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ABSTRACT

In practical settings, the echo cancellation problem
generally requires the adaptation of an IIR filter using
some optimality criterion. This brings two problems:
direct adaptation of numerator and denominator
polynomial coefficients of IIR filters might result in
unstable systems and/or the optimization might result in a
suboptimal local minimum of the criterion. These two
issues are addressed in this paper. To resolve the first
problem, orthogonal Kautz filters are utilized for their
stability is easily controlled through the pole locations.
The second problem is addressed by employing an
information theoretic optimality criterion, which has a
parameter that is annealed to ensure global optimization.

1. INTRODUCTION

Echo cancellation is an important practical problem whose
solution generally necessitates the optimization of an
adaptive infinite impulse response (IIR) filter. If the actual
channel is a finite impulse response (FIR) filter, the ideal
inverse of the channel is guaranteed to be IIR. It might be
possible to find an approximate FIR equalizer for an FIR
channel in some cases. In that case, the solution, given by
the Wiener-Hopf equations, is easy to obtain both
analytically with on-line adaptation. Determining the
model order, however, is a major problem in this case.
The adaptation of IIR filters, on the other hand, result in
two major difficulties: filter stability and suboptimal
solutions. If the adaptive IIR system is parameterized in
terms of the numerator and denominator polynomial
coefficients of its transfer function, then maintaining the
stability of the poles is difficult. If the IIR filter is
expressed in terms of its zeros and poles, the gradient
expressions for these become extremely complicated.
Kautz filters form an orthogonal set of basis impulse
response functions so that any impulse response function
could be approximated with arbitrarily small errors as
higher order Kautz filters are utilized [1]. In addition, the
Kautz filters are expressed explicitly in terms of their
poles. Therefore, maintaining the stability is trivial. The
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derivatives with respect to these poles are less
complicated than an arbitrary IIR filter. Hence, Kautz
filters provide an ideal solution to the dilemma of filter
stability.

Whatever IIR filter topology and optimality criterion
is utilized, if the poles are adapted, the problem of
suboptimal solutions will exist. Commonly, the mean
square error (MSE) is the criterion of choice. Due to the
mentioned difficulties in adapting the feedback
parameters of generalized feedforward filters, in problems
that require adaptive IIR filtering, such as echo
cancellation, the poles of the filter are not adapted [2].
Adapting only the feedforward weight vector
conveniently reduces to an LMS-type algorithm where
some variant of the Wiener solution can be reached. Here,
we propose a method to adapt both the feedforward and
feedback parameters of an adaptive IIR filter to achieve
global optimization, yet still use gradient descent.

Recently, we have proposed and experimented with
an information theoretic alternative to MSE called
minimum error entropy (MEE) [3]. In this paper, we will
employ a Euclidean distance approach to the supervised
training of IIR filters, where the new criterion will show
some resemblance to the previously investigated Renyi’s
entropy measures. When this new criterion is estimated
from samples with Parzen windowing, it is possible to
achieve global optimization by annealing the kernel size.

We will propose an annealing scheme for the kernel
size and the global optimization capability of the proposed
algorithm will be investigated through Monte Carlo
simulations. As a comparison, we will also provide results
obtained using LMS variants, which are known to have
improved chances of avoiding local minima. The
comparison will be performed by investigating the L,-
norm of the error between the identified and ideal inverse
impulse responses (truncated at a sufficiently large delay)
for various choices of p.

2. LMS VARIANT ALGORITHMS
Extending LMS to the case of IIR filters is trivial. In fact,
the global optimization capabilities of LMS-based

algorithms are previously investigated. The two
algorithms that we will focus on here are called LMS-
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SAS, which is a slightly modified version of the algorithm
by Srinivasan et al. [4], and NLMS, which is a straight
forward extension of the normalized LMS in FIR training
to the IIR filter case. Suppose we are given a training
sequence {X;d;}, and an adaptive IIR filter whose
parameters (weights) are collected in a vector 0 and that
generates an output ;. These stochastic MSE
minimization algorithms are [5]:
LMS —SAS: 0y, =0, + 11,V oyy + lgeginy

NIMS 0 0, =0, +—5 e vy, (D)
[Voril
In (1), k is the sample/time index, g is the possibly time-
varying step size, e, = dj - y; is the output error, and V 4y,
is the gradient of the output with respect to the weights.

3. INFORMATION THEORETIC LEARNING

Recently, we have investigated the performance of MEE
in supervised learning, which provided generalization
results favorable to MSE [3]. Our cost function was based
on Renyi’s entropy, which is, for a random variable e with
probability density function (pdf) p.(.) was defined as [6].

