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ABSTRACT

In this article the computation of FIR filter weights in adaptive
channel equalization tasks in quasi stationary environments is con-
sidered. The problem is formulated as a system of equations. It
can be solved via direct matrix inversion (DMI) or iteratively via
the LMS or RLS algorithm. Thereby suitable criteria such as least
squares (LS) or mean square error (MSE) are minimized. By using
these techniques the filter weights are estimated. Another tech-
nique is to estimate the channel impulse response (CIR) by ex-
ploiting the eigenvalue decomposition (EVD) of cyclic matrices as
done in orthogonal frequency domain multiplex (OFDM) systems
and computing the FIR filter weights from the CIR via solving
the zero forcing matrix equation. Different techniques to solve
this equation are presented: One uses a cyclic prefix (CP) based
approach, another a QR decomposition. After describing the dif-
ferent techniques they are assessed in terms of ensemble-averaged
square error and computational complexity. The EVD based tech-
niques can render the lowest square error and require significant
fewer multiplications than iterative methods or the DMI technique.

1. INTRODUCTION

The transmission of digital data through a linear communication
channel is limited by inter symbol interference and noise. Often
the channel is time variant as e.g. in mobile communications. Two
basic concepts of modeling time varying channels are known. One
assumes a change of the channel impulse response (CIR) at every
time sample. Another assumes that the channel is time invariant
during a short period of time in which one data burst is transmit-
ted. The CIR is assumed to change only from burst to burst. This
scenario is adopted in this article. The task of an adaptive equalizer
can be subdivided in three parts. First the filter weights need to be
estimated. Then the filter process of distorted data is performed.
Finally, the filter parameter are adapted to a changed environment.
In this article it is focused on the estimation of the filter parameter
based on training data that is known at the receiver. The equaliza-
tion filter is modeled as tapped-delay line filter.

Three techniques to estimate the filter weights are presented.
The well known LMS-algorithm is chosen as the reference. It
computes the filter weights from the filter input and the desired
response iteratively. After an adequate number of iterations, the
filter weights converge against the Wiener solution apart from a
small deviation which is known as misadjustment [2]. The Wiener
solution can be obtained via direct matrix inversion (DMI). An-
other technique is to estimate the CIR first and then computing
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the filter weights from the CIR via solving the zero forcing ma-
trix equation. In this article efficient techniques for performing
channel estimation and solving the zero forcing matrix equation
are presented. The efficiency of the channel estimation is based on
exploiting the eigenvalue decomposition (EVD) of cyclic matrices
as done in orthogonal frequency division multiplexing (OFDM)
based transmission systems. The efficiency of solving the zero
forcing matrix equation is either based on the insertion of a cyclic
prefix or on solving a Cholesky down dating problem. Thereby
a QR decomposition is computed by using hyperbolic rotations.
With it the particular structure of the problem is exploited.

The different techniques are assessed in terms of computa-
tional complexity and an ensemble-averaged square estimation er-
ror. It turns out that the EVD approach for channel estimation in
combination with efficient solutions of the zero forcing equation
outperforms LMS and DMI techniques in terms of computational
complexity and quality of the estimates. However, the tracking
techniques and computational structures are more complex.

The paper is organized as follows: The different methods to
compute filter weights from a training sequence are presented in
the next chapter. Experimental results that contrast the methods
in terms of an ensemble-averaged square error and computational
complexity are presented in chapter 3. Conclusions are drawn in
chapter 4.

2. COMPUTATION OF FIR FILTER WEIGHTS

In the following it is focused on adaptive equalization of linear
time dispersive channels. The channel is assumed to be time in-
variant during one burst. The burst consists of training and data
symbols as depicted in figure 1. During the training mode the FIR
filter weights are adapted. Then information data is transmitted,
whereby the filter weights are kept constant. The channel is only
allowed to change in the next burst. There are two different adap-
tation processes: One adapts the filter weights during training to a
constant CIR, another adapts the filter weights to a new CIR burst
by burst. This corresponds to a quasi stationary model of the chan-
nel to be equalized.

Training symbols Data symbols

Fig. 1. Structure of a data burst to be transmitted.

