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ABSTRACT 

The performance of the Normalized Least Mean Square 
(NLMS) algorithm for adaptive filtering is dependent on the 
spectral flatness of the reference input. Thus, the standard NLMS 
algorithm does not perform well in Over-Sampled Subband 
Adaptive Filters (OS-SAFs) because colored subband signals are 
generated even for white input signals. Thus we propose the use 
of the Affine Projection Algorithm (APA) to adapt the individual 
subband filters in OS-SAF systems. The OS-SAF using APA for 
adaptation is implemented on a fast, low-resource over-sampled 
filterbank. Through both theoretical and experimental analyses, 
it is demonstrated that a low order APA will significantly 
improve the convergence behavior, offering a low computational 
complexity compared to the Recursive Least Squares (RLS) 
method. We employ a recursive method of calculating the 
correlation matrix to further decrease the computation cost 
without affecting the performance. 

1.  INTRODUCTION 

The Normalized Least Mean Square (NLMS) algorithm is a 
popular method used in adaptive filtering. It is a simple, stable 
adaptation technique of low complexity. However, NLMS 
convergence is sensitive to the spectral flatness of the reference 
input and may be very slow when the input signal is colored. In 
this situation, the use of the Recursive Least Squares (RLS) 
algorithm speeds up the convergence rate considerably. 
However, a major drawback of the RLS in practical applications 
is its high computational requirement [1]. 

To reduce computations, the Affine Projection Algorithm 
(APA) has been introduced as a link between NLMS and RLS 
[2-3]. By employing several input vectors, APA provides faster 
convergence than NLMS, especially when the reference input of 
the adaptive filter is highly colored. Furthermore, it requires 
much fewer computations than the RLS method and is more 
stable. 

On the other hand, in many adaptive applications, Over-
Sampled Subband Adaptive Filters (OS-SAFs) have become a 
common practical solution [4-5] because of the well-known 
advantages of subband processing, simplified implementation 
and much reduced distortion (aliasing) as compared to critical 
sampling implementations [6]. OS-SAF offers a simplified 
structure that significantly reduces the aliasing level in subbands. 
In order to reduce group delay while maintaining aliasing at a 

low level, it is desirable to use an over-sampling factor (OS) of 2 
or more [5]. 

When adaptive filters are used in these highly over-sampled 
subband structures, the over-sampled inputs to each subband 
adaptive filter are colored leading to slow convergence of the 
NLMS. In these situations, APA is a reasonable alternative 
adaptation technique. The considerable improvement that is 
achieved by employing APA in fullband adaptive filters [3], 
strongly motivates us to propose its use for over-sampled 
subband structures. 

Fig. 1 shows the block diagram of the OS-SAF system in the 
noise cancellation setup. Due to its desirable properties, a very 
efficient Weighted OverLap-Add (WOLA) filterbank [5] is 
employed as the analysis/synthesis filterbank in our research. 
The WOLA is a highly over-sampled, generalized DFT, uniform 
filterbank (OS = 2, 4 or more). Here, the number of bands is set 
to 32K =  (actually, K/2 real bands due to frequency symmetry) 
and the decimation rate in each subband is 8R = . The over-
sampling rate is 4R/KOS == . Shown in Fig. 2, each APA 
adaptive processor contains an adaptive filter using APA to 
adapt its weights. 

This paper is organized as follows. Section 2 briefly 
introduces APA. In Section 3, a theoretical formula for time-
variations of Mean Squared Error (MSE) is first presented. Then 
the relationship between convergence improvement and APA 
order is analyzed including the issue of complexity. The results 
of system simulation and evaluation in a noise cancellation setup 
are described in Section 4 and, finally, conclusions of this work 
are presented in Section 5. 

2.  AFFINE PROJECTION ALGORITHM 

Since the WOLA filterbank provides near-orthogonal 
subbands, we shall only consider the first-band adaptive filter for 
our theoretical analysis. The total (fullband) MSE of the system 
can be approximated as the sum of subband MSE’s. For 
simplicity subscript k (representing the kth subband signal and 
filter) is dropped in this analysis. 

The APA is a generalization of the NLMS method for 
adaptation of adaptive filter weights. In NLMS, given the present 
weight vector nw  (of length M), the reference input vector 

T
1Mn1nnn ]x,...,x,x[ +−−=x  and the present value of the desired 
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Fig. 1. Block diagram of the SAF system. 
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Fig. 2. APA adaptive processor. 

signal nx′  (noise component of the second microphone in a noise 

cancellation setup), a new coefficient set 1n+w  is calculated to 

minimize n1n ww −+ subject to the condition  

nn
H

1n x′=+ xw . (1) 

In NLMS, the new adaptive filter weights have to best fit the 
last input vector to the corresponding desired signal. In APA, 
this fitting expands to P-1 past input vectors [4]. i.e., 

1P,,1,0i,x inin
H
n −=′= −− Lxw . (2) 

