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ABSTRACT

This paper addresses the performance evaluation of a
speaker-dependent automatic speech recogniser (ASR)
that employs a speech separation algorithm as a front-end
processor. The ASR software used is Dragon
NaturallySpeaking (NS) Professional Version 6.1. The
word recognition accuracy of NS is known to be very
sensitive to background noise due to competing speakers,
as well as ambient and environmental disturbances. In this
work, a reduced complexity fast-converging adaptive
decorrelation filter (ADF) is used to successfully reduce
the interference from competing speakers. The recognition
accuracy of NS for speech utterances before and after
front-end separation was measured. A significant
improvement has been observed with the proposed front-
end processing.

1. INTRODUCTION

Modern ASRs perform well in quiet environments, but
very poorly in the presence of background noise and
interference from competing speakers [1]. ASRs used in
conferences, meetings, and command and control centers
are particularly susceptible to cross-talk interference from
competing speakers. In these situations a front-end speech
processing unit that cancels interference from competing
speakers is desirable to improve the percentage
recognition accuracy of the ASR. Cancellation of
interference from competing speakers can be done
effectively by using speech separation algorithms.

In cases where a single microphone is employed to record
multiple speakers, the effectiveness of speech separation
techniques based on pitch and harmonic estimation [2] is
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rather limited. However, techniques that use multiple
microphones for multiple speakers provide more effective
separation by exploiting the diversity and independence of
speech signals (see e.g. [3)]).

This paper describes an experiment that evaluates the
effectiveness of a reduced complexity fast-converging
ADF speech separation agorithm for two competing
speakers. The separated speech signals are applied to a
commercialy available speaker-dependent ASR, Dragon
NaturallySpeaking (NS) Professional Version 6.1.

The major contributions of this paper can be summarized

asfollows:

= Performance evaluation of a speaker-dependent ASR
subjected to interference from competing speakers.

= Development of areduced complexity fast-converging
ADF front-end processing for separation of competing
speakers.

The paper is organized as follows. Section 2 provides
background information on NS. Section 3 describes the
model for speaker separation and the ADF agorithm with
improved convergence. The experimental method and
results are described in Section 4. The conclusions are
drawn in Section 5.

2. SPEAKER-DEPENDENT ASR

NS is a speaker-dependent, large vocabulary, continuous
speech ASR that is commercially available and widely
used. Speaker-dependent ASRs require a training phase
prior to use. The training phase builds a user profile by
combining an acoustic model based on phonetic analysis
of the speaker voice with a language model. The ASR
transcribes the speaker’s speech into text with the aid of
the user profile generated in the training phase.
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Fig. 1. Convolutive mixture model for two speakers.

Over eighty factors have been found to affect the
performance of ASRs [4,5]. Some influential factors
include speaker dialect or degree of enunciation, amount
of training, speaking rate, vocabulary size and vocabulary
confusability.  ASRs are particularly susceptible to
channel and environmental disturbances such as
background noise and cross-talk from interfering speakers.

A previous study has shown that the best performance for
a speaker-dependent ASR is achieved when the speech-to-
interference ratio (SIR) during the testing of an ASR is
maximized regardless of the SIR level during training [6].
However, at any given test SIR, the best performance is
achieved when the training SIR matches the test value.
Therefore, as expected, the best performance is achieved
when the interference is minimal. This justifies the
desirability of front-end processing to eliminate cross-talk
interference from other speakers by means of speech
separation.

3. ADAPTIVE SPEECH SEPARATION
3.1. Convolutive Mixture M odel

In a multi-speaker, multi-microphone environment, a
microphone will not only pick up the intended source
signal, but aso interferences from other competing
speakers. In this paper, we consider the two-speaker, two-
microphone case for the sake of simplicity. The
interference signal is subjected to reverberation due to
room acoustics, which implies that the interference is
obtained by convolving the interfering source (speaker)
signal with the reverberation channel impulse response.
This gives rise to a convolutive mixture model for the
microphone signals as shown in Fig. 1 [3]. The signas
X (n) and x,(n) are digitized source (spesker) signals,
and y,(n) and y,(n) are digitized microphone signals
that contain cross-talk from the interfering speaker. The
reverberation channels have the transfer functions H,, (2)

and H,,(2) . The distances between the speakers and their
microphones are assumed to be very small, so the direct
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Fig. 2. Separation of speech signals. P(z) isa
preprocessor and S(z) isa postprocessor.

reverberation channels can be safely ignored.
In the z-domain, the microphone signals are given by

v,(20 O 1 H,(2)X,(2)O

Y.oH H.@ 1 Beed

The solution to the separation problem involves estimation
of the reverberation channels and matrix inversion:

E]Xl(z)D: 1
B, (D5 1-HL()HL(2)
0O 1 - le(z)m(l(Z)D

“Hr.o 1 Hhob

Fig. 2 shows an implementation of the above equation
with reverberation transfer functions replaced by their
estimates. The postprocessing block S(z) implements the

inverse of 1-H,,(z2)H,(2). The preprocessing block
P(2) isexplained in Section 3.3.

