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ABSTRACT

In thresholding method of denoising optimum threshold is
obtained as a function of additive noise variance. In practi-
cal problems, where the variance of the noise is unknown,
the £rst step is to estimate the noise variance. The estimated
noise variance is then implemented in calculation of the op-
timum threshold. The current available methods of variance
estimation are heuristic. Here, we provide a new method
for estimation of the additive noise variance. The method is
derived from a new denoising method which is proposed in
[2]. Unlike thresholding approaches the denoising method
in [2] is based on comparison of subspaces of the basis. It
compares a de£ned description length(DL) of the noisy data
in the subspaces. We show how the estimation of the noise
variance and the denoising process can be done simultane-
ously.

1. INTRODUCTION

Well-known methods of signal denoising are thresholding
methods. The thresholding method removes the additive
noise by eliminating the basis coef£cients with small ab-
solute value which tend to be attributed to the noise. The
pioneer method of thresholding is formalized by Donoho
and Johnstone in wavelet denoising [4]. They provide an
upperbound for the mean square error by solving a min-
max problem. In this calculation the variance of the additive
white Gaussian noise is assumed to be known. It is shown
that the optimum threshold for wavelet denoising of a piece-
wise smooth signal, asymptomatically, is σw

√
2 log N/N ,

where σ2
w is the variance of the additive noise [4]. In [5] an

estimate of the mean square denoising error as a function
of a given threshold is provided heuristically. The estimate
is for any class of bases. It demonstrates that, for a class
of signals, σw

√
2 log N/N may not necessarily provide the

optimal threshold. A different denoising approach is recom-
mended by Rissanen in [6]. The method provides a thresh-
old which is almost half of the suggested wavelet threshold
in [4].

A new method of denoising is presented in [2]. The
method is based on comparison of an information theoretic

criterion which is the description length of the data. The
description length of data is calculated for different sub-
spaces of the basis. The method suggests to choose the sub-
space for which the description length is minimum. Since
the method aims to extract the most information from the
noisy data, it does not provide a threshold before estimat-
ing all the basis vector coef£cients. The advantages of this
method, both theoretically and practically, are discussed in
[2] and [1].

The discussed thresholding methods provide thresholds
which are function of the variance of the additive noise. In
practical problems the variance of the noise is unknown.
Heuristic methods are used to estimate the variance of addi-
tive noise([3], [6]). The estimate of the variance is then im-
plemented to provide the optimum threshold. In this paper
we provide a new method of estimation of noise variance.
The method is interwoven with the new subspace compar-
ison method of denoising in [2]. Unlike the thresholding
methods, for any given noise variance the criterion, which
is the description length of the data, in each subspace can
be calculated. We suggest to choose the noise variance and
the subspace for which the description length of the data is
minimum. Therefore, the estimation of the variance and the
denoising are not two separate procedures.

2. PROBLEM STATEMENT

Consider noisy data y of length N ,

y(n) = ȳ(n) + w(n), (1)

where ȳ is the noiseless data and w is the additive white
Gaussian noise with zero mean and variance σ2

w. Data de-
noising is achieved by choosing an orthogonal basis which
approximates the data with fewer nonzero coef£cients than
the length of data. Consider the orthogonal basis of or-
der N , SN . The basis vectors s1, s2, · · · , sN are such that
||si||22 = N . Any vector of length N can be represented
with such basis, therefore there exist hi’s such that ȳ(n) =
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∑N
i=1 si(n)hi. As a result the noisy data is

y(n) =
N∑

i=1

si(n)hi + w(n). (2)

The least square estimate of each basis coef£cient is

ĥi =
1
N

sT
i yN = hi +

1
N

sT
i w (3)

where yN = [y(1), y(2), · · · , y(N)], the observed noisy
data, is a sample of random variable Y N . The bene£t of
using a proper basis is that 1

N sT
i w is almost zero as N is

assumed to be large enough and we hope that there exist
large number of basis vectors for which hi = 0. Therefore
the estimation of the noisy signal on this basis has the ad-
vantage of noise elimination. For such reason conventional
basis denoising methods suggest choosing a threshold, τ ,
for the coef£cient estimates ĥi’s. The denoising process is
to ignore the coef£cient estimates smaller than the threshold

ĥi =
1
N

sT
i yN , if | 1

N
sT

i yN | ≥ τ

ĥi = 0, if | 1
N

sT
i yN | < τ (4)

and the estimate of the noiseless signal is

ŷN (n) =
N∑

i=1

si(n)ĥi. (5)