Given the second microphone signal vector 
T

1Pn1nnn ]y,...,y,y[ +−−=y  and error signal vector 
T

1Pn1nnn ]e,...,e,e[ +−−=e , the adaptation algorithm for Pth order, 
APA(P), can be summarized as 

*
n

T
nnn wXye −=  (3.a) 

][ n
H
nn IXXC δ+=  (3.b) 

*
n

1
nnn1n eCXww −

+ µ+=  (3.c) 

where µ  is the adaptation step size limited to 20 <µ< . The 
input signal matrix nX  is an M by P matrix and has the structure 

],,,[ )1P(n1nnn −−−= xxxX L . (4) 

Also, the scalar δ  is a regularization parameter used to cope 
with the ill-conditioning in matrix inversion. It could be chosen 
experimentally or optimally according to the method proposed in 
[7]. 
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Fig. 3. Typical subband signal spectrum. 

3.  CONVERGENCE RATE  
AND COMPUTATIONAL COST 

3.1.  Convergence Behavior 

Convergence characteristics of APA have been investigated 
by a few researchers (e.g., see [2-3]). In [3], Sankaran has 
presented a detailed performance analysis for a generalized 
version of APA called NLMS with Orthogonal Correction 
Factors (NLMS-OCF). With the input vector delay 1D = , 
NLMS-OCF results in APA. The convergence study is based on 
a simple model of the input signal vector. In addition to an i.i.d. 
assumption, the angular orientation of the input vectors is 
assumed to be discrete [3]. The assumptions are not unrealistic 
(as evident from our simulation results and the results reported in 
[3]) and make the convergence analysis tractable.  

The theoretical convergence behavior of APA can be 
described by the following formula for the MSE [3]: 

∑
=

′
λαβ−σ+=



 −=ξ

M

1m xx

mn
m

2
x

2
n

2

n
H
nnn )(tr

)1(]s[EyE
R

xw  (5) 

where ns  is the speech sample and 2
x′σ  is the second 

microphone noise power. Also, )2( µ−µ=α  and P
mm q1−=β , 

where 
)(tr

1q
xx

m
m R

λ−= . 

][E H
nnxx xxR =  is the correlation matrix of the reference input 

and M,...,2,1m,m =λ  are its eigenvalues. 

Sankaran has introduced this formula for the convergence 
behavior of APA in fullband adaptive filters. In this research, we 
extend the use of (5) for OS-SAFs and investigate convergence 
properties based on this formula. 

Considering a white noise signal as the input to the analysis 
filterbank, the reference signal of the adaptive filter has a 
spectrum (shown in Fig. 3) band-limited to π/4 since 4OS = . 
The eigenvalues of the input correlation matrix are plotted in 
Fig. 4 (in ascending order) for adaptive filter length M=16. For 
the monotonic part (pass-band through transition-band) of the 
input spectrum (shown in Fig. 3), the eigenvalue plot can be 
considered as a mirrored image of the input spectrum. This is
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Fig. 4. Eigenvalues of the reference input correlation matrix. 
 

based on the fact that for large M, a Circulant matrix can 
approximate the Toeplitz form of correlation matrix. So, the 
eigenvalues of the correlation matrix will simply approximate 
spectral samples of the reference input [8]. 

Fig. 5 shows MSE time-variations in the absence of speech 
for different projection orders. These curves are calculated by (5) 
using the eigenvalues displayed in Fig. 4 and typical values of 
other parameters ( 001.0=µ  and 12

x =σ ′ ). As expected, greater 

values of P lead to less MSE and faster convergence. However, 
as P increases, the amount of convergence improvement 
diminishes. This can be explained by differentiating (5) with 
respect to P, as follows: 

∑
=

′
λβ

∂
∂αβ−

β∂
∂σ=ξ

∂
∂ M

1m xx

m
m

n
m

m

2
xn )(tr

]
P

)1([
P R

, (6) 

then,  

∑
=

−
′

λαβ−σα=ξ
∂
∂ M

1m xx

m
m

P
m

1n
m

2
xn )(tr

)]q(Lnq)1[(n
P R

. (7) 

0)q(Ln m < , so 0
P n <ξ

∂
∂

 for every n; this means that greater 

P results in less MSE. Similarly, it can be shown that 

.
)(tr

)]qn1())q(Ln(q)1[(n

P
M

1m xx

mP
m

2
m

P
m

2n
m

2
x

n2

2

∑
=

−
′

λα+α−αβ−σα

=ξ
∂
∂

R

 (8) 

As shown in Fig. 6 for an arbitrary time instant (n = 104), as P 

increases, both nP
ξ

∂
∂

and n2

2

P
ξ

∂
∂

 exponentially decay towards 

zero. This explains why convergence improvement decreases as 
APA order increases. 

