TIME SCALE MODIFICATION OF NOISESUSING A SPECTRAL AND STATISTICAL

MODEL
Pierre Hanna Myriam Desainte-Catherine
SCRIME - LaBRI SCRIME
Universie de Bordeaux 1 Universie de Bordeaux 1
F-33405 Talence Cedex, France F-33405 Talence Cedex, France
hanna@ abri . fr nyriama@ abri.fr
ABSTRACT noises by randomly drawing samples using a standard distribution

Some natural sounds, such as speech parts can essentially be cotuniform, normal, etc. .). Then, they may be filtered (subtractive
sidered as noises. For instance, models suppose noisy parts dfynthesis). The main temporal models use linear predictive coding
sounds as weak parts and apply basic approximations. But trans{LPC) to color white noise source. These approaches are common
formations such as time stretching doesn’t preserve the noisy charin speech research but are less intuitive for spectral transformations
acteristics of sounds. Moreover, we show that those transforma-and are less flexible: the smoother the spectral envelope is defined,
tions introduce artificial intensity variations. In this paper we pro- the more complicated is the computation of the coefficients.
pose a spectral model for noise modeling which takes into ac- Moreover we are particularly interested in spectral models ho-
count the statistical properties of such sounds. The analysis ismogeneous with other spectral models for harmonic sounds (for
based on the classical spectral models. The synthesis consistexample [3]). Many works concern stochastic part modeling. Some
of randomly defining sinusoidal components. These componentsof them [1, 4] propose to represent this part with overlapped am-
are then added using adapted overlap-add method to keep statiglitude spectra. These spectra are approximated with simple line-
tical moments constant. Time scaling operations using this ap-segments. The synthesis of this component consists in generating
proach are described. Experiments on artificial sounds (filteredwhite noise colored with analyzed amplitude spectra and random
white noises) as well as natural sounds such as consonants anghase spectra (uniform distribution), by performing an inverse Fast
whispered vowels, show impressive enhancement in quality. Infi- Fourier transform (IFFT). We show in section 6 that transforma-
nite time stretching transformations of such noises can be perfectlytions such as time scaling imply some variations of the statistical
performed. properties of the original sounds, and thus audible artifacts.
A residual model related to the properties of the auditory sys-
1. INTRODUCTION tem is proposed in [2]. The noisy part of any sound is represented
by the time-varying energy in each equivalent rectangular band
Generalized spectral model separates the analyzed sound into déERB). However, because of such approximations, this model may
terministic and stochastic parts [1]. The deterministic part is a Pe applied only to sounds with weak stochastic parts.
sum of slow-evolving sinusoids. The stochastic part, called the  In this paper we present analysis and synthesis methods that
residual, is obtained by subtracting the magnitude spectra of theare based on the stochastic part model, but which can be applied
deterministic signal from that of the original. This stochastic part to noisy sounds and which allow perfect time scaling transforma-
is composed of all the signal components that haven't been re-tions.
tained by the phase vocoder. Its presence is very important in or-
der to improve the realism of the synthesized sounds. This part can
be considered as random signal with specific statistical properties.

Time scaling transformations of the deterministic part have been .
. - Sounds (sample ratE.) are considered as random proces&es
well studied and have very good performance. But concerning the . . :

. S ; They are modeled as a sum of sinusoidal components. i‘the
stochastic part, the usual spectral representation is dedicated to the o : o
. . . . .~ .~ " component has frequengywhich is a random variable with fixed

residual part of a signal [2], which means that its proportion in . ] L )
- - A NPT amplitudea,; and uniformly distributed phasg :
the original signal is very weak (breath noise in wind instrument
as flute or saxophone). Hence basic methods suffer from limita- N .
tions for time modifications. Furthermore, some natural sounds X, = Zai Sin (27 fi - + ;) 1)
are composed of a major part of stochastic signals (consonants, = F.
whispered voices, drums,.) andsuch approximations imply au-
dible limitations. where the frequencief are distributed in a band whose width is
AF (Hz).
2. BACKGROUND The draw of the frequency values are described in [B].
bins (M < N) equally divide the frequency bandwidth. In each
The existing models to analyze, transform and synthesize noisysuccessive framéy frequency values are chosen into these bins
sounds are temporal or spectral models. Temporal models generataccording to a uniform distribution. Therefore the probability that

3. SPECTRAL AND STATISTICAL MODEL
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two successive frames have exactly the same amplitude spectrum, 5. SYNTHESIS
is very low.