2.1. Direct Matrix Inversion and Wiener Solution

Subsequently the training mode is considered. With reference to
figure 2 the filter output �����
	 is obtained by multiplying the
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Fig. 2. Structure of adaptive filter during training mode.

convolution matrix = � � 	?>.@ that contains the input data blocks
of the filter in its rows by the filter weight vector A � �B@ . The
filter output is equal to the delayed training data C � � 	 (desired
response) plus an error vector D � � 	 :
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One colum of = is obtained by convolving the training data h � �^i
with the channel impulse response j � �^k and by adding a white
Gaussian noise vector l � �Bm :

=Fnpo?q-rts o�uvEwhyxzjHJKl � � m s{r|E~}�J�����oSL
The parameter � defines the channel length, } the length of the
training sequence, � the filter order and � the total number of
considered time steps. Equation 1 represents an overdetermined
system of equations. Usually it has no solution. An approximated
solution can be found by minimizing the error’s energy in the least
squares sense. If the data is free of noise this optimization criterion
leads to the pseudo inverse of the data matrix = :������������� C���=��A k)� ��� � �A k.� E�n5=���=�u ��¡�=��¢ £ ¤ ¥¦z§ C � � @ L
The least squares (LS) estimates of the filter weights �A k.� are ob-
tained by multiplying the pseudo inverse =�¨ by the desired re-
sponse C . This technique is called direct matrix inversion. It ren-
ders the Wiener solution. However, it is usually not adopted as the
complexity to compute the filter weights is enormous: matrix prod-
ucts and matrix inversions of comparatively large matrices need to
be performed.

2.2. Least Mean Square Algorithm

Another optimization criterion is the least mean square (LMS) er-
ror. Thereby the mean square error E

�ª©ª«.© �« � is minimized at ev-
ery time instant. That is for each row in equation 1. The LMS-
algorithm that is based on an approximated stochastic gradient
computes an estimate of the LMS solution at every time step. The
computation can be divided into three steps: Computing the fil-
ter output ¬Vn�­®u¯E°=±n�­Bs�q u��A � n�­®u , computing the error

© n�­®u�E

² n�­®u��~¬³n�­®u and adapting filter weights �A�n�­FJ´o0u�E �A�n�­®u��µ = i n�­vs q u © � n�­®u . The step size parameter is denoted by µ . To
compute estimated filter weights by using either the DMI or the it-
erative LMS method the desired response C and the filter input data= need to be known. Another approach that leads to a similarly
structured system of equations is the zero forcing matrix equation.
On contrast to the methods mentioned so far the filter weights are
computed from the CIR, which therefore need to be estimated first.

2.3. Zero Forcing Approach

The convolution of the CIR j � �^k and the FIR filter A � � @
shall result in a vector ¶ � �^� containing a single one at an arbi-
trary position. Since the system is overdetermined an error vector· n�¶vu � � � is added. The position of the one defines the delay of
the filter output (compare with figure 2):¸ A¹Ew¶�J · n�¶vu s ¸ � � � >.@ s»º±E|�¼JK�½�Ko�L
This matrix equation has the following structure:MNNNNNNNNNNNNNNNNN
O

¾ Q¾ R ¾ Q
.
.
.

¾ R . . .¾ � U&Q .
.
.

. . . ¾ Q¾ � ¾ � U&Q ¾ R¾ � . . .
.
.
.

. . . ¾ � U&Q¾ �

X YYYYYYYYYYYYYYYYY
Z

MNNNNN
O

[^Q[®R[ \
.
.
.[ ]

X YYYYY
Z _

MNNNNNN
O

¿ X YYYYYY
Z c

MNNNNNNNNNN
O

À0Á�Â QfÃÀ0Á�Â R ÃÀ0Á�Â \ Ã
.
.
.

À0Á�Â � Ã

X YYYYYYYYYY
Z
g

(2)

The LS-solution is again obtained by minimizing the error’s en-
ergy:������� ���Ä� ¸ �A k)� ��¶ � � � �A k)� E�n ¸ � ¸ u �®¡ ¸ �¢ £ ¤ ¥Åy§ ¶zL
If the CIR is free of noise the filter weights �A k)� are obtained by
multiplying the pseudo inverse

¸ ¨ by ¶ . By comparing the system
matrices = (eq. 1) and

¸
(eq. 2) it turns out that

¸
is significantly

smaller than = if �|ÆÇr , which is usually the case ( � : channel
length, } length of training symbols, r¼EÈ}�JÉ�|��o ). Fur-
thermore the ¶ -vector contains on contrast to the C -vector only
a single one. Therefore only one column of the pseudo inverse¸ ¨ need to be computed to obtain the LS-estimates of the filter
weights �A k)� . Both facts result in significantly lower computa-
tional complexity to solve equation 2 than equation 1. However,
the CIR need to be estimated first. This estimation process is con-
sidered in chapter 2.4. Next it is focused on efficient techniques to
solve this system of equations.