3.2.  Computational Cost 

As mentioned before, APA accelerates convergence speed 
demanding much less complexity compared to the RLS method. 
While the computational cost of RLS is about 2M3M3 +  (M 
being adaptive filter length) [4], fast implementations of APA 
have a complexity of P20M2 +  [9]. RLS is an O(M2)  algorithm  
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Fig. 5. MSE time-variations of the first subband output calculated by 
(5) for P = 1, 2,…, 5. 

 

and this makes its computational requirements unacceptable in 
many applications even for moderate values of M. Obviously, 
the APA-order increment also increases the computational 
complexity moderately. 

3.3.  Approximated Correlation Matrix 

The calculation of correlation matrix (Eq. (3.b)) is one of the 
computationally demanding parts of the algorithm. Here, we 
propose some modifications in order to make the method more 
efficient. 

Assuming P = 2, nC  is written as: 









−−−

−
=








==

−−−

−

)1n,1n(cn)1,c(n

)1n,n(c)n,n(c

1n
H

1nn
H

1n

1n
H
nn

H
n

n
H
nn xxxx

xxxx
XXC  (9) 

where ∑
−

=

−−=
1M

0l

* )lj(x)li(x)j,i(c . For moderate or large M and a 

slowly varying signal x, )j,i(c  is approximated by 

autocorrelation coefficient )ji(rxx −  scaled by M. Moreover, we 

use a smoothing filter (with a close-to-one forgetting factor γ ) 
to recursively estimate the correlation matrix nC  [10]: 









γ+γ−=

−

−
−

n
*
nn

*
1n

1n
*
nn

*
n

1nn
xxxx

xxxx
Mˆ)1(ˆ CC . (10) 

Similarly, in the case of APA(3), nĈ  can be estimated as 

















γ+γ−=

−−

−−

−−

−

n
*
nn

*
1nn

*
2n

1n
*
nn

*
nn

*
1n

2n
*
n1n

*
nn

*
n

1nn

xxxxxx

xxxxxx

xxxxxx

Mˆ)1(ˆ CC . (11) 

For higher projection orders, the correlation matrix can be 
approximated in a similar way. Since all elements along each 

NW-SE diagonal of nĈ  are the same and also )i,j(ˆ)j,i(ˆ
nn
∗= CC , 

nĈ  is a Hermitian-Toeplitz matrix and can be inverted 

efficiently. 
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Fig. 6. Values of the first and second partial derivatives of the MSE 
with respect to P at time instance n = 104 and for P = 1, 2, …, 5. 

 

4.  SIMULATION 

The performance characteristic of APA with different 
projection orders was evaluated through simulating the OS-SAF 
in a noise cancellation setup. As mentioned in Section 1, the 
number of subbands and the decimation rate were chosen as 

32K =  and 8R = , respectively. A typical low-pass acoustic 
plant (see Fig. 1) and a white noise signal (sampled at 

16Fs = kHz) for reference input were employed. 

MSE time-variations of time-domain (fullband) output signals 
are plotted in Fig. 7 for 5,...,2,1P = . Noting that APA(1) is the 

same as NLMS, APA (with order 2 or more) has increased the 
convergence rate dramatically. As predicted from theoretical 
analysis, the amount of improvement saturates as P increases. 

It is informative to compare the simulation results to the 
theoretical ones demonstrated in Fig. 5. Note that while curves in 
Fig. 5 are for the first-subband MSE, those in Fig. 7 display the 
time-variations of fullband (time-domain) MSE’s. Although the 
reference input signals are highly colored in OS-SAF, thus 
violating the independence assumption of input vectors, the 
theoretical and simulation results are consistent. This can be 
justified by considering the effect of small µ  [3]. The use of 

smaller step sizes reduces the dependency of nw  to the present 

and past input vectors ni,i ≤x . This is just the intended sequel 

from the independence assumption. 

We have repeated this simulation for several acoustic plants 
(lowpass, highpass, with different values of delay) with three 
types of input noise (white, babble, and pink) achieving 
consistent results. This confirms the independence of the results 
from the acoustical plant and input noise spectrum. 

5.  CONCLUSION 

OS-SAF is a common practical choice for many adaptive 
systems. However, over-sampling leads to coloring of the signals 
at the adaptive filter input. This decelerates the convergence rate  
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Fig. 7. Simulation results: MSE time-variations of the fullband 
noise-cancelled output for P = 1, 2, …, 5. 

 

of the NLMS technique which is sensitive to the whiteness of the 
input signal. 

In this research, we employed the APA as an effective 
adaptation method for OS-SAF. APA has less dependency on the 
input spectrum and results in faster convergence rates. Also, its 
computational cost is much less than RLS. Our theoretical 
analysis and simulation results show that the achievable amount 
of convergence improvement diminishes as projection order 
increases. Considering the computational load-convergence rate 
tradeoff in APA, and the saturating behavior of convergence 
improvement, reasonable values of P for real-time 
implementation of the algorithm will be 2 or 3. 

We also further improved the efficiency of APA by 
approximating the correlation matrix through a computationally 
simple algorithm. 
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