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ABSTRACT end of the signal, see e.g. [9]). Cvetkoe al. prove in [8] that

In several applications such as denoising, when signal expansiorPerfec_t reconstruction oversampled filter banks are equivalent to
is not crucial, oversampled filter banks may outperform critically & particular class of frames i (Z). Some work has also been
decimated filter banks. We study the performance of the reCent|yperf0rmed_on the existence on ur_m‘orm filter banks Wlth_ratlonal
proposed GLPBT (Generalized Lapped Pseudo-Biorthogonal Tran8versampling [10]. Oversampled filter banks generally enjoy some
form), a class of oversampled filter banks, on noise removal in MProvements over critically sampled ones. They become closer
seismic data, using controlled redundancy. We also investigate!© Shift invariant as the sampling ratio approaches unity. Associ-
heuristics for the choice of an optimal threshold, which appears ated with appropriate cogfﬂuent sglectlon techniques, they should
to depend non-trivially on the noise variance. Tests indicate thatgenerally be more effective for noise removal, less prone to spu-

carefully designed oversampled filter banks are able to outpen‘ormri_Ous artifacts such as pseudo-Gibbs phenomena in the vicinity of
critically sampled ones. discontinuities. They also allow a more flexible design of the filter

coefficients, for instance in the frequency selectivity.

1. INTRODUCTION Unfortunately, denoising results with filter banks for sample
signals or natural images don't often exhibit improvements com-
The purpose of this paper is to study noise removal in seismic parable to those obtained from decimated to undecimatactlet
signals by thresholding output coefficients of oversampled filter shrinkage. We investigate here noise removal in seismic data using
banks. the recently proposed (by one of the authors, [11]) lattice structure
The theory of filter banks has been primarily confined to the based design for the “Generalized Lapped Pseudo-Biorthogonal
critically sampled case, for instance orthonormal or biorthonor- Transform”, or GLPBT. GLBPT is a class of oversampled filter
mal bases ifl»(Z) [1]. The main advantage of this case is the banks. We first briefly review the main properties of the GLPBT
non-expansive number of coefficients, which is often useful for and the settings of the filter banks used in this study in Section 2.
compression purposes. In many other situations, there is no cleaiThe denoising method, based on classical shrinkage in the trans-
evidence that a projection, onto an ortho- or a biorthonormal basis,form domain, is explained in Section 3. Results on seismic signals
is the best suited signal representation. Such an observation haare detailed in Section 4, with an emphasis on heuristics for the
been made for instance for noise reduction in [2]. Following the optimal threshold choice.
non-linear noise reduction techniques proposed by D. Donoho in
[3], M. Lang et al. proposed to make theavelet transform in-
variant to integer shifts [4], resulting in greater noise robustness.
They also report the successful application of the former scheme
to geophysical data, as in [5]. Beyond traditiomalvelets, it was
shown in a limited scope in [6] that maximally decimated parau-
nitary M-channel filter banks were capable of outperforming dis- -
cretewavelets for seismic data compression but also for denoising
purposes. 3
The technique in [2] was later extended to undecimatadkelet P z
packets [7]. The penalty was paid by increasing computational I
complexity and memory requirements. Discretavelets form
a subset of the filter bank theory. The theory of more general
oversampled filter banks was recently extensively explored, for in-
stance in [8]. Figure 1 shows alW-band filter bank uniformly
decimated by a factor aV. The limit M = N yields the crit-
ically sampled case. Oversampling occurs when the number ofFig. 1. Block diagram of the polyphase matrices of a processing
bandsM is greater then the decimation factr In other words, system based on & -band filter bank withV sampling ratio.
the filter bank outputs in averade /N more coefficients than are
present in the input signal (disregarding the usual extention at the
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e the GLPBT covers a very wide range of filter banks in-

