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ABSTRACT

In this paper, we investigate the problem of direct fre-
quency estimation. A new adaptive algorithm is pro-
posed based on the work in [12], where the constrained
pole-zero notch filter was cascaded and each stage was
implemented with the controllable realization. It is
well known that the performance of adaptive filters
is strongly related to how the filters are parametrized
and implemented. The normal based realizations have
some nice numerical properties. In the proposed algo-
rithm, each subfilter is parametrized with its notching
frequency and implemented with a normal realization.
Compared with the one in [12], this structure makes
the algorithm more robust such that the stability can
be ensured automatically no matter the algorithm is
implemented with or without infinite precision. Simu-
lations show that the adaptive algorithm with the pro-
posed structure also has better convergence behavior.
Application of this algorithm to speech processing is
also discussed.

1. INTRODUCTION

The problem of estimating frequencies from a desired
signal of multiple sinusoids buried in an additive noise
can be found from many practical situations. For ex-
ample, the voiced speech signals show a high periodic-
ity. To code such signals efficiently, one needs to de-
tect the period (or equivalently, the fundamental fre-
quency), called pitch in speech processing community.
There exist two classes of processing. The first class,
called off-line processing, is based spectral estimation
techniques which are based on Discrete Fourier Trans-
formation (DFT) and some MUIltiple Slgnal Classifi-
cation (MUSIC) based algorithms (see, e.g., [1]-[2]).
These methods usually require a high cost of compu-
tation. The second class, called on-line processing, is
based on adaptive notch filtering techniques. One of
the popularly used models is the constrained notch fil-
ter (see, e.g., [3]-[12]), which has some superior proper-
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ties such as better stability, fast convergence, and com-
putation efficiency to unconstrained adaptive filters.

Classically, the adaptive notch filter is parametrized
with the polynomial coefficients of its transfer function.
These coefficients are function of the notching frequen-
cies for which the notch filter has or nearly has a zero
gain. These techniques, referred as indirect frequency
estimation methods, require stability monitoring, that
is the model stability has to be checked after each adap-
tation, which leads to a lot of additional computation.
To overcome this weakness, a new adaptive algorithm
for direct frequency estimation was developed in [12],
where the constrained notch filter is cascaded into a
series of second order subfilters and each subfilter is
parametrized with its notching frequency.

Tt should be pointed out that in [12], each sub-
filter is implemented with the controllable realization
which usually has poor numerical properties. It is well
known that for a given transfer function, there exist
a number of different realizations. These realizations,
though equivalent, have different numerical properties
such as error propagation and transfer function sensi-
tivity. Normal realizations have a minimal pole sen-
sitivity and are free of overflow oscillations. See, e.g.,
[7], [8]. The main objective in this paper is to develop
an adaptive frequency estimation algorithm using the
constrained notch filter which is implemented with a
normal realization.

2. ADAPTIVE NOTCH FILTERS

Let y(n) be a measurable signal, which consists of N
sinusoids s(n) with an additive broad-band noise e(n):

N
Z Apcos(8dn — ¢p) + e(n)

k=1
£ s(n) +e(n) (1)

where s(n) and e(n) are assumed to be independent,
and {Ay # 0,09, ¢} are the amplitude, (angular) fre-

y(n)
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quency and phase parameter of the sinusoids, respec-
tively.

To estimate the frequencies {6} with the only avail-
able signal y(n), the following constrained adaptive
notch filter was proposed in [12]:

H AO 0k7ﬂz

N
A
A() ek az 1 - HHO eka ’ (2)
’ k=1

where Ag(6x, vz~ 1) 29 2vz"lcosOy + 4%, v =a, 3
with «a, F two positive constant close to 1. Typically,
a = 0.9950 and § = 0.9999. This notch filter has its
poles at {ae®%}, and zeros at {3eT7%}. We note that
H(el%) =0, Vk.

