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ABSTRACT

In several applications such as denoising, when signal expansion
is not crucial, oversampled filter banks may outperform critically
decimated filter banks. We study the performance of the recently
proposed GLPBT (Generalized Lapped Pseudo-Biorthogonal Trans-
form), a class of oversampled filter banks, on noise removal in
seismic data, using controlled redundancy. We also investigate
heuristics for the choice of an optimal threshold, which appears
to depend non-trivially on the noise variance. Tests indicate that
carefully designed oversampled filter banks are able to outperform
critically sampled ones.

1. INTRODUCTION

The purpose of this paper is to study noise removal in seismic
signals by thresholding output coefficients of oversampled filter
banks.

The theory of filter banks has been primarily confined to the
critically sampled case, for instance orthonormal or biorthonor-
mal bases in����� [1]. The main advantage of this case is the
non-expansive number of coefficients, which is often useful for
compression purposes. In many other situations, there is no clear
evidence that a projection, onto an ortho- or a biorthonormal basis,
is the best suited signal representation. Such an observation has
been made for instance for noise reduction in [2]. Following the
non-linear noise reduction techniques proposed by D. Donoho in
[3], M. Lang et al. proposed to make thewavelet transform in-
variant to integer shifts [4], resulting in greater noise robustness.
They also report the successful application of the former scheme
to geophysical data, as in [5]. Beyond traditionalwavelets, it was
shown in a limited scope in [6] that maximally decimated parau-
nitary� -channel filter banks were capable of outperforming dis-
cretewavelets for seismic data compression but also for denoising
purposes.

The technique in [2] was later extended to undecimatedwavelet
packets [7]. The penalty was paid by increasing computational
complexity and memory requirements. Discretewavelets form
a subset of the filter bank theory. The theory of more general
oversampled filter banks was recently extensively explored, for in-
stance in [8]. Figure 1 shows an� -band filter bank uniformly
decimated by a factor of� . The limit � � � yields the crit-
ically sampled case. Oversampling occurs when the number of
bands� is greater then the decimation factor� . In other words,
the filter bank outputs in average��� more coefficients than are
present in the input signal (disregarding the usual extention at the

end of the signal, see e.g. [9]). Cvetkovi´c et al. prove in [8] that
perfect reconstruction oversampled filter banks are equivalent to
a particular class of frames in�����. Some work has also been
performed on the existence on uniform filter banks with rational
oversampling [10]. Oversampled filter banks generally enjoy some
improvements over critically sampled ones. They become closer
to shift invariant as the sampling ratio approaches unity. Associ-
ated with appropriate coefficient selection techniques, they should
generally be more effective for noise removal, less prone to spu-
rious artifacts such as pseudo-Gibbs phenomena in the vicinity of
discontinuities. They also allow a more flexible design of the filter
coefficients, for instance in the frequency selectivity.

Unfortunately, denoising results with filter banks for sample
signals or natural images don’t often exhibit improvements com-
parable to those obtained from decimated to undecimatedwavelet
shrinkage. We investigate here noise removal in seismic data using
the recently proposed (by one of the authors, [11]) lattice structure
based design for the “Generalized Lapped Pseudo-Biorthogonal
Transform”, or GLPBT. GLBPT is a class of oversampled filter
banks. We first briefly review the main properties of the GLPBT
and the settings of the filter banks used in this study in Section 2.
The denoising method, based on classical shrinkage in the trans-
form domain, is explained in Section 3. Results on seismic signals
are detailed in Section 4, with an emphasis on heuristics for the
optimal threshold choice.
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Fig. 1. Block diagram of the polyphase matrices of a processing
system based on a� -band filter bank with� sampling ratio.
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(a) Impulse responses for the analysis GLPBT1 FB.
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(b) Frequency responses for the analysis GLPBT1 FB.

Fig. 2. Design exemple for a coding gain optimized 8-ch., 16-
length, 2-OSF GLPBT, GLPBT1.

2. THEORY AND FILTER SETTINGS

2.1. GLPBT STRUCTURES AND PROPERTIES

Let us consider a� -channel,� decimation factor system of filter
banks. Let���� (of size� � � ) and���� (of size� � � )
be the polyphase matrices of the analysis and the sysnthesis banks
respectively. The system provides perfect reconstruction with zero
delay if and only if:

�������� � �� �

where �� is the identity matrix. The system is called pseudo-
biorthogonal when���� � �

� �����, pseudo-orthogonal other-
wise.

The Generalized Lapped Pseudo-Biorthogonal class of filter
banks (GLPBT) used in this study also satisfy the linear phase
properties. We refer to [1] for explanations on polyphase matrices,
perfect reconstruction and linear phase and to [8, 11] for details on
oversampled filterbanks.