A very important factor in solving the denoising problem
and choosing the proper threshold in [4] and [5] is the be-
havior of the mean square reconstruction error

1
N

E(||ȳN − Ŷ N ||22). (6)

Instead of focusing on £nding a threshold one can com-
pare the signal estimate in different subspaces of the basis.
Choosing a subspace to estimate the data is equivalent to
setting the coef£cients of the basis vectors out of that sub-
space to zero without thresholding. [2] investigates on esti-
mation of a criterion which is de£ned for the subspaces of
the basis. For each subspace Sm, ĥSm

denotes the estimate
of the coef£cients in that subspace. The goal is to £nd an es-
timate of the coef£cient estimation error in each subspace,
||h − ĥSm

||22. Note that, as a result of the Parseval’s the-
orem, this error is the same as the reconstruction error for
each subspace

||h − ĥSm
||22 =

1
N

||ȳN − ŷN
Sm

||22. (7)

The objection in [2] is to compare the worst case behavior of
this error in different subspaces probabilistically. The best
representative of the signal is then the signal estimate of the
subspace which minimizes such criterion.

2.1. The New Denoising Method

Consider a subspace of order m of the orthogonal basis, Sm.
For the subspace Sm, matrix ASm

separates the basis vec-
tors as follows




y(1)
y(2)

...
y(N)


 =

[
ASm

BSm

] 
 hSm

∆Sm


 + w (8)

where columns of ASm
are si ∈ Sm, columns of BSm

are
basis vectors which are not in Sm, si ∈ S̄m, and hSm

is the
coef£cients of the noiseless data ȳN = [ȳ(1), · · · ȳ(N)]T in
Sm. The least square estimate of coef£cients in each sub-
space using the noisy data is

ĥSm
=

1
N

[ASm
B0Sm

]T yN (9)

= hSm
+

1
N

[ASm
B0Sm

]T w. (10)

where B0Sm
is a matrix with zero elements and with di-

mension of BSm
. Therefore for the subspace error we have

||ĥSm
− h||22 =

1
N

||AT
Sm

w||2|| + ||∆Sm
||22, (11)

were ||∆Sm
|| is the norm of the discarded coef£cients vec-

tor in each subspace. The estimate of the data using this
subspace is ŷSm

= [ASm
B0Sm

]ĥSm
. In [2] the description

length of ŷSm
is de£ned as

DLh(ŷSm
, σw) = − log

1√
2πσ2

w

+
||ĥSm

− h||2
2σ2

w

. (12)

The subspace comparison method is to £nd Sm for which
the description length of ŷSm

is minimum. To £nd the so-
lution we have to estimate the reconstruction error. [2] sug-
gests the following approach to estimate the reconstruction
error.

The coef£cient error in (11) is a Chi-square random vari-
ables. Expected value and variance of coef£cient error
ZSm

= ||ĤSm
− h||22 are

E(ZSm
) = E||ĤSm

− h||22 =
m

N
σ2

w + ||∆Sm
||2 (13)

var(ZSm
) = var||ĤSm

− h||22 =
2m

N2
(σ2

w)2. (14)

In [2] £rst ||∆Sm
|| is validated probabilistically using the

observed sample xSm
from the random variable XSm

=
1
N ||Y − ŶSm

||22. With validation probability of Q(α), where

Q(α) =
∫ α

−α
1√
2π

e−x2/2dx, we have

LSm
≤ ||∆Sm

||22 ≤ USm
. (15)
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The upper bound USm
is

USm
= xSm

− mw +
2α2σ2

w

N
+ KSm

(α). (16)

where mw = (1 − m
N )σ2

w and

KSm
(α) = 2α

σw√
N

√
α2σ2

w

N
+ xSm

− 1
2
mw. (17)

If (mw − α
√

vm) ≤ xSm
≤ (mw + α

√
vm),where vm =

2
N (1 − m

N )σ4
w, the lower bound LSm

is zero and if (mw +
α
√

vm) ≤ xSm
then

LSm
= xSm

− mw +
2α2σ2

w

N
− KSm

(α) (18)

Next the probabilistic bounds on the reconstruction error are
provided as following. With probability Q(β) we have

|ZSm
− E(ZSm

)| ≤ β
√

varZSm
. (19)

Therefore, for the choice of optimum subspace, choose m∗

for which [2],

S∗
m = arg min

Sm

max
||∆Sm ||∈(LSm ,USm )

{E(ZSm
) + β

√
varZSm

}

= arg min
Sm

{m

N
σ2

w + USm
+ β

√
2m

N
σ2

w}, (20)

which is the bound valid with probability Q(β) and valida-
tion probability of Q(α).

