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 In this paper, we propose a new adaptive system where the main 
zero of the notch filter is sandwiched between two piloted zeros. 
The gradient of the cost function provides information on the 
direction that the main zero should be steered towards the input 
sinusoid frequency. The piloted zeros are used to provide an 
indication on the distance between the frequency of the sinusoid and 
the zero location of the main notch filter. This information is used 
to control the adaptive step-size, for fast convergence if the 
frequency of the sinusoid is far away from the main zero of the 
notch and for small misadjustment if that distance is small. The 
technique is very effective for locking on frequencies, which are 
neither very close to dc nor very close to half sampling frequency. 
The complexity of the piloted filter is compatible to the 
conventional normalized LMS (NLMS) notch filter. 
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 In the LMS based adaptive notch filter [1-3], the notch 
frequency is updated every sampling instance and eventually 
converges to the frequency of the input sinusoid. The convergent 
rate and the misadjustment are influenced by the adaptation step-
size [2]. A larger adaptation step-size will result in a faster 
convergent rate but will yield a larger misadjustment. Ideally, a 
large step-size should be used when the distance between the zero 
of the notch and the frequency of the sinusoid is large in order to 
improve the convergent rate. A small step-size should be employed 
if the zero of the notch has converged to the vicinity of the 
frequency of the sinusoid. As a consequence, a variable step-size 
(VS) algorithm will outperform a fixed step-size algorithm if 
appropriate step-sizes are obtainable. Several techniques for 
obtaining good estimates of step-sizes have been reported in the 
literature to support the variable step-size LMS algorithms [4-10]. 
All these algorithms derive the step-size based on the prediction 
errors at several time instances (i .e. time domain averaging). 
 Harris et al [4] suggested a method, which makes use of the 
sign change between consecutive gradient estimates to determine 
the step-size. Mathews and Xie [5] proposed using the product of 
consecutive gradient estimates to update the step-size. The step-size 
may also be made a function of the gradient estimate. Let ( )n∇  
denotes the lowpass filtered value of the gradient estimate at time 
n . The step-size can be made proportional to the magnitude of 

( )n∇  or to an exponential function of the magnitude of ( )n∇ . This 
approach has been adopted by Karni [6] and Shan [7]. 
 In this paper, we propose a brand-new adaptive system 
consisting of three notches, namely, a main notch and two piloted 
notches. The main notch frequency is sandwiched between the two 
piloted notch frequencies. The piloted notches are used to provide 
an indication on whether the distance between the frequency of the 
sinusoid and the zero of the main notch is large. If the frequency of 
the sinusoid is sandwiched between the zeros of the two piloted 
notches, i.e., if it is lower than the frequency of the zero with the 
higher notch frequency but higher than that with the lower notch 
frequency, the signs of the gradient estimates for the two piloted 

notches will point in opposite directions. This situation can be 
detected by examining the signs of the gradient estimates of the 
three notches. If they are not all equal, it is taken as an indication 
that the frequency of the sinusoid is sandwiched between the zeros 
of the two piloted notches; a smaller step-size is preferred. If all the 
signs of the gradient estimates are the same, a larger step-size can 
be employed. 
 This paper is organized as follows. Presented in Section 2 is a 
very brief description of the adaptive notch filter for the purpose of 
defining notations. The concept of the piloted notches is presented 
in Sections 3. In Section 4, we discuss the details about the steer 
directions obtained by the notches when the input signal is a noise 
free pure sinusoid and how to use this information to derive an 
adaptive piloted normalized least mean square (P-NLMS) notch 
filtering algorithm. The effects on the steer directions when the 
input consists of a sinusoid contaminated with white noise are 
concisely discussed in Sections 5. Computer simulation results 
demonstrating the superiority of the piloted notch filter are shown in 
Section 6. 
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 A second order direct form IIR adaptive notch filter consists of 
a pole followed by a zero, which is configured in Fig. 1. In Fig. 1, 

