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ABSTRACT

In this paper, we describe a simple gradient algorithm for
adapting the phase response of an FIR filter whose mag-
nitude response is already specified. The algorithm is an
extension of a previously-developed gradient adaptive algo-
rithm for allpass filtering. The algorithm directly adjusts
the impulse response of the FIR filter using input and de-
sired response signals in a simple manner without the need
for frequency-domain processing or coefficient monitoring.
A stationary point analysis of the algorithm verifies its de-
sirable estimation capabilities. Simulations confirm the ca-
pability of the algorithm in a filter modeling task.

1. INTRODUCTION

Since their development over forty years ago, adaptive fil-
ters have found wide use in a variety of communications,
signal processing, and control applications. The simplest
adaptive filters adjust the coefficients of an FIR filter to
match its output signal to a desired response signal in a
mean-square sense. This adaptation strategy produces a time
varying filter whose magnitude and phase characteristics in
the frequency domain change according to the statistical re-
lationship between the input and desired response signals.

In some applications, one desires an adaptive filter that
estimates the phase relationship between the input and de-
sired response signals. Such a phase-only adaptive algo-
rithm would maintain the magnitude response of the adap-
tive filter as specified through a target filter. Applications
where such a procedure would be useful include (i) phase
equalization for spatial audio sound reproduction [1, 2], (ii)
plant identification for adaptive control, in which the phase
response of the plant model is critical to the success of the
control scheme [3], and (iii) null steering for adaptive beam-
forming [4, 5]. To our knowledge, no procedure for adapt-
ing the phase response of an FIR filter with an arbitrary
magnitude response has been described in the literature.

In this paper, we present a gradient adaptive algorithm
for adjusting the phase response of a frequency-selective
FIR filter using input and desired response signals. The al-
gorithm is an extension of a recently-proposed technique for

adaptive allpass filtering [6]. The algorithm is simple, re-
quiring about four multiplies per adaptive filter coefficient
per iteration to implement. We provide an analysis of the
algorithm to show that its only stable stationary point cor-
responds to the desired frequency-domain magnitude and
phase characteristics of the chosen task. Simulations verify
that the algorithm performs its designated task.

2. PHASE-ONLY ADAPTATION UNDER
AUTOCORRELATION CONSTRAINTS

The adaptive algorithm described in this paper uses exten-
sions and modifications of previously-described gradient
techniques for adaptive paraunitary filter banks and allpass
filters [6, 7]. The algorithmic basis for the new method is
now described. Let �� denote the possibly-complex-valued
impulse response of a doubly-infinite IIR filter, where ��
� � � �, and let �� be any finite-energy sequence. Define
the discrete-time convolution of two sequences � � and �� as
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The algorithm derived in this paper relies on the following
continuous-time differential update for the discrete-time im-
pulse response sequence �� first described in [7]:
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where �� denotes complex conjugate. We now prove an im-
portant invariance property of the update in (2).

Theorem 1: The update in (2) satisfies
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Proof: Taking derivatives of the quantity �� � � �
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���,
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Fig. 1: Phase-only adaptive filtering.

Substituting (2) into (4) and using the distributive and com-
mutative properties of the convolution operation, we obtain

�

��

�
�� � �

�
��

�
� ��� � �

�
�� � �� � �� � �

�
�� � ��� � �

�
��

� �� � ��
�
�� � �� � �

�
�� � �

�
�� � �� � �

�
��� (5)

� �� � �
�
�� � �

�
�� � �� � �� � �� � �

�
�� � �

�
��

� �� � �� � �
�
�� � �

�
�� � �� � �

�
�� � �

�
�� � �� (6)

� �� (7)

Discussion: The above theorem can be interpreted as fol-
lows. If the impulse response ������� is adapted over the
open interval � � � using (2), its discrete-time autocorrela-
tion function does not change with �; that is,
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Define the time-varying Fourier transform of �� ����� as
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Then, (8) can be expressed as

�
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 ��	 ����� (10)

The frequency response of the filter remains fixed during
adaptation; only the phase response of the filter changes.

3. PHASE-ONLY ADAPTIVE FILTERS

We now show how the update in (2) can be used to solve the
phase-only adaptive filtering task. Fig. 1 shows the nature of
this task, in which a desired response signal ��
� is created
from an input signal ��
� as
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where ���� is the impulse response of an unknown filter
with frequency response���� and ��
� is an uncorrelated
noise signal with variance ��� . We desire a phase-only adap-
tive filter with impulse response ���
�, � � � � � to

minimize �����
���� (12)

such that �
 ��	 
��� � �� ����� (13)

where
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and ���� is the impulse response of a chosen target filter.
It can be shown under the constraint in (13) that
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Thus, (12)–(13) is equivalent to the following task:

maximize 	�����
����
�� (20)

such that �
 ��	 
��� � �� ������ (21)

The constraint in (21) is identical in form to (10). Moreover,
the gradient of the cost function in (20) is

�� � ����
����
� ��� (22)

Thus, the differential procedure in (2) is relevant to the
phase-only adaptive filtering task.

To develop a practical procedure for the phase-only adap-
tive filtering task, several issues need to be addressed:


 A numerically-stable discretized version of the differ-
ential update in (2) is required.


 The doubly-infinite impulse response �� �� must be
truncated to a finite-length.


 The causality of the coefficient updates needs to be
maintained.