Note that for the validation of ||∆Sm
|| and to obtain

lower and upper bounds for ||∆Sm
||, α has to be large enough

and such that [2, 1]

α ≥ N√
2(N − m)

(
1 − m

N
− xSm

σ2
w

)
. (21)

Parameters α and β can be chosen large enough such that
Q(α) and Q(β) are close to one. However, to have tight
bounds on ||∆Sm

||, α has to be chosen such that α/
√

N is
small. Also β/N has to be chosen small enough so that the
upper and lower bound for the con£dence region found by
(19) are close. If these conditions are satis£ed, when the
length of data is large enough, we can provide tight bounds
on the reconstruction error with probability close to one.

3. UNKNOWN NOISE VARIANCE

The solution of the existing thresholding methods and the
new method are based on the knowledge of the additive
noise variance. However, in practical problems the variance
of the additive noise is not known. In [3] and for wavelet
thresholding it is suggested to estimate the variance with

σ̂w = MAD/.6745, where MAD is the median of ab-
solute value of normalized £ne scale wavelet coef£cients.
This estimation method is a heuristic method.

We suggest a method of variance estimation which is
obtained from the new MDL method for when the unknown
variance is £nite number. Calculate the MDL of the data as
a function of σw

MDL(y, σw) = min
Sm

DLh(ŷSm
, σ2

w). (22)

Choose the optimal noise variance such that

σ̂w = arg min
σw

MDL(y, σw). (23)

3.1. Simulation

The unit-power signal shown in £gure (1) is used to illus-
trate the performance of the proposed method. Figure (2)
shows the absolute value of the discrete Fourier transform
of the signal. In this example we use the new MDL in
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Fig. 1. Noiseless unit-power signal of length 188.

(12) to estimate the noise variance. The data is corrupted
with AWGN which has variance of 0.25. First step is to £nd
the valid α’s for which the upper bound can be calculated.
When the variance of noise is known the lower bound for
α can be found by using the condition in (21). If the noise
variance is .25 the available data shows that any α greater
than .5 is valid. We now check for a proper choice of α,
when variance is not known. Figure (3) shows the MDL
for variable variances when α varies. The minimum valid
α is the one for which the MDL still is a positive number.
In this case, for β = 1, as the simulation shows, the lower
bound for α is .64. The lower bound is obtained through
validation of the MDL in (12). Next we choose a valid α
and choose the variance for which the MDL is minimized
for that α. As £gure(3) shows for α = 1 the optimum vari-
ance is .27. Figure(4) shows the description length of the
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Fig. 2. 188 points discrete Fourier transform of the signal.
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Fig. 3. MDL for standard deviations from .2 to .8 and for
different αs with β = 1.

data with variance .27 as a function of m. The correspond-
ing Sm is the one which minimizes the DL for a £xed m.
In this case the new MDL denoising method chooses S8 as
the best subspace to represent the data. The same £gure also
shows the true description length of the data with the known
variance. The optimum subspace if the variance is known
is also S8. In this case the validation probability and the
con£dence probability are both Q(1) = .68. Note that the
simulations shows that the algorithm is robust on the choice
of α. For example for α = 2 (Q(2)=.95) the optimum vari-
ance as £gure (3) shows is σ̂2

w = .36 (σ̂w = .6) and in this
case S8 is still the optimum subspace.

4. CONCLUSION

In this paper we presented a new method for noise vari-
ance estimation in signal denoising. The method was de-
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Fig. 4. Denoising with β = 1 and α = 1: Solid line is the
description length with variance σ2

w = .25 (σw = .5) for
subspace Sm. Line with ’*’ is the description length which
is provided with the estimated variance σ̂2

w = .27.

rived based on the denoising method in [2]. The advantage
of this method is that the denoising and estimation of the
noise variance are provided simultaneously. The consistent
theory of this method promises to overcome several prac-
tical problems with the existing noise variance estimation
and thresholding methods, which are now widely used for
denoising and are heuristic methods.
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