( )W n  is the adjustable weight of the notch filter at time n  with 

limitation as 2 ( ) 2W n− < < . ( )x n  is the notch filter’s state. ( )e n  
is the output of the notch filter. Pole radius r  is a positive constant 
less than one. It indicates the bandwidth of the notch filter, also 
gives the information about the distance of the pole from the origin. 
To simplicity the presentation, ( )y n  is considered as a single 
sinusoid of the form  
 0( ) sin( )y n a w n β= + ,  (1) 

where 0w  is the frequency of the sinusoid input signal, β  is a phase 

constant and a is the magnitude of the input. The transfer function 
of the notch filter, ( )H z , is given by [2] 
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The notch frequency ( )nθ  at time n  is given by [2]  

 ( )1( ) cos ( ) / 2n W n−θ = − . (3) 

Most popular adaptive algorithms for adapting ( )W n  are called the 
least mean squared (LMS-type) algorithms, which can be shown as 

 ( 1) ( ) 2 ( ) ( 1) ( )W n W n n x n e n+ = − µ − , (4) 

where ( )nµ  is the time-varying step-size at time n .  
 The main challenge in the LMS-type algorithm is to figure out 
the method to get proper ( )nµ , which have been studied by many 
researchers [4-7]. After the detailed studies about the formalisms 
suggested by the authors based on the system shown in Fig. 1, we 
found that it is lack of the information on how far away the notch 
frequency from the sinusoid frequency. In the Section 2, we will 
introduce a new system with the piloted notches to overcome the 
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disadvantage. 
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 We shall refer to the notch presented in Fig. 1. as the main 
notch. Two piloted notches will be introduced to form a new system 
as shown in Fig. 2. Here, we set one of the notch frequencies as hφ  

and another is lφ . Specifically, hφ  is higher than the main notch 

and lφ  is lower than the main notch. Furthermore, we also assume 

that lφ  is larger than zero and hφ  is less than half sampling 

frequency. Now, we construct two piloted notch filters have the 
following transfer function  
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Note that ( )hH z  and ( )lH z  use the same denominator as ( )H z  in 

(2). This leads us to reduce the computational complexity. 
Moreover, we define 
 ( ) ( )h hW n W n= − α , (7) 

 ( ) ( )l lW n W n= + α . (8) 

where hα  and lα  are positive values, which correspond to the 

effect of hφ  and lφ  on ( )hW n  and ( )lW n . The values of hα  and 

lα  can be pre-computed based on the piloted task required. It is 

interesting to find that hα  and lα need not be precise. This is 

because the piloted notches are used only for estimating whether 

0w  is sandwiched between those of the two piloted notches. In 

particular, hα  and lα  can be selected as a convenient power-of-2 

so that ( )he n  and ( )le n  can be obtained from that of ( )H z  by 

simple shift-add operations; in this case, the additional cost for 
obtaining ( )he n  and ( )le n  is minimal. 

Applying (2), (7) and (8), ( )hH z  and ( )lH z  in (5) and (6) becomes 

 
1

1 2 2
( ) ( )  

1 ( )
h

h

z
H z H z

rW n z r z

−

− −

α= −
+ +

, (9) 

 
1

1 2 2
( ) ( )  

1 ( )
l

l

z
H z H z

rW n z r z

−

− −

α= +
+ +

. (10) 

Let ( )he n  and ( )le n  be the time domain outputs of the notch filters 

as shown in Fig. 2. From (9) and (10), we can derive the following, 
 ( ) ( ) ( 1)h he n e n x n= − α − , (11) 

 ( ) ( ) ( 1)l le n e n x n= + α − . (12) 

The implementation structure for obtaining ( )he n  and ( )le n  is also 

shown in Fig. 2. 
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 As discussed above, the function of the piloted notches is to 
provide an indication on whether 0w  is far away from or close to 

the main notch frequency. Now, let’s have a close look at how the 
proposed new piloted system in Fig. 2 can provide the information 
on the relative position of the sinusoid frequency of ( )y n  and the 
main notch. 
 To simplify the presentation, the input signal ( )y n  is 
considered as a pure sinusoid given in (1). If we consider the notch 

filter as a linear filter, from Fig. 2, ( )x n  is also a sinusoid signal 
with the same frequency but different amplitude and phase, which 
can be given as:  
 0( ) cos( )x n A w n= + γ , (13) 

where 

 02 2 2| ( ) |jwA a H e=  

      
2

2 2
0 0(1 ) (2 cos ( ))(2cos ( ))

a

r r r w W n w rW n
=

− + − −
 (14a) 
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From Fig. 2, the error output ( )e n  can be expressed as: 

