A PILOTED ADAPTIVE NOTCH FILTER

Y. C. Lim? FIEEE, Yuexian Zou® MIEEE and N. Zheng?
Email: delimyc@nus.edu.sg, Tel: (65) 8742124, Fax: (65) 7791103
National University of Singapore, Singapore, 0511, *Singapore Polytechnic, Singapore, 139651

ABSTRACT

In this paper, we propose a new adaptive system where the main
zero of the notch filter is sandwiched between two piloted zeros.
The gradient of the cost function provides information on the
direction that the main zero should be steered towards the input
sinusoid frequency. The piloted zeros are used to provide an
indication on the distance between the frequency of the sinusoid and
the zero location of the main notch filter. This information is used
to control the adaptive step-size, for fast convergence if the
frequency of the sinusoid is far away from the main zero of the
notch and for small misadjustment if that distance is small. The
technique is very effective for locking on frequencies, which are
neither very close to dc nor very close to half sampling frequency.
The complexity of the piloted filter is compatible to the
conventiona normalized LMS (NLMS) notch filter.

1. INTRODUCTION

In the LMS based adaptive notch filter [1-3], the notch
frequency is updated every sampling instance and eventualy
converges to the frequency of the input sinusoid. The convergent
rate and the misadjustment are influenced by the adaptation step-
size [2]. A larger adaptation step-size will result in a faster
convergent rate but will yield a larger misadjustment. Idedlly, a
large step-size should be used when the distance between the zero
of the notch and the frequency of the sinusoid is large in order to
improve the convergent rate. A small step-size should be employed
if the zero of the notch has converged to the vicinity of the
frequency of the sinusoid. As a consequence, a variable step-size
(VS) agorithm will outperform a fixed step-size agorithm if
appropriate step-sizes are obtainable. Severa techniques for
obtaining good estimates of step-sizes have been reported in the
literature to support the variable step-size LMS algorithms [4-10].
All these agorithms derive the step-size based on the prediction
errors at several timeinstances (i.e. time domain averaging).

Harris et al [4] suggested a method, which makes use of the
sign change between consecutive gradient estimates to determine
the step-size. Mathews and Xie [5] proposed using the product of
consecutive gradient estimates to update the step-size. The step-size
may also be made a function of the gradient estimate. Let [(n)

denotes the lowpass filtered value of the gradient estimate at time
n. The step-size can be made proportiona to the magnitude of
O(n) or to an exponential function of the magnitude of 0(n). This

approach has been adopted by Karni [6] and Shan [7].

In this paper, we propose a brand-new adaptive system
consisting of three notches, namely, a main notch and two piloted
notches. The main notch frequency is sandwiched between the two
piloted notch frequencies. The piloted notches are used to provide
an indication on whether the distance between the frequency of the
sinusoid and the zero of the main notch is large. If the frequency of
the sinusoid is sandwiched between the zeros of the two piloted
notches, i.e, if it is lower than the frequency of the zero with the
higher notch frequency but higher than that with the lower notch
frequency, the signs of the gradient estimates for the two piloted
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notches will point in opposite directions. This situation can be
detected by examining the signs of the gradient estimates of the
three notches. If they are not all equd, it is taken as an indication
that the frequency of the sinusoid is sandwiched between the zeros
of the two piloted notches; a smaller step-size is preferred. If al the
signs of the gradient estimates are the same, a larger step-size can
be employed.

This paper is organized as follows. Presented in Section 2 is a
very brief description of the adaptive notch filter for the purpose of
defining notations. The concept of the piloted notches is presented
in Sections 3. In Section 4, we discuss the details about the steer
directions obtained by the notches when the input signal is a noise
free pure sinusoid and how to use this information to derive an
adaptive piloted normalized least mean sguare (P-NLMS) notch
filtering algorithm. The effects on the steer directions when the
input consists of a sinusoid contaminated with white noise are
concisely discussed in Sections 5. Computer simulation results
demonstrating the superiority of the piloted notch filter are shown in
Section 6.

2. THE ADAPTIVE NOTCH FILTER
A second order direct form IIR adaptive notch filter consists of
a pole followed by a zero, which is configured in Fig. 1. In Fig. 1,
W(n) is the adjustable weight of the notch filter at time n with
limitation as —2<W(n) <2. x(n) is the notch filter's state. e(n)
is the output of the notch filter. Poleradius r is a positive constant
less than one. It indicates the bandwidth of the notch filter, aso
gives the information about the distance of the pole from the origin.
To smplicity the presentation, y(n) is considered as a single
sinusoid of theform
y(n) =asin(w,n+ 5) , )
where w;, isthe frequency of the sinusoid input signal, B isaphase
constant and a is the magnitude of the input. The transfer function
of the notch filter, H(z) , isgiven by [2]
1+W(n)z*t+z?
1+rW(n)zt+r2z2’
The notch frequency 6(n) at time n isgivenby [2]
8(n) =cos™(-W(n)/2). ()

Most popular adaptive agorithms for adapting W(n) are called the
|east mean squared (LM S-type) a gorithms, which can be shown as

W(n+1) =W(n) - 2p(n)x(n-De(n) , 4
where p(n) isthetime-varying step-sizeattime n .