H, (€)= log [ p(e)ds @
- a

In this paper, we will concentrate on a Euclidean distance
measure based on the error pdf. In supervised training, the
purpose is to find the weight vector that makes the error
as small as possible. One alternative way of enforcing this
is to minimize the divergence between the error pdf and a
Dirac-¢ distribution located at zero.

o0

I = [(pe(@)-6(e)) de

- B A3)
= [ p2@)de-2p.(0)+ [6* )z

The final expression in (3) contains three terms: the
argument of Renyi’s quadratic entropy (& = 2), the error
pdf evaluated at zero, and a term that is independent of the
filter coefficients. In essence, minimizing this criterion is
maximizing the likelihood of achieving zero error while
trying to maximize the quadratic error entropy (since
minimizing the first term is equivalent to maximizing
quadratic entropy). In a sense, the objective of this
criterion corroborates Jaynes’ maximum entropy principle
[7]. This principle suggests selecting a distribution that
best fits the available data, but that makes minimal
commitment to unobserved data. This is mathematically
formulated as finding the maximum entropy density that
satisfies equality constraints regarding the data statistics.
Since the analytical form of the error pdf is not
available in practice, it has to be estimated from the

samples. Parzen windowing is a suitable pdf estimation
method for our purposes [8]. Given a set of independent

and identically distributed (iid) samples {ey,...,ey}, the
Parzen estimate of the underlying pdf is

. 1 <

pe(e)wgzcg(s—ei) @)

where x,(.) is the kernel function. A commonly used
kernel choice is the Gaussian pdf. In general, the kernel
can be any valid pdf. Here, o controls the kernel width.
For Gaussian kernels, it is the standard deviation.

When the Euclidean distance in (3) is estimated from
the samples of the error on the training set using Gaussian
kernels, the following expression is obtained.

o0

fpp = [(pe(e)-Go () de

—00

= [ 52022 [ po(2)Gy ()de+ [ O3 ()de (5)
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In this derlvatlon, we used the fact that the
convolution of two Gaussians is another Gaussian. This
formulation was previously used to estimate Renyi’s
entropy [9], as well as for testing the null hypothesis of
whether two random vector sets are drawn from the same
distribution [10]. Due to these strong ties with Renyi’s
entropy, IIR filter adaptation using the criterion in (5) is
called information theoretic learning (ITL).
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4. WEAK CONVERGENCE OF ITL

The global convergence properties of ITL are investigated
in a probabilistic framework. This approach requires the
calculation of the escape probability of ITL from the
domain of a local minimum. Due to Parzen windowing,
the estimated pdf will asymptotically converge to the
convolution of the actual error pdf with the kernel.

Jim Pe(&)=pe(8)* Gy (8) (6)

This can be interpreted as the addition of independent
Gaussian noise to the error signal, i.e., £€=&+ N . After
solving the Fokker-Plank equations that arise from Ito’s
integral, under the separability assumption, we obtain the
escape probability for single-weight as (details are in [5]).

(0,1 0x,1y) = Gaussian(u, X) (7)

where u=6-0+ and

0 t
2 =02 [(he(0n,2)=5(2)) de [ u(s)ds @®)
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Method Global (%) Local (%)
LMS 48 52
LMS-SAS 58 42
NLMS 96 4
ITL 100 0

Table 1. System identification using Kautz model.

p 1 2 3 4 10 [ =
MSE 094 [ 029 024 [022]022]022
ITL 1.59 [ 037 [ 026 [ 022 [ 0.18 | 0.17

Table 2. L, impulse response errors with MSE and ITL.
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Figure 1. Channel and equalized channel impulse
responses with NLMS and ITL.

Poles of the Kautz Filters in Monte Carlo Trials
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Figure 2. Poles of the Kautz filters after training.

Notice that the escape probability depends on the
kernel size o. In addition, the probability of escape from a
local minimum is greater than the probability of escape
from the global minimum, since the cost is smaller in the
latter. However, the kernel size can be set to dominate the
escape probability. Starting with a large kernel size, we
improve the algorithm’s chances of global optimization.
However, the kernel size must be annealed slowly towards

a small value to reduce bias. Designing an annealing
schedule is an open problem.

An analogy between this method and the noise-
injection approach in [11] can be formed. In [11],
independent noise is added to the desired signal to
facilitate global optimization, which is equivalent to
adding noise to the error as in here. We have seen that the
kernels effectively implement this idea. There is no
physical noise, but the algorithm experiences an
equivalent effect through the bias imposed by the kernel.