Denoting 0 2 (61, 02,
cost function V (8,n) as

, On)7T, we now define a

n

Vo) 2 5, 3)

Jj=1

By minimizing this cost function with respect toé one
can obtain the estimate of the frequencies {#7}. The
algorithm we are to develop is based on a Gaussian-
Newton type recursive prediction error based adaptive
algorithm (RPE), that is:

P(n—])%(n—])

M) = ST =P - et — 1)
Pw) = AP 1) K(n)Woln — )P 1)
O(n) = 0O0n—1)+ K(n)é(n), (4)
where Wy(n — 1) 62(;) and
an+1) = qo — [aee — a(n)]ag
)‘(n + 1) = s — [)‘oo - )‘(n)])‘o (5)

with ag = 0.9900, oo = 0.9950 and A(n) the forgetting
factor. For detailed discussion on these parameters, we
refer to [12].
To compute §(n) with P(n — 1) and 8(n — 1), one
A

needs Wy(n — 1) az(g)_ We note that

N
é(n) = H Ho(ek,zq)y(n).
k=1

It can be shown with some manipulations that

dé(n) Bz . o X '
26, 2[140(91752_1)6(”) - Ao(9i,az—1)e(n”$m0i
£ 2ewi(8,n) — epi(a, n)]sing;, (6)

—1

where ep;(v,n) = Wé(n),’y =a, 0.

3. IMPLEMENTATIONS WITH NORMAL
REALIZATIONS

Tn the adaptive algorithm by (4), one has to compute
é(n) and ep;(7,t),Vi for v = «, 3. Now, let look at
how to compute é(n).

Denote

n) £ [ Ho(Ok. =~ ")y(n). (7)
k=1

é(n) can be evaluated the following iterative equations:
zi(n) z i (n) (8)

with zo(n) = y(n) and zy(n) = é(n).

One can compute x;(n) = Ho(0;(n—1), 2" ")z;_1(n)
using the input-output relationship or any direct form.
Tt was argued in [12] that it is desired to use the state-
space equations in order to have a better convergence
behavior. In [12], the following state-space equations:

= H0(91<n — ]),

Zz(n—&—]) =

xi(n) =

Acln—
C.(n—

1)Zi(n) + Be(n — 1)z;—1(n)
1)Zi(n) + x;—1(n) (9)

where

O A A XU R
Cn) = ( 2a—Pleosti(n) F—a®),  (10)

which is the controllable realization of Ho(6,2z71).

Remark 3.1: It is well known that the controllable re-
alization, though simple, has some undesired numeri-
cal properties such as large sensitivity with respect to
the parameter perturbation and high potential of zero-
input overflow oscillation, which are very serious prob-
lems when the algorithm is implemented using a digital
signal processor which is always of finite word length
(FWL). Another important issue is stability. Asargued
n [12], (9) is always stable no matter what the vari-
able 8; takes with or without FWL errors. In the actual
implementation of (9), the parameters 2ccosf;(n) and
a? have to be truncated or rounded into their FWL
version. Therefore, (9) may become unstable in that
case.

The realizations of a given transfer function are not

unique. Let
cosb;
iy
T: < B sw]u?,, O >
asind;

This is a similarity transformation under which the con-
trollable realization can be transformed into the follow-
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ing realization (A, B, C):

B _ [ acosl; —asind;
4 = T AT = ( asind;  acosh; )
B = T7'B, = ( 0 >
1
C = CTI=2a-0)(sing; cost; ), (11)

which is a normal realization due to the fact that the
matrix A is normal, i.e., AA”T = AT A. Then we can
use this realization to implement the adaptive algo-
rithm:

zi(n) =

A(n)Z;(n) + Bx;_1(n)
C(n)Z;(n) + zi—1(n), (12)

where A(n) and C(n) are given by (11) with 6; and «
replaced by 6;(n — 1) and «(n).

Remark 3.2: The normal realizations have very nice nu-
merical properties. In fact, they yield a minimal pole
sensitivity [7] and are free of zero-input overflow oscil-
lation [8]. Besides, (12) is always stable no matter the
parameters in the A matrix are truncated into FWL
numbers or not. All these nice properties are particu-
larly very important for actual implementation.