The main challenge in the LM S-type algorithm is to figure out
the method to get proper p(n), which have been studied by many
researchers [4-7]. After the detailed studies about the formalisms
suggested by the authors based on the system shown in Fig. 1, we
found that it is lack of the information on how far away the notch
frequency from the sinusoid frequency. In the Section 2, we will
introduce a new system with the piloted notches to overcome the

H(2)= @)
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disadvantage.

3. THE PILOTED NOTCHES

We shall refer to the notch presented in Fig. 1. asthe main
notch. Two piloted notches will be introduced to form a new system
asshownin Fig. 2. Here, we set one of the notch frequencies as @,

and another is @ . Specifically, ¢, ishigher than the main notch
and ¢ islower than the main notch. Furthermore, we also assume
that @ islarger than zeroand @, islessthan half sampling

frequency. Now, we construct two piloted notch filters have the
following transfer function

1+W, ()2t + 272
1+rW(n)zt+r2z2%’

H\(29) = ®)

1+W(n)z '+ 22
1+rW(n)zt+r2z% "’
Notethat H,(z) and H,(z) usethe same denominator as H(z) in

(2). This leads us to reduce the computational complexity.
Moreover, we define

W, (n) =wW(n) - a,, ™)

W (n) =W(n) +q . ®)
where a, and a, are positive values, which correspond to the
effect of @, and @ on W,(n) and W (n) . The values of a, and
a, can be pre-computed based on the piloted task required. It is
interesting to find that o, and a, need not be precise. This is

because the piloted notches are used only for estimating whether
w, is sandwiched between those of the two piloted notches. In

particular, a, and o, can be selected as a convenient power-of-2
so that e,(n) and g(n) can be obtained from that of H(z) by
simple shift-add operations; in this case, the additiona cost for
obtaining e,(n) and g (n) isminimal.

Applying (2), (7) and (8), H,(2) and H,(2) in(5) and (6) becomes

Hi(29) = (6)

_ _ a,z"
H\(2)=H(@ 1+rW(n)z** +r2z2’ ©
H(2)=H(@)+ L (10)

1+rW(n)z ™ +r?z? "’
Let e,(n) and g(n) bethetime domain outputs of the notch filters
asshown in Fig. 2. From (9) and (10), we can derive the following,
&(n =en) -ax(n-1), (11)
g(n) =e(n) +a,x(n-1) . (12)
The implementation structure for obtaining e,(n) and g(n) isalso
showninFig. 2.

4. THE ADAPTIVE PILOTED NOTCH
FILTERING ALGORITHM

As discussed above, the function of the piloted notches is to
provide an indication on whether w; is far away from or close to
the main notch frequency. Now, let’s have a close look at how the
proposed new piloted system in Fig. 2 can provide the information
on the relative position of the sinusoid frequency of y(n) and the
main notch.

To smplify the presentation, the input signal y(n) is
considered as a pure sinusoid given in (1). If we consider the notch

filter as a linear filter, from Fig. 2, x(n) is aso a sinusoid signa
with the same frequency but different amplitude and phase, which
can begiven as.
x(n) = Acos(w,n+Y) , (13)
where
A =al|H(e™)f
a2

= v (149)
(@-r)* +r(2r cosw, —W(n))(2cosw, —rw(ny)

y=p+tan™ rw(n)sinw, +r2sin2w, (14)
1+ rW(n)cosw, +r2cos2w, )
From Fig. 2, the error output e(n) can be expressed as:
o(n) = Acoswn +y) *W(moostwo(n-9+y) o

+ Acog(Wo(n=2) +Y)
Hence, the product of x(n-1)e(n) isgiven by
x(n—2)e(n) = A cos(w,(n ~1) + y)[cos(wpn +)
+W(n) cos(wy(n=1) +y) +cos(wy(n=2) +y)] . (16)
= x*(n—-1)(2cosw, +W(n))
Substituting (3) into (16), we have
x(n —1e(n) = 2x*(n —1)[cos(w,) — cos(B(n))] , 7)