The key properties that are of potential interest for denoising
are:

� the GLPBT covers a very wide range of filter banks in-
cluding maximally decimated (critical sampled) parauni-
tary FB, PR FB, and oversampled pseudo-orthogonal FB.
It is a natural extension of the conventional FB with lattice
structures.

� it is represented by lattice structures.The only parameters
to be determined are plain rotation angles and positive di-
agonal entries. The lattice structure results in a fast imple-
mentation and objective driven (i.e. coding gain, frequency
attenuation,� � � ) optimized filter coefficients. It should
be noted that coding gain for design of oversampled filter
banks is slightly different from that of critically decimated
filter banks, when� � � .

� though the proposed structure is not complete, it contains
the minimal number of delays.

� the noise robust GLPBT proposed in [11] possesses a noise
suppression function for additive noise in the transform do-
main. This property will not be addressed throughout this
work.

There are some advantages in choosing the more general� -
channel FB class, since there is generally more freedom in the
design parameters. The GLPBT are used here in a similar fashion
as proposed in [2] for undecimated discretewavelet tranforms, as
show in Section 3.

2.2. FILTER BANK SETTINGS

The filter banks used in this study are defined as follows:

� LOT8x2 is a Malvar’s LOT (Lapped Orthogonal Tranform,
see [12]) with 8 channels and 16 coefficients. It is a crit-
ically sampled lapped orthogonal transform. It is repre-
sented in Figures by a simple line, with no particular deco-
ration.

� GLPBT1 and GLPBT2 represent generalized lapped pseudo-
biorthogonal transforms, optimized for coding gain and fre-
quency attenuation respectively. They also possess 8 chan-
nels and 16 coefficients but are perfect reconstruction FB
with a sampling rate of 4 (instead of 8). Their performances
are represented in figures by x- and o-decorated lines re-
spectively.

In legends, the subscript refers to the oversampling factor (OSF),
given with respect to the number of channels, used for denoising.
For instance, a OSF subscript of 8, as in LOT8x2�, corresponds to
a non-decimated FB. The impulse filter and frequency responses
of the GLPBT1, optimized for coding gain are represented in Fig.
2.

3. METHOD

The noisy signal is transformed with each filter bank, the OSF
(oversampling factor) being taken from the set��� �� ��. The later
choice ensures a perfect reconstruction of the data in the absence
of processing between the analysis and the synthesis filter bank.
Since we may choose the OSF in the divisors of the number of
channels (e.g. 8), the general filter bank setting allows some more
degrees of freedom over thewavelet case, where the OSF choice
is limited to 1 or 2.

The proposed denoising method relies heavily on Donoho’s
thresholding methods. The two most frequently used methods are:
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� soft-thresholding: it takes the coefficient	 and shrinks it
toward zero with respect to the threshold
, according to the
function

ST�	� � sign�	� ���	 ��	� � 
� 
� �

� hard-thresholding: it discards every coefficient smaller than
the threshold
,

HT�	� � 	 � ���	� � 
��

where���� is the set characteristic function.

The results exposed in this works are based on the soft-threshold
rule for theorical near-optimality reasons [3] as well as the rel-
atively smooth nature of seismic signals, as compared to natural
images.

In general, the associated synthesis filter bank is not unique. In
this study, the thresholded coefficients are transforms back to the
time domain using the most straightforward synthesis filter bank,
based on a pseudo-inverse matrix.

4. RESULTS

The test data has been obtained from a reflection seismic survey in
Louisana. The signal originates typically from an accelerometer
sensor recording the vibration from a distance of a vibrating or ex-
plosive source. Seismic events crudely correspond to the arrival of
reflectedwaves insubsurface layers. Seismic signals are generally
non-stationary.
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Fig. 3. Example of seismic trace and its noisy version.

In the first experiment, the original signal-noise ratio (SNR)
is set to 25.7 dB. The noise variance�� is assumed known. It is
the case in seismic under the additive noise assumption: seismic
signals generally have low activity (i.e. no signal) at both ends.
Since we don’t have estimates of an optimal threshold, the selected
threshold
 is first reported as a “linear” function of�: 
 � �� � �.
The term�� is refered to the “threshold factor” in the following.
We would like to investigate its behavior, depending on the chosen
filter bank, the sampling ratio and the noise variance.

Figure 5 represents the threshold factor�� on the x-axis, with
the resulting SNR after inverse transform on the y-axis. Each
graph is related to a different OSF (from top to bottom, 8, i.e. un-
decimated, 4 and 2). From Fig. 5, we see that GLPBT1 exhibit a
behavior similar to that of the LOT, with in average +0.3 dB SNR
improvement.