° . . ” o, ° cluding maximally decimated (critical sampled) parauni-
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e o i tary FB, PR FB, and oversampled pseudo-orthogonal FB.
5 s n = 5 s m = It is a natural extension of the conventional FB with lattice
No. 2 No. 3
05 0s structures.
0 .....,T“T,..... 0 o-'.’ﬂﬁ"".n e it is represented by lattice structures.The only parameters
-05 -05 to be determined are plain rotation angles and positive di-
° 5 Noald 15 0 5 Nost * agonal entries. The lattice structure results in a fast imple-
08 . . 08 v e e e mentation and objective driven (i.e. coding gain, frequency
U ECAPRPACTAFRIRARY oree® P T T T e attenuation,. .. ) optimized filter coefficients. It should
‘“-50 : - - o 50 : - - be noted that coding gain for design of oversampled filter
s e . el banks is slightly different from that of critically decimated
e ® e oo ) filter banks, when/ < N.
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o5 os e though the proposed structure is not complete, it contains
0 5 10 15 0 5 10 15 the minimal number of delays.

(a) Impulse responses for the analysis GLPBT1 FB. e the noise robust GLPBT proposed in [11] possesses a noise
No.o No.1 suppression function for additive noise in the transform do-
main. This property will not be addressed throughout this

-20/\/\ -20 m work.
-0 [N\ -0 There are some advantages in choosing the more geheral
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channel FB class, since there is generally more freedom in the
design parameters. The GLPBT are used here in a similar fashion
as proposed in [2] for undecimated discret@velet tranforms, as
show in Section 3.

/\[ 2.2. FILTER BANK SETTINGS
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02 Odo 06 08 1 0 02 0dNo06 08 1 The filter banks used in this study are defined as follows:
g o T o
“720 “720 e LOT8x2 is a Malvar's LOT (Lapped Orthogonal Tranform,
/\ see [12]) with 8 channels and 16 coefficients. It is a crit-
% 02 g o6 05 1 0 %G o6 05 1 ically sampled lapped orthogonal transform. It is repre-
(b) Frequency responses for the analysis GLPBT1 FB. ?aetriw;id in Figures by a simple line, with no particular deco-
e GLPBT1and GLPBT2 represent generalized lapped pseudo-
Fig. 2. Design exemple for a coding gain optimized 8-ch., 16- biorthogonal transforms, optimized for coding gain and fre-
length, 2-OSF GLPBT, GLPBT1. guency attenuation respectively. They also possess 8 chan-

nels and 16 coefficients but are perfect reconstruction FB
with a sampling rate of 4 (instead of 8). Their performances

2. THEORY AND FILTER SETTINGS are represented in figures by x- and o-decorated lines re-
spectively.

21. GLPBT STRUCTURESAND PROPERTIES In legends, the subscript refers to the oversampling factor (OSF),

Let us consider a/-channel,N decimation factor system of filter ~ given with respect to the number of channels, used for denoising.
banks. LetE(z) (of size M x N) andR(z) (of size N x M) For instance, a OSF subscript of 8, as in LOT8x®rresponds to

be the polyphase matrices of the analysis and the sysnthesis bani& non-decimated FB. The impulse filter and frequency responses
respectively. The system provides perfect reconstruction with zero0f the GLPBT1, optimized for coding gain are represented in Fig.
delay if and only if: 2.

R(2)E(z) = I, 3. METHOD

whereIy is the identity matrix. The system is called pseudo- The noisy signal is transformed with each filter bank, the OSF
biorthogonal wherR(z) = E*(2~'), pseudo-orthogonal other-  (oversampling factor) being taken from the §8t4, 2}. The later
wise. choice ensures a perfect reconstruction of the data in the absence
The Generalized Lapped Pseudo-Biorthogonal class of filter of processing between the analysis and the synthesis filter bank.
banks (GLPBT) used in this study also satisfy the linear phase Since we may choose the OSF in the divisors of the number of
properties. We refer to [1] for explanations on polyphase matrices, channels (e.g. 8), the general filter bank setting allows some more
perfect reconstruction and linear phase and to [8, 11] for details ondegrees of freedom over theavelet case, where the OSF choice

oversampled filterbanks. is limited to 1 or 2.
The key properties that are of potential interest for denoising The proposed denoising method relies heavily on Donoho’s
are: thresholding methods. The two most frequently used methods are:
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¢ soft-thresholding: it takes the coefficient and shrinks it
toward zero with respect to the threshejéccording to the
function

ST(c) = sign(c) - max (|c| —¢,0),

¢ hard-thresholding: it discards every coefficient smaller than
the threshold,

HT(c) = ¢~ 1{|¢| < t},

where1{-} is the set characteristic function.

