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ABSTRACT 

 
In practical settings, the echo cancellation problem 
generally requires the adaptation of an IIR filter using 
some optimality criterion. This brings two problems: 
direct adaptation of numerator and denominator 
polynomial coefficients of IIR filters might result in 
unstable systems and/or the optimization might result in a 
suboptimal local minimum of the criterion. These two 
issues are addressed in this paper. To resolve the first 
problem, orthogonal Kautz filters are utilized for their 
stability is easily controlled through the pole locations. 
The second problem is addressed by employing an 
information theoretic optimality criterion, which has a 
parameter that is annealed to ensure global optimization. 

 

1. INTRODUCTION 
 
Echo cancellation is an important practical problem whose 
solution generally necessitates the optimization of an 
adaptive infinite impulse response (IIR) filter. If the actual 
channel is a finite impulse response (FIR) filter, the ideal 
inverse of the channel is guaranteed to be IIR. It might be 
possible to find an approximate FIR equalizer for an FIR 
channel in some cases. In that case, the solution, given by 
the Wiener-Hopf equations, is easy to obtain both 
analytically with on-line adaptation. Determining the 
model order, however, is a major problem in this case. 
The adaptation of IIR filters, on the other hand, result in 
two major difficulties: filter stability and suboptimal 
solutions. If the adaptive IIR system is parameterized in 
terms of the numerator and denominator polynomial 
coefficients of its transfer function, then maintaining the 
stability of the poles is difficult. If the IIR filter is 
expressed in terms of its zeros and poles, the gradient 
expressions for these become extremely complicated.  

Kautz filters form an orthogonal set of basis impulse 
response functions so that any impulse response function 
could be approximated with arbitrarily small errors as 
higher order Kautz filters are utilized [1]. In addition, the 
Kautz filters are expressed explicitly in terms of their 
poles. Therefore, maintaining the stability is trivial. The 

derivatives with respect to these poles are less 
complicated than an arbitrary IIR filter. Hence, Kautz 
filters provide an ideal solution to the dilemma of filter 
stability. 

Whatever IIR filter topology and optimality criterion 
is utilized, if the poles are adapted, the problem of 
suboptimal solutions will exist. Commonly, the mean 
square error (MSE) is the criterion of choice. Due to the 
mentioned difficulties in adapting the feedback 
parameters of generalized feedforward filters, in problems 
that require adaptive IIR filtering, such as echo 
cancellation, the poles of the filter are not adapted [2]. 
Adapting only the feedforward weight vector 
conveniently reduces to an LMS-type algorithm where 
some variant of the Wiener solution can be reached. Here, 
we propose a method to adapt both the feedforward and 
feedback parameters of an adaptive IIR filter to achieve 
global optimization, yet still use gradient descent. 

Recently, we have proposed and experimented with 
an information theoretic alternative to MSE called 
minimum error entropy (MEE) [3]. In this paper, we will 
employ a Euclidean distance approach to the supervised 
training of IIR filters, where the new criterion will show 
some resemblance to the previously investigated Renyi’s 
entropy measures. When this new criterion is estimated 
from samples with Parzen windowing, it is possible to 
achieve global optimization by annealing the kernel size.  

We will propose an annealing scheme for the kernel 
size and the global optimization capability of the proposed 
algorithm will be investigated through Monte Carlo 
simulations. As a comparison, we will also provide results 
obtained using LMS variants, which are known to have 
improved chances of avoiding local minima. The 
comparison will be performed by investigating the Lp-
norm of the error between the identified and ideal inverse 
impulse responses (truncated at a sufficiently large delay) 
for various choices of p.  
  

2. LMS VARIANT ALGORITHMS 
 
Extending LMS to the case of IIR filters is trivial. In fact, 
the global optimization capabilities of LMS-based 
algorithms are previously investigated. The two 
algorithms that we will focus on here are called LMS-
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SAS, which is a slightly modified version of the algorithm 
by Srinivasan et al. [4], and NLMS, which is a straight 
forward extension of the normalized LMS in FIR training 
to the IIR filter case. Suppose we are given a training 
sequence {xk,dk}, and an adaptive IIR filter whose 
parameters (weights) are collected in a vector θ and that 
generates an output yk. These stochastic MSE 
minimization algorithms are [5]: 
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In (1), k is the sample/time index, µk is the possibly time-
varying step size, ek = dk - yk is the output error, and kyθ∇  
is the gradient of the output with respect to the weights. 
 

