC  
The classical ANC scenario is indicated in Fig. 1. The desired 
signal nd  consists of a wideband signal-of-interest nq  that is 
corrupted by strong sinusoidal interference ni . The reference 
signal nr  is the input to the adaptive filter. Consequently, the 
NLMS input vector nu  has as its elements nr , 1nr − , …, 1n Mr − +  
for an M-tap adaptive filter. 

ndn nq i+

ˆ
nd

ne-
AFnr

ˆnq

 
Fig. 1: Classical ANC Configuration. 

 
For sinusoidal interference and reference signals, we have 
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Note that we can rewrite the interference in terms of its past. 
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Let’s assume a hypothetical NLMS input vector nu , consisting 
of the immediate past of the interference signal and a single 
sample of the reference. The output of this filter is now: 
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Using (5) we can produce an NLMS output that cancels the 
interference, as follows. 
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Next we use the concept of the linking sequence [3], to express 
the relationship between the immediate past of the interference 
and the reference signal. 
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Using (8) to substitute for 1ni −  in (6) and (7) yields 
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Together with (7), the latter shows that a time-varying weight 
exists, which – operating on the reference – produces the 
interference signal. Using (8), that time-varying weight (vector) 
is as follows. 
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From the adaptive filtering point of view, the desired signal can 
therefore be written as 
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For maximum NLMS stepsize, i.e. 1µ = , the a posteriori 
weight vector forces the a posteriori error to zero. This implies  

 AF, 1
ˆ H

n n n
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Comparing (11) and (12), we note that when the signal-to-
interference ratio (SIR) is low, the a posteriori adaptive filter 
weight tracks the hypothetical – and optimal – time-varying 
weight in (11).  
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With the latter time-varying weight, the adaptive filter operation 
amounts to a modulation of the reference [5], together with a 
correction in its amplitude and phase, in an attempt to cancel the 
interference signal. 

Under the above circumstances, the error incurred by the 
adaptive filtering operation results from the fact that the tracking 
is very good a posteriori, i.e. mostly lag error is incurred. An 
expression for the steady-state a priori error can be found [3], 
which includes the dependence on stepsize µ . 
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Two important cases can be distinguished here, depending on 
whether the interference and reference frequencies are the same 
or different. When the interference and reference frequencies are 
the same, i.e. no Doppler-shift is present, the NLMS weight loses 
its time dependence. Consequently, NLMS with small stepsize 
can converge to the optimal solution given in (10) and the 
corresponding error in (14) goes to zero. For large stepsize, 
NLMS is subject to misadjustment, caused by the presence of the 
wideband signal-of-interest nq  acting as noise, and the 
interference cancellation is less effective.  

When the interference and reference frequencies are different, 
as when Doppler-shift is present, and the stepsize is small, the a 
priori error in (14) approaches the interference itself, while the 
adaptive filter output approaches the Wiener solution to the 
problem, i.e. weights equal to zero. Consequently, the signal-of-
interest can not be recovered from the adaptive filter error. For a 
stepsize equal to one, the adaptive filter output lags one step 
behind in producing an estimate of the interference. As a result,  
the interference is not canceled effectively and –  being large 
relative to the SOI – the latter still cannot be recovered. 

4. TWO-STAGE ANC-NLMS 
Under the Doppler-shifted condition, we saw that the NLMS 
adaptive filter with 1µ =  produced an estimate of the 
interference signal, albeit at a lag of one sample. While this 
estimate cannot be used to cancel the interference, it can be used 
as the reference signal for an ANC in the classical mode, as 
shown in Fig. 1. The latter realization leads to the two-stage 
ANC-NLMS approach proposed here: first, get a good estimate 
of the interference in spectral terms, i.e. one that is frequency-
locked to the interference; second, use the classical ANC setup to 
produce an adaptive filter output that is also amplitude and phase 
locked to the interference. The latter then provides for 
interference cancellation. Fig. 2 depicts the proposed approach. 
 