The results exposed in this works are based on the soft-threshold o

rule for theorical near-optimality reasons [3] as well as the rel-
atively smooth nature of seismic signals, as compared to natural
images.

In general, the associated synthesis filter bank is not unique. In
this study, the thresholded coefficients are transforms back to the
time domain using the most straightforward synthesis filter bank,
based on a pseudo-inverse matrix.

The optimum threshold factor (the one which yields maximum
SNR) varies for each filter bank, making the optimal threshold se-
lection difficult. Nevertheless, at the chosen SNR, the two GLPBT
maxima exceed the LOT maximum. As a result, we may expect
some improvements using structurally enforced oversampled filter
banks.

The three graphs also show that the denoising performance
increases with the oversampling factor: more redundancy induces
better noise attenuation for all transforms.
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S SR : ‘ Fig. 4. Threshold selection depending on the oversampling factor,
for an initial SNR of 26.7 dB.

We now focus on the choice of the threshold. Figure 5 rep-
resentsa?™ as a function of the initial noise variance. The main
purpose was to try to derive some heuristics for optimum threshold
) ) o ) ) ) selection. We note that the LOT and GLPBT1 still exhibits similar
_ In the first experiment, the original signal-noise ratio (SNR) penavior. Hence, a good threshold for GLPBT1 could be derived
is set to 25.7 dB. The noise varianaé is assumed known. ItiS  from that for the LOT. Unfortunately, the threshold factor behav-
the case in seismic under the additive noise assumption: seismigoy does not show except that it globally increases with the noise
signals generally have low activity (i.e. no signal) at both ends. yariance, while we expected a constant function, in similarity to
Since we don't have estimates of an optimal threshold, the selectech ponoho universal threshold [3]. This point will be subject to
thresholdt is first reported as a “linear” function of. t = a, - 0. further investigations.

The terma,, is refered to the “threshold factor” in the following. Figure 6 provides empirical evidence that, once the optimal
We would like to investigate its behavior, depending on the chosenreshold is found, GLPBT are capable of global SNR improve-
filter bank, the sampling ratio and the noise variance. ments (in dB) over the LOT, on a wide range of initial SNRs. Given

Figure 5 represents the threshold faetoron the x-axis, with e injtial SNR, Figure 6 represents the amout of optimal improve-
the resulting SNR after inverse transform on the y-axis. Each mentwe can get from oversampled filter banks. The Coding Gain
graph is related to a different OSF (from top to bottom, 8, i.e. un- ghtimized GLPBT clearly performs better at higher SNR (above
decimated, 4 and 2). From Fig. 5, we see that GLPBT1 exhibit a 5 gB initial SNR), with about +0.3 dB in average. The Frequency

behavior similar to that of the LOT, with in average +0.3 dB SNR - attenuation optimized GLPBT is superior for lower SNRs (below
improvement. 20 dB).

The optimalx,, is defined as:

% = argmax {SNR(t(0))}.

Fig. 3. Example of seismic trace and its noisy version.
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the noise standard deviation

5. CONCLUSIONS

We have performed noise removal in seismic signals using over- [g]
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Fig. 6. SNR improvement of the GLPBT over Malvar's LOT.

[5] X.G. Miao and S. Cheadle, “Noise attenuation withvelet

sampled Generalized Lapped Pseudo-Biothorgonal transforms. The
results are limited in scope, since we did not delt with thresholding
coefficients in the transform domain with scale-band dependent

thresholds and suggested in [7]. More involved powerful statisti- [
cal techniques (e.g. based on Hidden Markov Models) also deserve

further investigations. We nevertheless have shown that controlled
redundancy is desirable, and that GLPBT are able to outperform
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redundancy. Future work will deal with other designs as well as

applications to natural images.
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