The optimal�� is defined as:

�opt
� � argmax��SNR�
������

The optimum threshold factor (the one which yields maximum
SNR) varies for each filter bank, making the optimal threshold se-
lection difficult. Nevertheless, at the chosen SNR, the two GLPBT
maxima exceed the LOT maximum. As a result, we may expect
some improvements using structurally enforced oversampled filter
banks.

The three graphs also show that the denoising performance
increases with the oversampling factor: more redundancy induces
better noise attenuation for all transforms.
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Fig. 4. Threshold selection depending on the oversampling factor,
for an initial SNR of 26.7 dB.

We now focus on the choice of the threshold. Figure 5 rep-
resents�opt

� as a function of the initial noise variance. The main
purpose was to try to derive some heuristics for optimum threshold
selection. We note that the LOT and GLPBT1 still exhibits similar
behavior. Hence, a good threshold for GLPBT1 could be derived
from that for the LOT. Unfortunately, the threshold factor behav-
ior does not show except that it globally increases with the noise
variance, while we expected a constant function, in similarity to
D. Donoho universal threshold [3]. This point will be subject to
further investigations.

Figure 6 provides empirical evidence that, once the optimal
threshold is found, GLPBT are capable of global SNR improve-
ments (in dB) over the LOT, on a wide range of initial SNRs. Given
the initial SNR, Figure 6 represents the amout of optimal improve-
ment we can get from oversampled filter banks. The Coding Gain
optimized GLPBT clearly performs better at higher SNR (above
20 dB initial SNR), with about +0.3 dB in average. The Frequency
Attenuation optimized GLPBT is superior for lower SNRs (below
20 dB).
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Fig. 5. Behavior of the optimum threshold factor as a function of
the noise standard deviation�.

5. CONCLUSIONS

We have performed noise removal in seismic signals using over-
sampled Generalized Lapped Pseudo-Biothorgonal transforms. The
results are limited in scope, since we did not delt with thresholding
coefficients in the transform domain with scale-band dependent
thresholds and suggested in [7]. More involved powerful statisti-
cal techniques (e.g. based on Hidden Markov Models) also deserve
further investigations. We nevertheless have shown that controlled
redundancy is desirable, and that GLPBT are able to outperform
traditional maximally decimated filter banks, and that controlled
redundancy. Future work will deal with other designs as well as
applications to natural images.

6. REFERENCES

[1] G. Strang and T. Nguyen, Wavelets and Filter Banks,
Wellesley-Cambridge Press, 1996.

[2] M. Lang, H. Guo, J. E. Odegard, C. S. Burrus, and R. O.
Wells, Jr., “Noise reduction using an undecimated discrete
wavelet transform,”Signal Processing Letters, vol. 3, no. 1,
pp. 10–12, Jan. 1996.

[3] D. L. Donoho, “De-noising by soft-thresholding,”IEEE
Trans. on Inform. Theory, vol. 41, no. 3, pp. 613–627, May
1995.

[4] J.-C. Pesquet, H. Krim, and H. Carfantan, “Time invariant
orthonormal representations,”IEEE Trans. on Signal Proc.,
vol. 44, no. 8, pp. 1964–1970, 1996.

10 15 20 25 30 35 40
−0.2

0

0.2

0.4

0.6

S
N

R
 i
m

p
ro

v
.

GLPBT1
8

GLPBT2
8

10 15 20 25 30 35 40
−0.2

0

0.2

0.4

0.6

S
N

R
 i
m

p
ro

v
.

GLPBT1
4

GLPBT2
4

10 15 20 25 30 35 40
−0.2

0

0.2

0.4

0.6

S
N

R
 i
m

p
ro

v
.

Original SNR

GLPBT1
2

GLPBT2
2

Fig. 6. SNR improvement of the GLPBT over Malvar’s LOT.

[5] X. G. Miao and S. Cheadle, “Noise attenuation withwavelet
transforms,” inAnnual International Meeting. 1998, Soc. of
Expl. Geophysicists, Exp. abstracts.

[6] L. C. Duval and T. Røsten, “Filter bank decomposition of
seismic data with application to compression and denoising,”
in Annual International Meeting. 2000, pp. 2055–2058, Soc.
of Expl. Geophysicists, Exp. abstracts.

[7] H. Zhang, A. Nosratinia, C. S. Burrus, J. Tian, and R. O.
Wells, Jr., “Scale-band-dependent thresholding for signal
denoising using undecimated discretewavelet packet trans-
forms,” in Int. Symp. on Optics, Imaging, and Instrumenta-
tion, SPIE, Ed., July 1999, pp. 477–488.
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