3. INFORMATION THEORETIC LEARNING 
 
Recently, we have investigated the performance of MEE 
in supervised learning, which provided generalization 
results favorable to MSE [3]. Our cost function was based 
on Renyi’s entropy, which is, for a random variable e with 
probability density function (pdf) pe(.) was defined as [6]. 
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In this paper, we will concentrate on a Euclidean distance 
measure based on the error pdf. In supervised training, the 
purpose is to find the weight vector that makes the error 
as small as possible. One alternative way of enforcing this 
is to minimize the divergence between the error pdf and a 
Dirac-δ distribution located at zero.  
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The final expression in (3) contains three terms: the 
argument of Renyi’s quadratic entropy (α = 2), the error 
pdf evaluated at zero, and a term that is independent of the 
filter coefficients. In essence, minimizing this criterion is 
maximizing the likelihood of achieving zero error while 
trying to maximize the quadratic error entropy (since 
minimizing the first term is equivalent to maximizing 
quadratic entropy). In a sense, the objective of this 
criterion corroborates Jaynes’ maximum entropy principle 
[7]. This principle suggests selecting a distribution that 
best fits the available data, but that makes minimal 
commitment to unobserved data. This is mathematically 
formulated as finding the maximum entropy density that 
satisfies equality constraints regarding the data statistics. 
 Since the analytical form of the error pdf is not 
available in practice, it has to be estimated from the 

samples. Parzen windowing is a suitable pdf estimation 
method for our purposes [8]. Given a set of independent 
and identically distributed (iid) samples {e1,…,eN}, the 
Parzen estimate of the underlying pdf is 
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where κσ(.) is the kernel function. A commonly used 
kernel choice is the Gaussian pdf. In general, the kernel 
can be any valid pdf. Here, σ controls the kernel width. 
For Gaussian kernels, it is the standard deviation.  
 When the Euclidean distance in (3) is estimated from 
the samples of the error on the training set using Gaussian 
kernels, the following expression is obtained. 
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 In this derivation, we used the fact that the 
convolution of two Gaussians is another Gaussian. This 
formulation was previously used to estimate Renyi’s 
entropy [9], as well as for testing the null hypothesis of 
whether two random vector sets are drawn from the same 
distribution [10]. Due to these strong ties with Renyi’s 
entropy, IIR filter adaptation using the criterion in (5) is 
called information theoretic learning (ITL).  
 

4. WEAK CONVERGENCE OF ITL 
 
The global convergence properties of ITL are investigated 
in a probabilistic framework. This approach requires the 
calculation of the escape probability of ITL from the 
domain of a local minimum. Due to Parzen windowing, 
the estimated pdf will asymptotically converge to the 
convolution of the actual error pdf with the kernel. 
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This can be interpreted as the addition of independent 
Gaussian noise to the error signal, i.e., N+= εε̂ . After 
solving the Fokker-Plank equations that arise from Ito’s 
integral, under the separability assumption, we obtain the 
escape probability for single-weight as (details are in [5]). 
 ( ΣGaussianttp ,),|,( 0* )µθθ =  (7) 
where *θθµ −=  and 
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 Notice that the escape probability depends on the 
kernel size σ. In addition, the probability of escape from a 
local minimum is greater than the probability of escape 
from the global minimum, since the cost is smaller in the 
latter. However, the kernel size can be set to dominate the 
escape probability. Starting with a large kernel size, we 
improve the algorithm’s chances of global optimization. 
However, the kernel size must be annealed slowly towards 

a small value to reduce bias. Designing an annealing 
schedule is an open problem. 
 An analogy between this method and the noise-
injection approach in [11] can be formed. In [11], 
independent noise is added to the desired signal to 
facilitate global optimization, which is equivalent to 
adding noise to the error as in here. We have seen that the 
kernels effectively implement this idea. There is no 
physical noise, but the algorithm experiences an 
equivalent effect through the bias imposed by the kernel. 
 

5. SIMULATION RESULTS 
In order to demonstrate the effectiveness of the proposed 
approach, we first present the results of a Monte Carlo 
training example where the following 4th order unknown 
system is identified with a 2nd order Kautz filter. The 
details of the Kautz filter are in the Appendix [1,5]. 

Method Global (%) Local (%) 
LMS 48 52 
LMS-SAS 58 42 
NLMS 96 4 
ITL 100 0 

Table 1. System identification using Kautz model. 
 

p 1 2 3 4 10 ∞  
MSE 0.94 0.29 0.24 0.22 0.22 0.22 
ITL 1.59 0.37 0.26 0.22 0.18 0.17 

Table 2. Lp impulse response errors with MSE and ITL. 
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Figure 1. Channel and equalized channel impulse 
responses with NLMS and ITL. 
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Figure 2. Poles of the Kautz filters after training. 

