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ABSTRACT

The performance of the Normalized Least Mean Square
(NLMS) dgorithm for adaptive filtering is dependent on the
spectral flatness of the reference input. Thus, the sandard NLM S
algorithm does not perform well in Over-Sampled Subband
Adaptive Filters (OS-SAFs) because colored subband signals are
generated even for white input signals. Thus we propose the use
of the Affine Projection Algorithm (APA) to adapt the individua
subband filters in OS-SAF systems. The OS-SAF using APA for
adaptation is implemented on a fast, low-resource over-sampled
filterbank. Through both theoretical and experimental analyses,
it is demonstrated that a low order APA will significantly
improve the convergence behavior, offering alow computational
complexity compared to the Recursive Least Squares (RLS)
method. We employ a recursive method of calculating the
correlation matrix to further decrease the computation cost
without affecting the performance.

1. INTRODUCTION

The Normalized Least Mean Square (NLMS) adgorithm is a
popular method used in adaptive filtering. It is a simple, stable
adaptation technique of low complexity. However, NLMS
convergence is senditive to the spectrd flatness of the reference
input and may be very slow when the input signa is colored. In
this situation, the use of the Recursive Least Squares (RLS)
algorithm speeds up the convergence rate considerably.
However, a mgjor drawback of the RLS in practical applications
isits high computational requirement [1].

To reduce computations, the Affine Projection Algorithm
(APA) has been introduced as a link between NLMS and RLS
[2-3]. By employing several input vectors, APA provides faster
convergence than NLM S, especialy when the reference input of
the adaptive filter is highly colored. Furthermore, it requires
much fewer computations than the RLS method and is more
stable.

On the other hand, in many adaptive applications, Over-
Sampled Subband Adaptive Filters (OS-SAFS) have become a
common practical solution [4-5] because of the well-known
advantages of subband processing, simplified implementation
and much reduced distortion (aliasing) as compared to critical
sampling implementations [6]. OS-SAF offers a smplified
structure that significantly reduces the aliasing level in subbands.
In order to reduce group delay while maintaining aliasing a a
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low level, it is desirable to use an over-sampling factor (OS) of 2
or more [5].

When adaptive filters are used in these highly over-sampled
subband gructures, the over-sampled inputs to each subband
adaptive filter are colored leading to slow convergence of the
NLMS. In these situations, APA is a reasonable aternative
adaptation technique. The considerable improvement that is
achieved by employing APA in fullband adaptive filters [3],
strongly motivates us to propose its use for over-sampled
subband structures.

Fig. 1 shows the block diagram of the OS-SAF system in the
noise cancellation setup. Due to its desirable properties, a very
efficient Weighted OverLap-Add (WOLA) filterbank [5] is
employed as the analysis/synthesis filterbank in our research.
The WOLA is a highly over-sampled, generalized DFT, uniform
filterbank (OS = 2, 4 or more). Here, the number of bands is set
to K =32 (actudly, K/2 real bands due to frequency symmetry)
and the decimation rate in each subband is R=8. The over-
sampling rate is OS=K/R=4. Shown in Fig. 2, each APA
adaptive processor contains an adaptive filter usng APA to
adapt itsweights.

This paper is organized as follows. Section 2 briefly
introduces APA. In Section 3, a theoretical formula for time-
variations of Mean Squared Error (MSE) isfirst presented. Then
the relationship between convergence improvement and APA
order is andyzed including the issue of complexity. The results
of system simulation and evaluation in a noise cancellation setup
are described in Section 4 and, finally, conclusions of this work
are presented in Section 5.

2. AFFINE PROJECTION ALGORITHM

Since the WOLA filterbank provides near-orthogonal
subbands, we shall only consider the first-band adaptive filter for
our theoretica analysis. The total (fullband) MSE of the system
can be approximated as the sum of subband MSE's. For
simplicity subscript k (representing the k™ subband signal and
filter) isdropped inthis analysis.