Similar issues have arisen in adaptive algorithms for spatio-
temporal principal and minor subspace analysis [7] single-
channel blind deconvolution [8], and adaptive time-delay
estimation [9]. We can use similar modifications to develop
our desired procedure. In particular,
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 We approximate the differential update in (2) with a
discrete-time update, in which the finite differences
����
�������
���� replace differentials ������,
where � is the step size.


 We truncate the doubly-infinite IIR filter ���� to fi-
nite length, such that ���
� is non-zero only for � �
� � �. The output signal ��
� defined in (15) reflects
this choice.


 We assume that the adaptation speed of the algorithm
is slow enough such that

���
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� �� (23)

within certain filtered gradient update terms.

The complete details of these modifications are omitted for
brevity, and only the final algorithm form is given:
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Equations (15), (19), and (24)–(26) describe our phase-only
adaptive FIR filtering algorithm. If� � �, the complexity
of this algorithm is approximately four multiply/adds per
adaptive filter coefficient at each time instant.

Remark 1: The above algorithm is most-closely related to
the modified phase-only differential update given by
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The only difference between (2) and (27) is the use of the
target filter impulse response �� in place of �� in the first
update term.

Remark 2: Although the target filter impulse response ����
is described by a finite-impulse response filter, an infinite-
impulse response filter can be chosen instead. In such cases,
�� �
� and �� �
� are generated using an IIR filter defined by
the system function � ��� � ����� ���, in which the target
magnitude response is �� ���� � ������ ����.

4. ANALYSIS

In this section, we provide a stationary point analysis of the
proposed phase-only adaptive FIR filtering algorithm. This
analysis uses the ordinary differential equation (ODE) of the
algorithm in (27) expressed in the frequency domain, where

�� is as defined in (22). It is straightforward to show for
stationary input and desired response signals that

�� �
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where !

�"� � ����
����
 � "��. Taking the Fourier
transform of both sides of (27), we obtain
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Finally, employing the Fourier transform of � � in (28) and
defining $

��� as the power spectrum of ��
�,
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The following two theorems relate to (30).

Theorem 2: If $

��� 
� � and ���� 
� �, the stationary
points of (30) are


 ��� � ��� ������
� ����	 (31)

where � ���� is the phase of����.

Theorem 3: The only stable stationary point of (30) is


 ��� � �� ������
� ����� (32)

Proof of Theorem 2: The stationary points of (30) are de-
fined by �
 ������ � �. Setting the right-hand-side of
(30) to zero yields


 ���$

����
����
 ��� � �� ���������$

���� (33)

Assume that $

��� and ���� are both non-zero. We can
simplify (33) to obtain


 ���� � �� ��������
� ����� (34)

Taking the square root of both sides of (34) produces (31).

Proof of Theorem 3: To determine the stability of (30) at
the stationary points in (31), we must evaluate the Hessian
of the coefficient update equation. Since the quadratic term
within the update in (30) is identical to that of Eqn. (15) of
[6], we can use the second-order condition from [6] directly:

	�
�

 ����#�������

� ����
�
% �� (35)

Substituting the Fourier transform of � � and the stationary
points in (31) into the left-hand side of (35) and noting that
both $

��� 
� � and ���� 
� �, we find that only (32)
satisfies this condition.
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Fig. 2: Convergence of (a) ��&�
�� and (b) ��'�
��.

Remark 3: Since $

��� 
� � and ���� 
� �, both the
input and desired response signals must have non-zero en-
ergy at all spectral frequencies for the algorithm to function
properly. In situations where either ��
� or ��
� lack signal
energy, the proposed algorithm may not accurately identify
either �� ���� or � ����. Our initial studies of these per-
formance issues indicate that the algorithm accurately esti-
mates � ���� in frequency regions where �� �������� is
large, a generally desirable characteristic.

5. SIMULATIONS

We now explore the behavior of the proposed phase-only
adaptive FIR filter through simulations. In these simula-
tions, the filter � ��� is a fourth-order Chebyshev Type 1
lowpass filter with a bandwidth of ���	( and ���dB of pass-
band ripple. We let ��
� and ��
� be zero-mean uncorre-
lated Gaussian signals with�����
���� � � and�����
����
� ����, and define ��
� � ��
�)����
�, where) � ��.
The goal of the adaptive filter is to approximate the magni-
tude frequency response of the Chebyshev filter while main-
taining linear phase across its passband. The adaptive fil-
ter’s parameters are � � 
�, � � �����, and ����� � �.
We calculate the performance factors
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where * � ��, + � �� and �� � �(�����. With these
choices, &�
� measures the adaptive filter’s distance from
phase linearity across the filter passband, whereas '�
� mea-
sures the error in the adaptive filter’s magnitude response
across the entire frequency band.

Shown in Fig. 2(a) and (b) are the evolutions of��&�
��
and ��'�
�� as estimated from ensemble averages of one
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Fig. 3: Comparison of the (a) unwrapped phases and (b)
magnitude responses for the true and estimated filters.

hundred simulation runs. The low values of these averaged
performance factors near the end of the simulation runs in-
dicates that the proposed adaptive filter does converge to
a linear phase filter whose magnitude response accurately
matches that of the target filter. Fig. 3(a) and (b) show the
magnitude and phase responses of the filter at the end of
one of the simulation runs. As can be seen, � 
 ��� is lin-
ear over the passband, and �
 ���� � ����� over the entire
frequency range.

6. CONCLUSIONS

This paper presents a novel time-domain algorithm for phase
only adaptive filtering, in which the magnitude response of
the adaptive filter is specified via a target filter. A stationary
point analysis of the algorithm verifies the capabilities of
the scheme. Simulations show that the algorithm performs
its desired task.
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