From (17), we can see that x(n-De(n)>0 indicates
cos(w,) >cosg(8(n)) and then w, <8(n) . Hence, W(n) should be
decreased in the next iteration to bring 6(n) closer to wy,.
Inversely, x(n-1)e(n) <O indicates cos(w,) <cos(6(n)) and then
w, >0(n) . In this case, W(n) should be incremented in the next
iteration to bring 6(n) closer to w,. As a result, the sign of
x(n-1)e(n) provides the steer direction (the direction in which
6(n) should be changed in order to bring it nearer to w,) of the
main notch. The steer direction represents the relative position of
w, and 6(n).
Similarly, for the two notches, we get the following:

When x(n-1e,(n) >0, itindicates w, <@, ,

When x(n-1e,(n) <0, itindicates w, > @, ,

When x(n-1g(n) >0, itindicates w, <¢q ,

When x(n-1)e(n) <0, itindicates w, > @ .
The results obtained above show that the signs of x(n-21e(n),
x(n—De,(n) and x(n-2Deg(n) provide information on the relative
positions of w,, @, ,0(n), and @. Next, let's evauate some
details:
Casel: x(n-1)e(n)>0, x(n-1e,(n)>0 and x(n-1e(n)>0

In this case, we can verify that w, <@ <6(n) <@, . This means
the frequency of the sinusoid signal is very far away from the main
notch. The larger adaptation stepsize can be used to speed up the
convergence rate.
Case2: x(n-1e(n)<0, x(n-1e,(n)<0 and x(n-1)g(n) <0

In this case, it can be verified that w, >@, >6(n) >¢q . This
means the frequency of the sinusoid signal is aso very far away
from the main notch. The larger adaptation stepsize can be used to
speed up the convergencerate.
Case3: x(n-1e(n)<0 and x(n-1e,(n)>0
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In this case, it can be verified that @ <6(n) <w, <@, . This
indicates the frequency of the sinusoid signal is sandwiched
between the main notch and the higher notch. The smaller
adaptation stepsize should be used to reduce the misadjustment.
Case4: x(n-1)e(n)>0and x(n-Dg(n)<0

In this case, it can be verified that @ <w, <6(n) <@, . This
indicates the frequency of the sinusoid signa is sandwiched
between the main notch and the lower notch. The smaller adaptation
stepsize should be used to reduce the misadjustment.

From the above discussion, we can summary that when
sign(x(n-De(n)) = sign(x(n-De,(n) = sign(x(n-Dg(n), a
larger value of p(n) can be used to reduce the time required to
steer the main notch frequency to the frequency of the sinusoid.
Otherwise, p(n+1) should be chosen as smaller value to reduce the
misadjustment. Clearly, this new approach provides us an effective
method to adapt the stepsize. The proposed piloted notch LMS (P-
LMS) adgorithmisformalized in Table 1.

Table 1. Piloted Normalized LM S (P-NLMS) Algorithm

Initialization: W(3) =0, x(2) = x(2) = x(3) =0;

Iteration fromn=3... length:

x(n) = y(n) —rwW(n)x(n-1) —r’x(n-2) ;

g(n)=Ac?(n-1) +x(n)® (A isforgetting factor)

e(n) =x(n) +x(n=DHW(n) + x(n-2);

g(n) =e(n)+ax(n-1); g(n) =en) -ax(n-1);

ss = sign(e(n)x(n -1)) + sign(g, (n)x(n -1) + sign(e (N)x(n-1))
if ss==3then u(n) = _large (larger stepsize)

ese u(n) = x_small (smaller stepsize)

W(n+1) =W(n) —p(n)x(n—De(n)/o3(n)

5.  EFFECTS OF THE GAUSSIAN NOISE

So far, we just discussed the input of the adaptive notch filter is
apure sinusoid signal. If the input is corrupted by a white Gaussian
noise, the signs of x(n-1)e,(n) and x(n—-1)e(n) may not indicate
correctly whether the frequency of the input sinusoid is higher than
or lower than that of the piloted notch.

Considering the noise case, we have studied the following
topics: (1) Steer direction under Gaussian noise; (2) Probability of
producing the correct steer direction; (3) Effect of theinput SNR on
the steer direction; (4) Effect of the pole radius r on the steer
direction.

Due to the space limitation, here we just present some
conclusions drawn from the theoreticad analysis and some
simulation results (The detailswill present in another paper).