3.2. Adaptive Decorrelation Filter (ADF)

ADF is based on the premise that the separated speech
signals will be decorrelated if the source signals come
from statistically independent sources [7]. This premise
will be true for source signals from different speakers. A
reduced complexity version of the ADF adaptation
algorithmis given by [8]

a(n+1) =a(n) + u,Vv, (Mvy(n)
b(n+1) =b(n) + £V, (Mv2 (N)

where u, and pu, arestepsizes,

a(n) =[ay(n), a,(n),..., &y, (N]"
b(n) =[b, (n), b, (n),..., by, , (M
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V() = yy(n) - Zak(n)yz(n— K)

Np-1

V2(M) = Y2 (M= ) b(Myy(n=k)

The computational complexity of the above algorithm is
O(N, +N,) . The conditions for convergence of ADF to

true reverberation channels were derived in [9].
3.3. Convergence | mprovement for ADF

The convergence rate of ADF is excruciatingly slow
especialy for speech signals because of nonstationarity
and lowpass spectral characteristics of speech. The
decorrelation citerion is insensitive to linear filtering of
individual microphone output signals, and it would yield
the same reverberation estimates if linear filters were
inserted after the y, (n) . The convergence rate of ADF can
be greatly improved by preprocessing the microphone
outputsy,(n) prior to ADF. The objective of the
preprocessor is to flatten the spectrum of the y,(n). The

simple preprocessor 1-0.95z7", which is a fixed highpass
filter (HPF) commonly used in LPC processors as a
preemphasizer, provides a dggnificantly faster
convergence. The use of aHPF isin fact asimple, yet very
effective, substitute for whitening. For white signals, ADF
would attain its fastest convergence rate. The
postprocessor in this case may include the inverse HPF.
Fig. 3 compares the convergence rates of ADF with and
without HPF preprocessing for speech signals of
approximate duration 3 min. The squared coefficient error

is given by ||a(n)—gl||2 +||b(n)—gz||2 where the entries of
Na-1

g, and g, are defined through H,,(2)= 5 g,,z™ and
k=0

Np-1
H,u(2)= 2 9,2 . Thereverberation channel impulse

responses are shown in Fig. 4. The stepsizes used were
0.03 and 0.1 for ADF with and without HPF
preprocessing, respectively, and they were chosen to attain
the fastest convergence.

4. SPEECH SEPARATION EXPERIMENT

The speech separation experiments were done in aroom
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Fig. 3. Squared coefficient error curves for ADF with and
without preprocessing.
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Fig. 4. Impulse responsesfor H,,(z) and H,(2) .

depicted in Fig. 5. To ensure repeatability of the
experiments for different speakers, the reverberation
channel impulse responses were first estimated for two
speakers, using ADF with HPF preprocessing, and then the
estimates were used to obtain the mixed microphone
signals for other speakers as in Fig. 1. The microphone
signals were recorded using a sampling frequency of
11025Hz and 16-bit resolution. The reverberation
channels used for mixing speakers are depicted in Fig. 4.

Ten speakers performed the training process in NS to
generate the NS user profiles where the “Australian
English” language model and the “General” vocabulary
were selected. In the second stage of the experiment,
approximately three minutes (about 600 words) of spoken
English from the ten speakers were recorded one at a time
and digitized to produce the source signals. The speakers
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Fig. 5. Acoustic environment where cross-channel
reverberations were measured.

read from two different selections of training text provided
by NS. Five read one text selection and five read another.

The source signals were grouped into pairs, x,(n) and
X, (n), and mixed together using the convolutive mixture

model. This produced y,(n) and y,(n), the microphone
signals with cross-talk from the interfering speaker before
processing. The variance estimates for the source signals
are shown in Table 1. The ADF front-end processing with
HPF preprocessor was applied to the microphone signals
to obtain estimates of the source signals X, (n) and X,(n),

i.e., the microphone signals after processing. The lengths
of the ADF adaptivefiltersweresetto N, =N, =512.

The source signals, and the signals with cross-talk before
and after processing were transcribed by an experimenter
to produce reference patterns. These text patterns were
compared to the hypothesis patterns produced by the
recogniser. The texts were compared using a scoring
program called Sclite from the US National Institute of
Standards and Technology (NIST) to give the percentage
word accuracy results (WA%) listed in Table 1. The
average word accuracy for the ten speakers was 70.6% in
the absence of cross-talk and dropped to 29.9% when the
microphone signals were corrupted by interference. The
fast converging ADF front-end processing improved the
word accuracy from 29.9% to 62.9%.

5. CONCLUSION

We have evaluated the performance of NS incorporating a
fast converging ADF front-end processor in an experiment
that involved competing speakers. A  significant
performance improvement has been observed compared to
the case of no front-end speech separation. The fast
convergence of the proposed adaptive separation
algorithm has been confirmed using real speech signals as

variance | Saret [ or® | Aree
Spk. Mec. < 10° X y ' )2] ’
i
[ WA % WA % | WA %
1 1 0. 254 80.7 24.6 72.5
2 2 1. 865 85.4 49. 6 80.9
3 1 0. 156 59.9 25.8 58. 4
4 2 0. 106 69. 2 27.6 66. 2
5 1 0. 759 71.1 50. 4 66. 4
6 2 0. 061 67.1 9.2 52.8
7 1 2.550 68.7 47. 6 61.7
8 2 0. 202 67.6 10.3 48.5
9 1 0. 337 76.7 37.7 69.7
10 2 0. 410 59.1 16.1 51.7
Mean 70.6 29.9 62.9

Table 1. Performance of speech recogniser in terms of
percentage word accuracy for source and processed speech
from ten speakers.

spoken utterances.
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