Similarly, ep;(y,n) = é(n) can be imple-

vz !
Ao(0i,vz1)
mented with a normal realization instead of the con-
trollable realization. With some manipulations, it can

be shown that
erpi(y,m) = 1) Wi(v,n)

Wiy,n+1) = 7(6089 —sinf; )WZ-(%TZ)

( —ctant;

sind cosb;

(Do o

for v = a, 3, where W;(,
vector.

n) is the corresponding state

4. FUNDAMENTAL FREQUENCY ESTIMATION
IN SPEECH PROCESSING

It is well known that speech signal is usually processed
frame by frame with an interval of 10 - 30 ms. Voiced
speech signals can be modeled with (1) and for most of
the cases the speech signal shows highly periodicity for
such a short time interval. The period, called pitch, is
a very important parameter in speech encoder design
and there exist several traditionally used algorithms to
detect the pitch such as the average magnitude differ-
ence function and zero crossing measure (see, e.g., [10],

[11]). The problem with such algorithms is that the
obtained pitch is always an integer, therefore, there
exists an estimation error constantly for most of the
cases. Such an error may greatly affect the quality of
the synthesized speech signal.

We can model a voiced speech signal using the fol-
lowing;:

N

= Z Agcos(kbon — ¢r) + e(n), (14)

k=1

where 6y is the fundamental (angular) frequency. In
this case, we have one frequency, 68y, to determine in-
stead of N. Our proposed algorithm can be adapted
for this situation easily. In fact, with the constraint

o)y =(1 2 . k N )Y bo(n),  (15)
one has
A d6 d0k
Yo, (n) = deo Z d@k 6o
=(1 2 .. &k N )T, (16)

where Wy, as defined before, is the derivative of the
prediction error with respect to the frequency vector
0. Therefore, the corresponding algorithm to the fun-
damental frequency estimation is the same as (4) but
with the vector (n) replaced with the (scalar) funda-
mental frequency 6g(n) and hence K (n) and P(n) are
scalar instead of matrix of order N x N.

With the obtained fundamental frequency éo, the
corresponding synthesized speech signal g(n) can be
obtained with

N

= Z Arcos(kfon — ¢r), (17)

k=1

where { Ak, ¢r} can be determined by minimizing

L
Z (18)

with respect to these variables, where L is the num-

IID
b«l

ber of samples in one frame. In fact, denoting A¢ 2

Apcosor and A3 = A singy, for all k, one can see that
02 is a quadratic function in {A§, A3} with 8o and y(n)
given. Therefore, 02 can be minimized with respect to
{A%, A7} easily. With the obtained optimal { A, A7},
one can then convert them into {Ag, ¢} steadily. In
the next section, numerical examples will be given.
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5. NUMERICAL EXAMPLES AND SIMULATIONS

In this section, we present two numerical examples and
the corresponding simulations to examine the perfor-
mance of our algorithm.

Example T: This example was used in [5], [12]. The
signal y(n) is given by

y(n) = 2sin(0.5n) 4 2sin(1n) 4+ 2sin(2n) + e(n),

where e(n) is a white noise with zero-mean and unit
variance. Clearly, the Signal-to-Noise Ratio (SNR) is
3dB for each sinusoid. We generate 30 different frames
y(n), each of them contains 500 samples. We tested
the algorithm in [12], denoted as GL’s algorithm, and
our proposed one.

In order to have a fair comparison, we set the same
initial conditions for the two algorithms. In the 30
trials, GL’s algorithm converge to their true parame-
ter vector 22 times after the 400 iterations, while our
proposed algorithm, converges 26 times. Due to the
limited space, simulations will be presented on the con-
ference.

Example II: In this example, the signal is a frame of
voiced speech signal with L = 500. This speech signal
is sampled with 20kHz. We estimate the pitch us-
ing the classical average magnitude difference function
(AMDF) [11] and our proposed algorithm with N = 16.

With AMDEF, the fundamental frequency is 0.0706.
The corresponding error variance, as defined in (18)
where ¢(n) is computed with (17) with N = 16, is
339.6915. We run the proposed adaptive algorithm
with 64(0) = 0.05 and P(0) = 20, and obtain the fun-
damental frequency 8o(500) = 0.0708. Then the cor-
responding synthesized speech signal is computed with
(17) for N = 16. The error variance is 144.5735, much
smaller than the one obtained with AMDF. In Fig. 1,
the solid line is the original speech signal while the
pointed line is the synthesized one computed with the
pitch estimated with our proposed algorithm.

500

) 50 100 150

Fig. 1. The original speech signal and the synthesized
one
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