 
4321

4321

8288.04466.25992.36918.21

089.02199.02866.02199.0089.0)(
−−−−

−−−−

+−+−

+−+−
=

zzzz

zzzzzH  (9) 

 Using standard LMS, LMS-SAS, NLMS, and ITL, 
we have performed 100 training sessions from random 
initial conditions for the Kautz filter parameters. The 
results are in Table 1 in the form of percentages of hitting 
the global and local minima. ITL achieves 100% global 
hits. In these experiments, the kernel size is annealed 
linearly according to the following formula. 
  (10) 5.0)105.21(3 52 +⋅−= − kσ
where k indicates the iteration index. 
 In order to understand what quality of the impulse 
response error ITL focuses on, we have computed the Lp 
norms of the impulse response error vectors 
corresponding to the global optimal solutions of NLMS 
and ITL algorithms. The impulse response error vector is 
defined as the difference between the actual impulse 
response of (9) and the impulse response of the final 
Kautz filter. Since these are IIR, the error is truncated at 
100 taps, at which point the system impulse responses 
decay to insignificant values. These results are in Table 2. 
We observe that MSE emphasizes the lower norm indices 
(the L2 of MSE is better) whereas ITL focuses on higher 
norms behaving like an  error minimizer.  ∞L

Global 
optimal 
region 

 Our second example addresses the echo cancellation 
problem. In general, echo can be modeled as the 
application of an FIR filter to the original source signal, 
which presumably comes through the line of sight (LOS) 
between the source and the sensor. Most probably, the 
power of the echo components will be smaller than the 
direct LOS component, mainly because of the additional 
distance traveled by the signal. In the following Monte 
Carlo simulations, we assume a randomly selected FIR 
channel model that conforms to these specifications. Since 
the ideal inverse of an FIR channel is IIR, again adaptive 
Kautz filters are used. 
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In this set of Monte Carlo simulations, the training is 
performed with recorded speech (note that the type of data 
has no significance in the procedure). For the channel 
whose impulse response is shown in Fig. 1, we have 
trained a second order Kautz filter (complex conjugate 
poles) using NLMS and ITL (with linear kernel 
annealing) with approximately 30000 samples. Starting 
from 100 randomly selected initial conditions for NLMS 
and 50 for ITL (due to simulation time constraints), the 
feedforward weights and the poles (usually the poles of an 
IIR filter are not adapted due to the mentioned difficulties) 
of the Kautz filter are optimized to determine the inverse 
of the channel. The equalization results for the best 
solutions obtained by the two algorithms are in Fig. 1. 

To demonstrate the global convergence of ITL and 
NLMS, we present one of the complex conjugate poles 
obtained by these algorithms in the Monte Carlo trials in 
Fig. 2. We observe that NLMS failed to find a pole in the 
global optimum region 12/100 of the time, whereas for 
ITL, this ratio was 2/50. A slower annealing in these two 
simulations would result in global optimization.  
 

6. CONCLUSIONS 
 
The widespread use of adaptive IIR filters is prevented by 
two factors: the poor performance of currently available 
MSE-based training algorithms in avoiding local minima 
and the problems associated with maintaining the stability 
of the IIR filter during training.  

In this paper, we demonstrated that a criterion that 
exhibits similarities to the information theoretic Renyi’s 
quadratic entropy measure is useful in global optimization 
of IIR filters through annealing of its kernel parameter. 
Although we have provided a theoretical weak 
convergence result and demonstrated global convergence 
through Monte Carlo runs, the problem of setting the 
annealing schedule still remains an open problem. 

Comparisons between the L2 norms of the impulse 
response errors of the filters suggested by the optimization 
of MSE and ITL criteria resulted in favor of MSE. 
Therefore, if the global minimization of this L2 norm is 
desired, then we suggest the use of a hybrid algorithm that 
starts with ITL and switches to MSE towards the end. 
This way the weights approach the global optimum with 
ITL and find the best L2 solution through MSE training.  
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APPENDIX 
 

The Kautz filter output is a linear combination of outputs 
from a cascade of first-order Kautz units, , 
where w is the weight vector and Ψ is the vector of 

outputs from individual Kautz units. The Kautz units are 
defined by the following transfer functions and gains. 
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Here ξ is a complex pole of the filter, i.e., βαξ j+= . 
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