5. SIMULATION RESULTS
In order to demonstrate the effectiveness of the proposed
approach, we first present the results of a Monte Carlo
training example where the following 4™ order unknown
system is identified with a 2™ order Kautz filter. The
details of the Kautz filter are in the Appendix [1,5].

_ 0089-02199! +02866 202199 +008%

1-269187 43599272 24466 +0.8288™*

Using standard LMS, LMS-SAS, NLMS, and ITL,
we have performed 100 training sessions from random
initial conditions for the Kautz filter parameters. The
results are in Table 1 in the form of percentages of hitting
the global and local minima. ITL achieves 100% global
hits. In these experiments, the kernel size is annealed
linearly according to the following formula.

o2 =3(1-2.5-10"k)+0.5 (10)
where £ indicates the iteration index.

In order to understand what quality of the impulse
response error ITL focuses on, we have computed the L,
norms of the impulse response error vectors
corresponding to the global optimal solutions of NLMS
and ITL algorithms. The impulse response error vector is
defined as the difference between the actual impulse
response of (9) and the impulse response of the final
Kautz filter. Since these are IIR, the error is truncated at
100 taps, at which point the system impulse responses
decay to insignificant values. These results are in Table 2.
We observe that MSE emphasizes the lower norm indices
(the L, of MSE is better) whereas ITL focuses on higher
norms behaving like an L., error minimizer.

H(z) )

Our second example addresses the echo cancellation
problem. In general, echo can be modeled as the
application of an FIR filter to the original source signal,
which presumably comes through the line of sight (LOS)
between the source and the sensor. Most probably, the
power of the echo components will be smaller than the
direct LOS component, mainly because of the additional
distance traveled by the signal. In the following Monte
Carlo simulations, we assume a randomly selected FIR
channel model that conforms to these specifications. Since
the ideal inverse of an FIR channel is IIR, again adaptive
Kautz filters are used.
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In this set of Monte Carlo simulations, the training is
performed with recorded speech (note that the type of data
has no significance in the procedure). For the channel
whose impulse response is shown in Fig. 1, we have
trained a second order Kautz filter (complex conjugate
poles) using NLMS and ITL (with linear kernel
annealing) with approximately 30000 samples. Starting
from 100 randomly selected initial conditions for NLMS
and 50 for ITL (due to simulation time constraints), the
feedforward weights and the poles (usually the poles of an
IIR filter are not adapted due to the mentioned difficulties)
of the Kautz filter are optimized to determine the inverse
of the channel. The equalization results for the best
solutions obtained by the two algorithms are in Fig. 1.

To demonstrate the global convergence of ITL and
NLMS, we present one of the complex conjugate poles
obtained by these algorithms in the Monte Carlo trials in
Fig. 2. We observe that NLMS failed to find a pole in the
global optimum region 12/100 of the time, whereas for
ITL, this ratio was 2/50. A slower annealing in these two
simulations would result in global optimization.

6. CONCLUSIONS

The widespread use of adaptive IIR filters is prevented by
two factors: the poor performance of currently available
MSE-based training algorithms in avoiding local minima
and the problems associated with maintaining the stability
of the IIR filter during training.

In this paper, we demonstrated that a criterion that
exhibits similarities to the information theoretic Renyi’s
quadratic entropy measure is useful in global optimization
of TIR filters through annealing of its kernel parameter.
Although we have provided a theoretical weak
convergence result and demonstrated global convergence
through Monte Carlo runs, the problem of setting the
annealing schedule still remains an open problem.

Comparisons between the L, norms of the impulse
response errors of the filters suggested by the optimization
of MSE and ITL criteria resulted in favor of MSE.
Therefore, if the global minimization of this L, norm is
desired, then we suggest the use of a hybrid algorithm that
starts with ITL and switches to MSE towards the end.
This way the weights approach the global optimum with
ITL and find the best L, solution through MSE training.
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APPENDIX

The Kautz filter output is a linear combination of outputs
from a cascade of first-order Kautz units, y, :‘I’]Zw,

where w is the weight vector and ¥ is the vector of

outputs from individual Kautz units. The Kautz units are
defined by the following transfer functions and gains.

-1 i
Ko =rg—— "D o1 @A
(1-&Ha-¢zh
Ki(z,)=K; 5(z,6)A(z, &) i=23,... (A.2)
-1 _ -1 *
Az o= S0E_te ) (A3)
(1-&Ha- é

‘1+( % M =0, (A.4)

Here £is a complex pole of the filter, i.e., E=a+ jf .
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