2.3.1. Cyclic Prefix Based Approach

If the convolution matrix
¸

in equation 2 is extended cyclically we
can take advantage of the EVD of cyclic matrices which is given
by Ê¸ E|Ë?�®¡�Ì�Ë?sÍÌÎE diag n5Ë Ê¸ npq�s o�uÏu L
The matrices Ë and Ë �®¡ are the DFT and IDFT matrices, respec-
tively. They can be implemented by using the FFT. The Matrix

Ê¸
denotes the cyclic channel [6, 4]. The diagonal matrix Ì con-
tains the CIR in the frequency domain. If the A -vector is zero
padded, any column can be inserted on the right of the matrix

¸
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without changing the right hand side of equation 2. Therefore zero
padding of A provides a method to create a cyclic channel ma-
trix. Cyclic matrices can be inverted very efficiently. However,
the inverse might not exist. The concept of cyclic matrices is also
used in some single and multi carrier systems [6, 4]. By using this
technique equation 2 can be rewritten:Ê¸ A����±Ew¶ J · n�¶vu sÍA����±E � A � �*��� � � � � L
Cyclic matrices are square. Therefore estimates of the zero padded
filter weights �A ��� are obtained by multiplying the inverse cyclic
channel matrix

Ê¸ ��¡ by ¶ . Thereby one column of
Ê¸ �®¡ is se-

lected:

�A�����E Ê¸ �®¡ ¶±E|Ë �®¡ Ì �®¡ Ë�¶±E � �A � �	 �
� � L
This is a very efficient method to compute the filter weights. How-
ever, the CP approach will suffer if the inverse

Ê¸ �®¡ does not exist,
or if we deal with ill-conditioned matrices.

Next an efficient algorithm to compute the LS-estimates �A k)�
is described and assessed. On contrast to the inverse cyclic channel
matrix

Ê¸ ��¡ the pseudo inverse
¸ ¨ does always exist. It is shown

which computational complexity we have to provide additionally
to gain the advantage of guaranteed invertability, independently of
the values of the CIR.

2.3.2. QR Decomposition Based Approach

To compute the LS-estimates �A k)� only one column of the pseudo
inverse

¸ ¨ need to be computed. The position of the one in the¶ -vector defines the column which need to be computed and has
therefore an impact on the complexity of the filter weight computa-
tion. The QR factorization decomposes the convolution matrix

¸
into an unitary matrix � ( � � �´E
� ) and an upper triangular ma-
trix � :

¸ E���� . By using this decomposition the LS-estimates�A k)� are obtained by computing the � -matrix and a column of
� � and by solving � �� k.� E�� � ¶ via back substitution. By ex-
ploiting the Toeplitz structure of

¸
the matrix � and a column

of � � can be computed from the CIR by using hyperbolic rota-
tions which solve a Cholesky down dating problem. For further
explanation of the algorithm see [3, 1, 5].

2.4. Channel Estimation Based on EVD of Cyclic Matrices

Now the estimation of the CIR is considered. The systems de-
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Fig. 3. Structure of channel estimation exploiting the eigenvalue
decomposition of cyclic matrices.

picted in figures 2 and 3 are based on training sequences. Pseudo
noise (PN) sequences are suited in both systems due to their auto
and cross correlation properties. Next the channel estimation that
is performed in OFDM systems is reviewed, since it provides a

very efficient procedure for estimating the CIR in the frequency
domain. The estimation structure is depicted in figure 3.

A PN sequence h � �^k (training block) is modulated on dif-
ferent sub carriers by using the IFFT. Then a cyclic prefix (CP) of
size � ��o is inserted [6, 4]. It has to be at least as long as the CIR
minus one to eliminate block interference. After passing through
the channel overlapping parts of subsequent training blocks are
discarded. The remaining parts are feed to an FFT. In the absence
of noise the CIR in the frequency domain is obtained by divid-
ing the distorted training block by the initial training block h . In
the presence of noise a noisy estimate is obtained. Noise reduc-
tion is achieved by linear interpolation of several training blocks.
Performing an IFFT of the noise reduced data block reveals the
CIR j � � k . The size of one transmitted training block in the
EVD based approach is I��|� o whereas the training sequenceJ n�­®u of the adaptive filter is of length } . Usually } is significantly
larger than Iª� ��o even if several training blocks h are transmitted:}LKNM�n�Iª�½� o0u , ( M : number of training blocks).