In the following, the main synthesis parameter is the $ize ~ We describe here the synthesis process (see figure 2). As previ-
of the synthesis window. The number of sinusoidal components Ously seen in section 3, the number of frequency components is
and the number of bins are set as half of the synthesis window sizdinked to the synthesis window si&;. The synthesis part starts

Ws. by defining the binsB; (i € {0, .., N — 1}) from this size and the
Mo N— W, @ bandwidthAF = 22050H2:AF A
B; =i (i+1)T[ (5)

N
Then, for each synthesis frarh@ € {0, .., L—1}), one frequency

value is randomly chosen into each bin according to a uniform
distribution:

This value corresponds to the maximum value of the spectral den-

sity. Choosing more sinusoidal components would not have any

perceptual influence for the synthesized sound [5]. This choice is

also implicitly done in the inverse-Fourier transform (SMS model

[1]). For a2k samples long window, the stochastic part is repre- . ) AF

sented by the sum df fixed sinusoids. fi=(i+rand(1.0) - (6)
Itis useful to note that this number of sinusoidal components \yherer and represents thelassical random function which re-

is perceptually relevant and that controlling this parameter allows ;1 5 pseudo-random real betwekand the parameter of the
modifications of the spectral density [6], which are not possible ;nction.

using other representations. The phase values of each sinusoidal component are randomly
chosen according a uniform distribution betwéesnd2:
4. ANALYSIS ¢ = rand(2m) )

The analysis part is very simple and similar to traditional ones (see ~ The amplitude of each sinusoidal component is calculated from
figure 1). It starts by computing amplitude spectra of sound un- the amplitude spectrum and the frequency value. Since this value
der study using the Fourier transform. Although our method con- is randomly chosen, its amplitude may be interpolated. Many
cerns noisy sounds (more generally random signals), more preciimethods can be used (for example [1]) which are not described
sion about the time variations is needed. Hence we take successivlere. The simplest one is to interpolate the spectra during the anal-
analysis windows;; that are overlapping: ysis process using zero-padding.
Once the frequency, amplitude and phase values are calcu-
-1 lated, temporal samples of each frame are generated with additive
zln] = Z zi[n — LH] ©) synthesis. An efficient algorithm is presented in [3].

=0 The resulting temporal signal does not taper to 0 at the bound-
aries of each window because of the random values of phase. Hence
synthesized windows are overlapped and added to avoid audible
clicks. This OLA synthesis needs to multiply each frame by a
weighting window. It is important to note that the type and the
length of the synthesis window are independent of that of the anal-

zi[n] = si[nw[n] n€0,1,.,Ws—1] 4) ysis window.

where H is the hop size (or the time advance) dnid the frame
number { € 0,..,L —1).

Each temporal window of the original signais multiplied by
a weighting windoww:

The choice of the length of the window deals with the usual trade- 5.1. Preserving the statistical moment
off of time versus frequency precision. Choosing a short window
leads to smooth spectra whereas a long one sets the assumption Q

stationarity. Spectra are interpolated using zero-padding. Exper-
'rgggtzrizog}éhﬁ goiisgmprlz;;roeng?.?}ir?”yesgf t'ﬁfg;g 2?5\/3\/:?1 original signal, even if transformations such as time or frequency
9 d Y precision. yp y scaling are performed. Otherwise, audible artifacts can be heard.
dow can also be discussed. With the usual methods (SMS, STN), Indeed one can show that the variance= o is directly
the overlap-add syntht_35|s IMposes t_he use of the same window Minked to the perceived intensity of the sound, for example, for
the analysis part and in the synthesis part. However, any type ofa uniform or a Gaussian white noise:
window can be used with our synthesis method. ’

The choice of the hop siz& depends on the efficiency of Armus =0 8)
the analysis (and sometimes, synthesis) process. A small value Let X’ be th g iabl iated with th thesized
improves the accuracy in time domain whereas a large value de- | “® € the random variable associated with the syntnesize