 0 0

0

( ) cos( ) ( )cos( ( 1) )

         cos( ( 2) )

e n A w n W n w n

A w n

= + γ + − + γ
+ − + γ

. (15) 

Hence, the product of ( 1) ( )x n e n−  is given by 
2

0 0

0 0

2
0

( 1) ( ) cos( ( 1) )[cos( )

                      ( )cos( ( 1) ) cos( ( 2) )]

                    ( 1)(2cos ( ))

x n e n A w n w n

W n w n w n

x n w W n

− = − + γ + γ
+ − + γ + − + γ

= − +

. (16) 

Substituting (3) into (16), we have 

 2
0( 1) ( ) 2 ( 1)[cos( ) cos( ( ))]x n e n x n w n− = − − θ , (17) 

From (17), we can see that ( -1) ( ) >0x n e n  indicates 

0cos( ) cos( ( ))w n> θ  and then 0 ( )w n< θ . Hence, ( )W n  should be 

decreased in the next iteration to bring ( )nθ  closer to 0w . 

Inversely, ( -1) ( ) <0x n e n  indicates 0cos( ) cos( ( ))w n< θ and then 

0 ( )w n> θ . In this case, ( )W n  should be incremented in the next 

iteration to bring ( )nθ  closer to 0w . As a result, the sign of 

( 1) ( )x n e n−  provides the steer direction (the direction in which 

( )nθ  should be changed in order to bring it nearer to 0w ) of the 

main notch. The steer direction represents the relative position of 

0w  and ( )nθ .  

Similarly, for the two notches, we get the following: 
 When ( 1) ( ) 0hx n e n− > , it indicates 0 hw < φ , 

 When ( 1) ( ) 0hx n e n− < , it indicates 0 hw > φ , 

 When ( 1) ( ) 0lx n e n− > , it indicates 0 lw < φ , 

 When ( 1) ( ) 0lx n e n− < , it indicates 0 lw > φ . 

The results obtained above show that the signs of ( 1) ( )x n e n− , 

( 1) ( )hx n e n−  and ( 1) ( )lx n e n−  provide information on the relative 

positions of 0w , hφ , ( )nθ , and lφ . Next, let’ s evaluate some 

details: 
Case 1: ( -1) ( ) 0x n e n > , ( 1) ( ) 0hx n e n− >  and ( 1) ( ) 0lx n e n− >  

 In this case, we can verify that 0 ( )l hw n< φ < θ < φ . This means 

the frequency of the sinusoid signal is very far away from the main 
notch. The larger adaptation stepsize can be used to speed up the 
convergence rate. 
Case 2: ( -1) ( ) 0x n e n < , ( 1) ( ) 0hx n e n− <  and ( 1) ( ) 0lx n e n− <  

 In this case, it can be verified that 0 ( )h lw n> φ > θ > φ . This 

means the frequency of the sinusoid signal is also very far away 
from the main notch. The larger adaptation stepsize can be used to 
speed up the convergence rate. 
Case 3: ( -1) ( ) 0x n e n <  and ( 1) ( ) 0hx n e n− >  
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 In this case, it can be verified that 0( )l hn wφ < θ < < φ . This 

indicates the frequency of the sinusoid signal is sandwiched 
between the main notch and the higher notch. The smaller 
adaptation stepsize should be used to reduce the misadjustment. 
Case 4: ( -1) ( ) 0x n e n > and ( 1) ( ) 0lx n e n− <  

 In this case, it can be verified that 0 ( )l hw nφ < < θ < φ . This 

indicates the frequency of the sinusoid signal is sandwiched 
between the main notch and the lower notch. The smaller adaptation 
stepsize should be used to reduce the misadjustment. 
 From the above discussion, we can summary that when 
sign( ( 1) ( ))x n e n−  = sign( ( 1) ( ))hx n e n−  = sign( ( 1) ( ))lx n e n− , a 

larger value of ( )nµ  can be used to reduce the time required to 
steer the main notch frequency to the frequency of the sinusoid. 
Otherwise, ( 1)nµ +  should be chosen as smaller value to reduce the 
misadjustment. Clearly, this new approach provides us an effective 
method to adapt the stepsize. The proposed piloted notch LMS (P-
LMS) algorithm is formalized in Table 1. 