2.5. Complexity Consideration

One coarse technique to assess the computational complexity of
the algorithms is to count the necessary multiplications. Thereby
complex multiplications are weighted by O . In table 1 the total
number of real multiplications of the algorithms is given as a func-
tion of the used parameters. The number of iterations P necessary

Table 1. Real multiplications of different algorithms: Channel es-
timation via EVD (CH EST EVD), CP based approach (CP) and
QR decomposition based approach (PI) to solve the zero forcing
equation. The filter order is denoted by � , the number of itera-
tions of the LMS algorithm by P and the channel length by � . The
parameter �RQ.n��SQWu is a power of I that is larger than ��n�� u L

Real multiplications

LMS TW�
P?JUP
CH EST EVD OS� Q ln n5� QWV ISu
CP O-� Q ln n�� QXV ISu®JUOW� Q
PI IYTS� �½��o4Iª� � �ZOW�Ç�[T

for the LMS to converge is usually significantly larger than the
number of training blocks M , the channel length � and the filter
order � . For a coarse comparison of complexity we may assume
P�K �]\^M[\G� . Then the complexity of the LMS algorithm is
significantly higher than performing both channel estimation and
computation of the FIR filter weights via solving the zero forcing
matrix equation. Computing a column of the pseudo inverse (PI)¸ ¨ needs more computations than computing a column of the in-
verse cyclic channel matrix

Ê¸ ��¡ . The position of the one in the¶ -vector has an impact on the complexity [5] of the PI-method.
Table 1 contains the upper bound.

2.6. Discussion

One main difference between the iterative method (LMS) and those
based on direct matrix inversions is the capability of tracking. In
iterative methods an estimate of the filter weights is computed at
every time instant whereas in direct methods the estimates are only
computed after a block of time steps. However an update of the fil-
ter weights at every time step is usually not required. In iterative
methods tracking does not work arbitrarily fast. Therefore a block
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of time steps is necessary to adapt to a knew transmission situa-
tion. In the next chapter the different techniques are assessed in
terms of ensemble-averaged square error and number of real mul-
tiplications.

3. EXPERIMENTAL RESULTS

The channel impulse response of length L=3 is set to

��� E � ¡� � o J����	��
 �
�� n��*��o�u
� � q��VE��)s oSs I� q otherwise
L

The amplitude distortion of this channel increases with � . The
noise generator (AWGN) produces a normally distributed noise
signal with zero mean and a variance of � �« E��)L �	�	� . The train-
ing signal for the LMS algorithm is given by a Bernoulli sequenceJ « E��to . The random variable

J «
has zero mean and unit vari-

ance. The step size parameter is set to µ E���L �YO . The filter or-
der is � E o4I . The size of one data block h in the EVD based
channel estimation is defined by the channel length �wE�� . Then
the size of the CP is given by ���Go�E I . Next the square error© �« © «

of the LMS algorithm at every time instant averaged over 500
trails is depicted for different distortions of the channel: �ÍE I-L � ,�ÍE��)L T . These results are compared to the error produced by the
FIR filter computed via channel estimation in combination with the
zero forcing approach. The number of training blocks M is either o
or o! .

0 50 100 150 200 250 300 350

10
−2

10
−1

10
0

Time step

E
ns

em
bl

e−
av

er
ag

ed
 s

qu
ar

e 
er

ro
r LMS

1 TB CP 
16 TB CP
1 TB PI
16 TB PI

Fig. 4. Ensemble-averaged square error for Bernoulli training se-
quence at every time step. Channel distortion W=2.9.

In figure 4 the ensemble-averaged square error is plotted as a
function of the time step. The pseudo inverse (PI) and the cyclic
prefix (CP) based method render similar results. The number of
used training blocks (TB) can reduce the average square error.
If the number is large enough the result gives a lower bound for
the LMS algorithm. In figure 5 the distortion parameter � is set
to �)L T . This will result in ill-conditioned matrix equations (eq. 1
and eq. 2). If only one training block is transmitted the CP ap-
proach will become unstable. Therefore this case is not plotted.
The bad condition of the problem results in a worse adaption ca-
pability of the LMS. In figure 6 the number of real multiplications
is plotted as a function of the channel length � . Three different
techniques to compute filter weights are considered: the LMS, the
channel estimation in combination with either the CP based solu-
tion or with the QR based solution (PI).

4. CONCLUSIONS

Different techniques to compute FIR filter weights in adaptive chan-
nel equalization problems are presented. Some of them compute
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Fig. 5. Ensemble-averaged squared error for Bernoulli training
sequence at every time step. Channel distortion W=3.8.
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the filter weights from training symbols and the received data ei-
ther directly (DMI) or iteratively (LMS, RLS). Other estimate the
CIR in the frequency domain by using a cyclic extension and by
exploiting the properties of the EVD of cyclic matrices. Then the
CIR is used to compute the filter weights via solving the zero forc-
ing matrix equation. Thereby a CP based approach and a computa-
tion of a pseudo inverse via solving a Cholesky down dating prob-
lem are considered. The channel estimation in combination with
the solution of the zero forcing matrix equation results in signifi-
cantly lower computational requirements than DMI or LMS tech-
niques. The CP approach results in fewer computations than the
pseudo inverse. However this approach might suffer if the cyclic
matrix happens to be singular.
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