/ !
creases the computation time. During our experiments, we useSidnalz'[n]. Then the mean ok” equals the mean ok’ Let

! . 7 .
hop size equal to half or one-fourth of the analysis window size. ¥ (X ) be the variance ofX". If an analysis is performed but
no transformation is doney are not independent and we verify

noisy sound can be seen as a random sigsdl: € {0, .., L —
) are realizations of the same random variakle An accurate
synthesis method needs to preserve the statistical moments of the

FET V(X') = V(X). We consider here the case when there are trans-
Sianal Overlapping Amplitude formations or amplitude spectra approximations. Sina@e then
Igna Windows Spectra independent and are realizations of the same random varkple

one can write:

Fig. 1. Analysis block diagram =
g Y * V(X')=V(X) ) w(n—1H) )
=0
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Fig. 2. Synthesis block diagram

Assuming tha/(X') andV (X) are equal, this calculus leads to  can be used. Both methods lead to perceptually good results. Dis-

the condition aboutv, and for alln € N: cussions about advantages and drawbacks of each method can be
L-1 found in [7].
> win-1H)=1 (10)
1=0 6. TIME SCALING

This equality is only verified for some window types (sinusoidal _ . s . .
for example), but not the usual ones (Hann, Bartlett, ejoused Time scaling is an useful but difficult transformation. This process

in [1, 4]. In these cases the intensity of the synthesized sound Var};‘nust essentially preserve the noisy characteristics of the original

periodically in time. sounds. By using our proposed analysis and synthesis methods for
Figure 3 shows the variations of the variance as a function of the stochastic part of the original sound, transformations such as
time with N’ = 16384 andH = X time or frequency scaling can be perfectly performed. Usual mod-
2 els [1, 4] stretch sounds by modifying the hop size or increasing
o Variance variation the synthesis window size. We show in the previous section that

/ such modification changes the statistical properties of the sound
and provokes audible intensity variations. Experiments confirm
this theory.

Moreover, these two possibilities imply other drawbacks. In
one hand increasing this hop size obviously limits the stretching
factor. The technique we propose doesn'’t impose any limit. On

06 the other hand extending the size of the synthesis window needs

0.5

spectra interpolation. If the size is too large compared to the anal-

0.4] ysis window size, the spectra approximations degrade the output

| signal. Furthermore, this method imposes more CPU consump-
0.3] (a) tion.
02| - g(t:’)) } Our synthesis method allows different possibilities to stretch

| : sounds. We choose to preserve the hop size in order to keep the
0.1 . number of sinusoidal components constant, because the spectral
0.0l time (s). density of sounds [6] is perceptually relevant. We focus on time

0.000 0223 0.446 0.669 0.892 1.115 1337 1.560 1.783 2.006 2.229stretching modification, but slowing down sounds is based on the
same principle. In our approach, the simplest and the most efficient
Fig. 3. Variations of the variance of the signal with (a) Hann win- technigue concerns dilatation facterthat is multiple of the ratio
dow (b) Bartlett (triangular) window (c) Hamming window. between the synthesis window si#é&’ and the analysis window
sizeW¢. In this case, the number of synthesis windows is simply
increased. Obviously new sinusoidal components are randomly
5.2. Synthesis methods determined in each new frame. This statistical characteristic makes
. ) ) o this choice possible at the contrary of IFFT-based methods which
We have proposed two ways [7] to avoid these intensity variations jmnsse constant amplitude spectra and leaumllic sounds.
whlch _|mp|y_aud|ble artlf_acts_. Th.e first one cons_|§ts in using a If o doesn't verify this condition, it can be written as =
sinusoidal window as weighting window which verifies the condi- A herek € N and W2 and theref the si f
tion 10. This method is the simplest and improves the quality of * W T @0, Wnerek &€ Nandao < we and therefore, the size 0
the synthesized sound. The second one randomly shifts the startthe synthesis window is modifiedVy = (1 + ao)W5.
ing time of each sinusoidal components which are separately mul-  In our approach, as previously seen, increasing the synthesis
tiplied by a weighting window. In this case any type of window window size without degrading the signal imply increasing the
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number of sinusoidal component&’ = <. This operation 9. ACKNOWLEDGMENTS
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sumption variations.
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