 

ndn nq i+

nr 1̂nd
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Fig. 2: Two-Stage ANC-NLMS. 

AF1, the first adaptive filter, produces an estimate which is a 
modulated version of the Doppler-shifted reference signal. As 
seen above, AF1 is used with stepsize 1µ =  and therefore 
rapidly adapting to any changes in the interference signal. In fact, 
under the given circumstances, AF1 adapts in a single step [3]. 
AF2 is used in the conventional ANC mode, with small stepsize. 

5. SIMULATION RESULTS 
In order to show the efficacy of the proposed approach, let the 
wideband signal-of-interest, nq , be a QPSK signal. The 
interference signal is a complex exponential with frequency 

0.166if = , while the Doppler-shifted reference signal has 

frequency 0.176rf = . The AF1 stepsize, 1µ , equals one, while 
the AF2 stepsize, 2µ , is set to 0.01 for this simulation. Both AF1 
and AF2 are 10-tap filters. A simple detector is used; one that 
assigns as detected (estimated) symbol the one from the signal 
constellation that is closest to it.  

 For (signal-to-interference ratio) SIR = –40 dB, the behavior 
of the AF2 error minus the corresponding QPSK estimate is 
shown in Fig. 3, indicating - in the top figure - that it takes about 
500 symbols to convergence, i.e. to reach steady-state. We find a 
0.0722 bit-error-rate (BER) based on symbols 1 through 5,000. 

 

 
Fig. 3: Two-Stage ANC-NLMS Performance, SINR = –40 dB. 
 

In order to readily observe the occurrence of bit errors, we also 
graph QPSK–QPSK estimate. In the bottom graph of Fig. 3 we 
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note that only a few bit errors occur (QPSK–QPSK estimate ≠ 0) 
during steady-state; in fact, steady-state BER = 0.0025. 

Analogously, for SINR = –20 dB, the results in Fig. 4 were 
obtained. In the top figure we note that steady-state behavior is 
reached sooner, in approximately 300 symbols. A BER of 0.0376 
is found over symbols 1 through 5,000. Over the steady-state 
interval with symbols 1,000 through 5,000 BER is 9.997510-4.  

  
Fig. 4: Two-Stage ANC-NLMS Performance, SINR = –20 dB. 

 
The results for SIR = 0 dB are shown in Fig. 5. Steady-state is 

reached in approximately 150 symbols. The overall BER was 
0.0076, while over the steady-state interval of symbols 1,000 
through 5,000 we found a BER of 4.998810-4. 

Based on these limited experiments, we saw the convergence 
rate cut by a factor of 2 for every 20 dB increase in SIR. We 
observed also that the steady-state BER is cut by a factor of two 
for every 20 dB increase in SIR.  

Note that the above BER are associated with individual bits, 
i.e. the symbols represent individual bits. Consequently, if the 
wideband signal-of-interest (SOI) is a CDMA type signal, we can 
expect the symbol-error-rate to be much less than the BER. 

To illustrate the dependence of the two-stage approach on the 
AF2 stepsize, we repeat the SIR = –40 dB experiment with 2µ  
changed to 0.1. While steady-state behavior is now reached very 
quickly, in fewer than 100 symbols, the overall and steady-state 
BER are now 0.0536 and 0.0437 respectively. The latter may be 
a result of the wider notch bandwidth [5] producing more severe 
distortion of the SOI component. 

 

 
Fig. 5: Two-Stage ANC-NLMS Performance, SINR = 0 dB. 

6. CONCLUSION 
We proposed to use the time-varying weight behavior of NLMS, 
when its stepsize is maximum, to produce a reference signal that 
is frequency-locked to an interference impinging on a signal-of-
interest, for the case where the available reference is a Doppler-
shifted version of the interference signal. Simulations show the 
efficacy of the proposed two-stage ANC-NLMS approach for 
QPSK symbols subject to strong sinusoidal interference.   
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