Table 1. Piloted Normalized LMS (P-NLMS) Algorithm 
Initialization: (3) 0W = , (1) (2) (3) 0;x x x= = =  
Iteration from n=3…,length:  

2( ) ( ) ( ) ( 1) ( 2)x n y n rW n x n r x n= − − − − ; 
2 2 2( ) ( 1) ( )x xn n x nσ λσ= − +  ( λ  is forgetting factor) 

( ) ( ) ( 1) ( ) ( 2)e n x n x n W n x n= + − + − ; 

( ) ( ) ( 1)l le n e n x nα= + − ; ( ) ( ) ( 1)h he n e n x nα= − − ; 

( ( ) ( 1)) ( ( ) ( 1)) ( ( ) ( 1))h lss sign e n x n sign e n x n sign e n x n= − + − + −  

if ss==3 then ( ) _largeu n µ=  (larger stepsize) 

else ( ) _u n smallµ=  (smaller stepsize) 
2( 1) ( ) ( ) ( 1) ( ) / ( )xW n W n n x n e n n+ = − µ − σ  
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 So far, we just discussed the input of the adaptive notch filter is 
a pure sinusoid signal. If the input is corrupted by a white Gaussian 
noise, the signs of ( 1) ( )hx n e n−  and ( 1) ( )lx n e n−  may not indicate 

correctly whether the frequency of the input sinusoid is higher than 
or lower than that of the piloted notch.  
 Considering the noise case, we have studied the following 
topics: (1) Steer direction under Gaussian noise; (2) Probability of 
producing the correct steer direction; (3) Effect of the input SNR on 
the steer direction; (4) Effect of the pole radius r  on the steer 
direction. 
 Due to the space limitation, here we just present some 
conclusions drawn from the theoretical analysis and some 
simulation results (The details wil l present in another paper).  
(1) Steer direction under Gaussian noise 
 The theoretical result shows that when | ( ) |W n  does not 
approach to zero or 2 (it means the notch frequency does not 
approach to d.c. or the half sampling frequency), the average effect 
due to Gaussian noise on the sign of ( 1) ( )x n e n−  can be ignored.  
(2) Probability of producing the correct steer direction 
 We study the probability that the sign of ( 1) ( )x n e n− , 

( 1) ( )hx n e n−  and ( 1) ( )lx n e n−  can provide the correct steer 

direction for the main notch. As one of the example, Fig. 4 shows 
that the probability that sign( ( 1) ( ))x n e n−  gives the correct steer 

direction as a function of notch position ( )nθ . Where, the 

frequency 0w  is chosen as 0.8π , the input SNR is 0 dB and the 

pole radius 0.9r = . The solid line curves correspond to theoretical 
results. The arrays of symbols represent the results obtained from 

100 independent simulation runs. It shows that the simulation 
results correspond to our theoretical analysis. The curves shown in 
Fig. 4 can be explained intuitively as follows. When the initial 
notch frequency is far away from the frequency of the sinusoid, the 
signal is swamped by noise. The probability of obtaining a correct 
steer direction is low. As the notch moves toward the sinusoid, the 
probability of producing a correct steer direction increases. 
However, when the notch position is very near to the frequency of 
the sinusoid, because of the parabolic nature of the performance 
surface of the objective function, the probability of producing a 
correct steer direction becomes low again. It is interesting to note 
that the probability of producing a correct steer direction is larger 
than 0.45, i.e., it is always better than a random guess. 
(3) Effect of the input SNR on the steer direction 
 By fixing the input sinusoid frequency 0w , the notch position 