The APA is a generalization of the NLMS method for
adaptation of adaptive filter weights. In NLMS, given the present
weight vector w,_ (of length M), the reference input vector

X, =[Xps X s Xomeal - @Nd the present value of the desired
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Fig. 1. Block diagram of the SAF system.
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Fig. 2. APA adaptive processor .

signal x/, (noise component of the second microphonein anoise

cancellation setup), a new coefficient st w,, is calculated to
minimize |w,,, —w, || subject to the condition
W:+1Xn = X’n . (1)

In NLMS, the new adaptive filter weights have to best fit the
last input vector to the corresponding desired signal. In APA,
this fitting expands to P-1 past input vectors [4]. i.e,

whx . =x/ i=0,1---,P-1. @)

Given the second microphone  signd  vector
Yo=Y YosrYopal' and  eror  sgna  vector

e, =[e,,&, .- p,]" . the adaptation algorithm for P" order,
APA(P), can be summarized as

€, =Y, —XW, (34
C, =[X"X, +8l] (3.b)
Wn+1 = Wn +uxncgle; (3(:)

where | is the adaptation step size limited to O<u<2. The
input signal matrix X, isanM by P matrix and hasthe structure

X, =[Xn’Xn—1"”’an(P—1)] . (4)

Also, the scalar & is a regularization parameter used to cope
with the ill-conditioning in matrix inversion. It could be chosen
experimentally or optimally according to the method proposed in

[7].
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Fig. 3. Typical subband signal spectrum.

3. CONVERGENCE RATE
AND COMPUTATIONAL COST

3.1. ConvergenceBehavior

Convergence characteristics of APA have been investigated
by a few researchers (e.g.,, see [2-3]). In [3], Sankaran has
presented a detailed performance andysis for a generalized
version of APA called NLMS with Orthogonal Correction
Factors (NLMS-OCF). With the input vector ddlay D=1,
NLMS-OCF results in APA. The convergence study is based on
asimple model of the input signal vector. In addition to ani.i.d.
assumption, the angular orientation of the input vectors is
assumed to be discrete [3]. The assumptions are not unredlistic
(as evident from our simulation results and the results reported in
[3]) and make the convergence anadysis tractable.

The theoretical convergence behavior of APA can be
described by the following formula for the MSE [3]:
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where s, is the speech sample and o> is the second

microphone noise power. Also, a=u(2-u) and B, =1-q",
A

tr(R,)

where g, =1-

R, =E[x,x"] isthe corrdation matrix of the reference input
and A,,,m=12..,M areitseigenvalues.

Sankaran has introduced this formula for the convergence
behavior of APA in fullband adaptive filters. In this research, we
extend the use of (5) for OS-SAFs and investigate convergence
properties based on this formula.

Considering a white noise signa as the input to the anaysis
filterbank, the reference signal of the adaptive filter has a
spectrum (shown in Fig. 3) band-limited to n/4 since OS=4.
The eigenvalues of the input correlaiion matrix are plotted in
Fig. 4 (in ascending order) for adaptive filter length M=16. For
the monotonic part (pass-band through transition-band) of the
input spectrum (shown in Fig. 3), the eigenvalue plot can be
considered as a mirrored image of the input spectrum. This is
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Fig. 4. Eigenvalues of thereferenceinput correlation matrix.

based on the fact that for large M, a Circulant matrix can
approximate the Toeplitz form of correlation matrix. So, the
eigenvalues of the corrdation matrix will simply approximate
spectral samples of thereference input [8].

Fig. 5 shows MSE time-variations in the absence of speech
for different projection orders. These curves are calculated by (5)
using the eigenvalues displayed in Fig. 4 and typical values of
other parameters (L =0.001 and o2 =1). As expected, greater

values of P lead to less MSE and faster convergence. However,
as P increases, the amount of convergence improvement
diminishes. This can be explained by differentiating (5) with
respect to P, asfollows:

J L9 LA A
ﬁ&n ZGX';[aBm (1-aB,) ﬁﬁm]m’ (6
then,
9t —noo? STA-aB,)™ ¢, Ln(g, )] @
P xm:l m m m tr(RXX)'

Ln(g,,)<0, so %&n <0 for every n; this meansthat greater

P resultsinlessMSE. Similarly, it can be shown that

aZ
F&n =

2 Y n-2 P 2 P km (8)
nacx,;[(l—aﬁm) g, (LN(Q,,))* (- o+ nagp,)] TR

As shown in Fig. 6 for an arbitrary time instant (n = 10%, as P

2

increases, both %&n and J €, exponentially decay towards

P2
zero. This explains why convergence improvement decreases as
APA order increases.