(1) Steer direction under Gaussian noise

The theoretical result shows that when |W(n)| does not
approach to zero or 2 (it means the notch frequency does not
approach to d.c. or the half sampling frequency), the average effect
dueto Gaussian noise on thesign of x(n—1)e(n) can beignored.
(2) Probability of producing the correct steer direction

We study the probability that the sign of x(n-1)e(n),

X(n-De,(n) and x(n-1g(n) can provide the correct steer
direction for the main notch. As one of the example, Fig. 4 shows
that the probability that sign(x(n-2)e(n)) gives the correct steer

direction as a function of notch position 6(n). Where, the
frequency w, is chosen as 0.8, the input SNR is 0 dB and the

poleradius r =0.9. The solid line curves correspond to theoretical
results. The arrays of symbols represent the results obtained from

100 independent simulation runs. It shows that the simulation
results correspond to our theoretical analysis. The curves shown in
Fig. 4 can be explained intuitively as follows. When the initial
notch frequency is far away from the frequency of the sinusoid, the
signal is swamped by noise. The probability of obtaining a correct
steer direction is low. As the notch moves toward the sinusoid, the
probability of producing a correct steer direction increases.
However, when the notch position is very near to the frequency of
the sinusoid, because of the parabolic nature of the performance
surface of the objective function, the probability of producing a
correct steer direction becomes low again. It is interesting to note
that the probability of producing a correct steer direction is larger
than 0.45, i.e,, it is always better than arandom guess.
(3) Effect of theinput SNR on the steer direction

By fixing the input sinusoid frequency w;, the notch position
6(n) and the pole radius r , we find that when the input SNR is
low, i.e., the input signa is too noisy, the steer direction becomes
less accurate as an indicator of the position of the frequency of the
input sinusoid.
(4) Effect of thepoleradius r on the steer direction

From the theoretical analysis and simulation results, we note
that the closer are the poles of the notch filter to the unit circle, the
lower is the probability that the steer direction points to the correct
direction when 6(n) #w,. This is because, when 6(n) # w,, the
noise component near the pole is greatly enhanced if the pole is
very close to the unit circle. This implies that a smaller pole radius
will result in a better estimate for the steer direction, which in turn
will result in a faster convergence speed of the notch filter.
However, it is known that smaller pole radius will cause bad steady
state performance [3]. There is a compromise of the choice of the r
to obtain the faster convergence as well as smaller misadjustment.

6. SIMULATION RESULTS

A simulation has been done to demonstrate the performance of
the proposed piloted notch filter in tracking the frequency of a
sinusoid contaminated by white Gaussian noise. The result is
compared with a conventional notch filter with only the main notch
algorithm using the LM S and the NLM S algorithms [2]. The NLMS
algorithm can be taken as the time-varying stepsize algorithm. The
input SNR is 3 dB, the input sinusoid frequency is abruptly
switched every 3000 iterations. As an example, the input
frequencies are set as [0.377,0.677,0.377] =[0.942,1.885,0.942] , the
poleradius r is0.9; For the LMS algorithm [2], the stepsize used is
0.003; For the NLMS [2], A is0.95, the stepsize is ¢'=0.5. For
the P-NLMS agorithm, @, =a, =0.125=2"2, u_large=3u' and
M _small = 4", The smulation results over 100 runs are shown in
Fig. 5. To get the fair comparison, the convergence misadjustment
for three algorithms reaches the same level. From Fig. 5., we can
see that the initial convergence of the NLMS and P-NLMS
algorithms are 200 and 130 iterations, respectively. Similarly, the
tracking convergence of the NLMS and P-NLMS agorithms is 400
and 200 iterations, respectively. The P-LMS agorithm is much
superior to the NLMS agorithm. Obviously, the P-NLMS is much
faster than the conventional non-pilot LM S algorithm. It is expected
that the larger stepsize can be used to improve the convergence
speed if the steer direction by the pilot notches can be accurately
indicated. It is noted that there is possibility that the pilot notches
will indicate the wrong steer direction due to the noise even after
the convergence. The incorrect indication of the steering direction
will cause the increase of the misadjustment due to the possible use
of the big stepsize. However, this problem can be solved by adding
more pilot notches to guide the steering direction more precisaly.
Therefore, the performance of the P-NLMS a gorithm and piloted
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notch filter could be further improved by using more step-sizes.

7. CONCLUSION

In this paper, a brand-new concept in designing the variable
step-size adaptation algorithm has been introduced. Specificaly, we
proposed a piloted notch filter structure consisting of a main notch
and two piloted notches. We have shown that the piloted notch filter
gives a more accurate estimate on the steer direction of the notch
filter. The piloted notches are very useful in providing information
on whether the frequency of the input sinusoid is far away from the
notch frequency of the main notch. This information can be used to
design a variable step-size algorithm at very low price of additional
computational complexity. The performance of the piloted notch
filter can be further improved by using more piloted and more step
sizes.
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