( )nθ  and the pole radius r , we find that when the input SNR is 
low, i .e., the input signal is too noisy, the steer direction becomes 
less accurate as an indicator of the position of the frequency of the 
input sinusoid.  
(4) Effect of the pole radius r  on the steer direction 
 From the theoretical analysis and simulation results, we note 
that the closer are the poles of the notch filter to the unit circle, the 
lower is the probability that the steer direction points to the correct 
direction when 0( )n wθ ≠ . This is because, when 0( )n wθ ≠ , the 

noise component near the pole is greatly enhanced if the pole is 
very close to the unit circle. This implies that a smaller pole radius 
will result in a better estimate for the steer direction, which in turn 
will result in a faster convergence speed of the notch filter. 
However, it is known that smaller pole radius will cause bad steady 
state performance [3]. There is a compromise of the choice of the r  
to obtain the faster convergence as well as smaller misadjustment. 

6. ��������
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 A simulation has been done to demonstrate the performance of 
the proposed piloted notch filter in tracking the frequency of a 
sinusoid contaminated by white Gaussian noise. The result is 
compared with a conventional notch filter with only the main notch 
algorithm using the LMS and the NLMS algorithms [2]. The NLMS 
algorithm can be taken as the time-varying stepsize algorithm. The 
input SNR is 3 dB, the input sinusoid frequency is abruptly 
switched every 3000 iterations. As an example, the input 
frequencies are set as [0.3 ,0.6 ,0.3 ] [0.942,1.885,0.942]π π π = , the 
pole radius r  is 0.9; For the LMS algorithm [2], the stepsize used is 
0.003; For the NLMS [2], λ  is 0.95, the stepsize is ' 0.5µ = . For 

the P-NLMS algorithm, 30.125 2h lα α −= = = , _large 3 'µ µ=  and 

_ 'smallµ µ= . The simulation results over 100 runs are shown in 
Fig. 5. To get the fair comparison, the convergence misadjustment 
for three algorithms reaches the same level. From Fig. 5., we can 
see that the initial convergence of the NLMS and P-NLMS 
algorithms are 200 and 130 iterations, respectively. Similarly, the 
tracking convergence of the NLMS and P-NLMS algorithms is 400 
and 200 iterations, respectively. The P-LMS algorithm is much 
superior to the NLMS algorithm. Obviously, the P-NLMS is much 
faster than the conventional non-pilot LMS algorithm. It is expected 
that the larger stepsize can be used to improve the convergence 
speed if the steer direction by the pilot notches can be accurately 
indicated. It is noted that there is possibility that the pilot notches 
will indicate the wrong steer direction due to the noise even after 
the convergence. The incorrect indication of the steering direction 
will cause the increase of the misadjustment due to the possible use 
of the big stepsize. However, this problem can be solved by adding 
more pilot notches to guide the steering direction more precisely. 
Therefore, the performance of the P-NLMS algorithm and piloted 
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notch filter could be further improved by using more step-sizes.  

7. �
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 In this paper, a brand-new concept in designing the variable 
step-size adaptation algorithm has been introduced. Specifically, we 
proposed a piloted notch filter structure consisting of a main notch 
and two piloted notches. We have shown that the piloted notch filter 
gives a more accurate estimate on the steer direction of the notch 
filter. The piloted notches are very useful in providing information 
on whether the frequency of the input sinusoid is far away from the 
notch frequency of the main notch. This information can be used to 
design a variable step-size algorithm at very low price of additional 
computational complexity. The performance of the piloted notch 
filter can be further improved by using more piloted and more step 
sizes.  
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Fig. 4. Probability of sign[ ( 1) ( )]x n e n−  producing the correct 

estimate of the steer direction vs notch position plot. 
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Fig. 1.The structure of an IIR adaptive notch filter 
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Fig. 2. The pole-zero positions of the piloted notch filter. 
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Fig. 3. Piloted notch filter. If  hα  and lα  are integer power-of-two, 

the additional cost for obtaining ( )he n  and ( )le n  is 

minimal.  

 
Fig. 5. Convergence performance of the estimated frequencies and 

the means squared error (MSE), which is defined as 
2

10
ˆ( ) 10log ([ ( ) ] )iMSE n f n f= −          
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