3.2. Computational Cost

As mentioned before, APA accelerates convergence speed
demanding much less complexity compared to the RLS method.
While the computational cost of RLS is about 3M +3M? (M
being adaptive filter length) [4], fast implementations of APA
have a complexity of 2M +20P [9]. RLSisan O(M?) agorithm
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Fig. 5. M SE time-variations of the first subband output calculated by
(B)forP=1,2,...,5.

and this makes its computational requirements unacceptable in
many applications even for moderate values of M. Obviously,
the APA-order increment aso increases the computationa
complexity moderately.

3.3. Approximated Correation Matrix

The calculation of correlation matrix (Eq. (3.b)) is one of the
computationally demanding parts of the agorithm. Here, we
propose some modifications in order to make the method more
efficient.

Assuming P=2, C,_ iswritten as:

anxrxn{x:xn x;‘xnl}:{ c(nn)  c(nn-1) } ©
XpaXo  Xp on-1,n) co(n-Ln-1)

-1 n nflX n-1

M-1
where c(i, j) :ZX‘ (i—1x(j—=1) . For moderate or large M and a
1=0
slowly varying signa x, c(i,j) is approximated by
autocorrelation coefficient r, (i—j) scaled by M. Moreover, we
use a smoothing filter (with a close-to-one forgetting factor v)
to recursively estimate the correlation matrix C, [10]:

C,=-y)C,,+¥M { X Xix“] (10)

n-1"*n Xn n
Similarly, in the case of APA(3), C, can be estimated as

XI'IXI'I Xl‘lxﬂ—l XI'IXI'I—Z

én :(1_Y)én71+YM X:‘l—lxn X;Xn X\ X (11

n“*n-1 N

Xl‘lfle'l Xl‘lflxl'l XI'IXI'I

For higher projection orders, the correlation matrix can be
approximated in a similar way. Since al eements along each

NW-SE diagonal of C, arethesameandaso C,(i,j)=C.(j.i) ,

C, is a Hermitian-Toeplitz matrix and can be inverted

n

efficiently.
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Fig. 6. Values of thefirst and second partial derivatives of the M SE
with respect to P at timeinstancen = 10*and for P=1, 2, ..., 5.

4. SSIMULATION

The performance characteristic of APA with different
projection orders was evaluated through simulating the OS-SAF
in a noise cancellation setup. As mentioned in Section 1, the
number of subbands and the decimation rate were chosen as
K =32 and R=8, respectively. A typical low-pass acoustic
plant (see Fig. 1) and a white noise signd (sampled a
F, =16 kHz) for reference input were employed.

M SE time-variations of time-domain (fullband) output signals
areplotted in Fig. 7 for P=1, 2,...,5. Noting that APA(1) is the

same as NLMS, APA (with order 2 or more) has increased the
convergence rate dramatically. As predicted from theoretical
anaysis, the amount of improvement saturates as P increases.

It is informative to compare the simulation results to the
theoretical ones demonstrated in Fig. 5. Notethat while curvesin
Fig. 5 are for the first-subband M SE, those in Fig. 7 display the
time-variations of fullband (time-domain) MSE's. Although the
reference input signals are highly colored in OS-SAF, thus
violating the independence assumption of input vectors, the
theoreticd and smulation results are consistent. This can be
justified by considering the effect of small u [3]. The use of

smaller step sizes reduces the dependency of w, to the present
and past input vectors x;,i<n. Thisis just the intended sequel
from the independence assumption.

We have repeated this smulation for several acoustic plants
(lowpass, highpass, with different values of delay) with three
types of input noise (white, babble, and pink) achieving
consistent results. This confirms the independence of the results
from the acoustica plant and input noise spectrum.

5. CONCLUSION

OS-SAF is a common practical choice for many adaptive
systems. However, over-sampling leads to coloring of the signds
at the adaptive filter input. This decel erates the convergence rate
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Fig. 7. Smulation results: M SE time-variations of the fullband
noise-cancelled output for P=1, 2, ..., 5.

of the NLM S technique which is sensitive to the whiteness of the
input signal.

In this research, we employed the APA as an effective
adaptation method for OS-SAF. APA has |ess dependency on the
input spectrum and results in faster convergence rates. Also, its
computational cost is much less than RLS. Our theoretical
andysis and simulation results show that the achievable amount
of convergence improvement diminishes as projection order
increases. Considering the computational |10ad-convergence rate
tradeoff in APA, and the saturating behavior of convergence
improvement, reasonable values of P for real-time
implementation of the algorithm will be 2 or 3.

We also further improved the efficiency of APA by
approximating the correlaion matrix through a computationally
simple agorithm.
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