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ABSTRACT

This work presents an approach for signal/image denoising in a
semi-parametric frame. Our model is awavelet-based one, which
essentially assumes aminimal local regularity. This assumption
translates into constraints on the multifractal spectrum of the sig-
nals. Such constraints are in turn used in a Bayesian framework
to estimate thewavelet coefficients of the original signal from the
noisy ones. Our scheme is well adapted to the processing of irreg-
ular signals, such as (multi-)fractal ones, and is potentially useful
for the processing of e.g. turbulence, bio-medical or seismic data.

1. INTRODUCTION

A large of number of techniques have been proposed for signal en-
hancement. The basic frame is as follows. One observes a signal
� which is some combination� ����� of the signal of interest
� and a “noise”�. Making various assumptions on the noise, the
structure of� and the function� , one tries to derive a method to
obtain an estimate�� of � which is optimal in some sense. Most
commonly,� is assumed to be independent of�, and, in the sim-
plest case, is taken to be white, Gaussian and centered.� usually
amounts to convoluting� with a low pass filter and adding noise.
Assumptions on� are almost always related to its regularity, e.g.
� is supposed to be piecewise�� for some� � �, or� belongs
to a ball in some Besov space��

��� . Techniques proposed in this
setting resort to two domains: Functional analysis and statistical
theory. In this work, we adopt a stochastic point of view.

In the last ten years,wavelet-based approaches [1, 2] have had
great success in the field of denoising, both from the theoretical
and applied point of views. Under general assumptions, it is pos-
sible to prove that simple thresholding schemes are asymptotically
minimax in various situations. Experiments on real data show that
thresholding schemes perform well in many cases. Recently, re-
finements using Bayesian techniques have been proposed. These
allows to take into account any prior knowledge on the signals.
When such knowledge is available, Bayesian-wavelet techniques
have proven to be even more efficient [3, 4].

Our approach in this work differs from previous ones in one
important respect. Instead of requiring that� belongs to a given
global smoothness class, we imposelocal regularity constraints.
More precisely, we develop an estimator under the assumption that
the original signal belongs to a certain set of parameterized classes
� described below. Functions belonging to such classes have a
minimal local regularity, but may have wildly varying pointwise
Hölder exponent (see section 2 for definitions). We interpret the
minimal local regularity requirement as a constraint on the multi-
fractal spectrum. Along with possible additional conditions, this

yields a parametric form for the prior distribution of thewavelet
coefficients of�. We obtain estimates of these coefficients using
a classicalmaximum a posteriori technique. As a consequence,
our estimate is defined to be the signal “closest” to the observa-
tions which has the desired multifractal spectrum (or a degenerate
version of it, see below). Because the multifractal spectrum sub-
sumes information about the pointwise H¨older regularity, this pro-
cedure is naturally adapted for signals which have sudden changes
in regularity. From a broader perspective, such a scheme is appro-
priate when one tries to recover signals which are highly irregular
and for which it is important that the restoration procedure yields
the right regularity structure (i.e. preserves the evolution of the
local regularity along the path). An example of this situation is
when denoising is to be followed by segmentation based on textu-
ral information: Suppose we wish to differentiate highly textured
zones (appearing for instance in MR or radar imaging) in a noisy
image. Applying an enhancement technique which assumes that
the original signal is, say, piecewise��, will induce a loss of the
information which is precisely the one needed for segmentation:
Indeed, the denoised image will not contain much texture. The
same difficulty occurs in other situations such as change detection
from noisy sequences of aerial images; automatic monitoring of
the evolution of lung diseases from scintigraphic images; turbu-
lence data analysis; or the characterization of non-voiced parts of
voice signals. Our denoising technique is thus well suited to the
case where the original signal� displays the following features: a)
� is everywhere irregular, b) the regularity of� may vary rapidly
in time, c) the multifractal spectrum or H¨older function of� bears
essential information for subsequent processing. As we show be-
low, this technique is simple from an algorithmic point of view,
and yields good results on several kind of signals.
The remaining of this paper is organized as follows. Section 2 and
3 recall some basic facts about H¨older regularity and multifrac-
tal analysis, which are the bases of our approach. Our model is
described in section 4. The denoising method is explained in sec-
tion 5. Finally, numerical results are displayed in section 6. Lack
of space does not permit to develop fully the theoretical aspects
of the method (e.g. convergence results, speed of approximation,
etc...). The interested reader is referred to [5]. Throughout the
paper, thewavelet coefficients of a signal� are denoted by����
where	 is scale and
 is location. An orthonormalwavelet basis
with sufficient regularity/vanishing moments is used.

2. HÖLDER REGULARITY ANALYSIS

A popular way of evaluating the regularity of a real function is
to consider H¨older spaces, either in their local or pointwise ver-
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sion. We will focus in this paper on thepointwise Hölder exponent
(see [6] for an approach based on thelocal Hölder exponent). To
simplify notations, we assume that our signals are nowhere differ-
entiable. Generalization to other signals is straightforward ([7]).

Definition 1 Pointwise Hölder exponent
Let � � ��� ��, and �� � � � �. A function 
 � � � � is

in ��
	� if for all � in a neighbourhood of ��,

�
���� 
����� � ���� ���
� (1)

where� is a constant. The pointwise H¨older exponent of
 at��,
denoted�����, is the supremum of the� for which (1) holds.
This regularity characterization is widely used in fractal analysis
because it has direct interpretations both mathematically and in
applications. It has been shown for instance that� corresponds to
the auditive perception of smoothness for voice signals. Similarly,
computing the H¨older exponent at each point of an image already
gives a good idea of its structure, as for instance its edges [8]. See
[9] for more on the theory on the pointwise H¨older exponent.

3. RECALLS ON MULTIFRACTAL ANALYSIS

We briefly state in this section some basic facts about multifractal
analysis. Multifractal analysis is concerned with the study of the
regularity structure of processes, both from a local and global point
of view. More precisely, one starts by measuring in some way the
pointwise regularity, usually with some kind of H¨older exponents.
The second step is to give a global description of this regularity.
This can be done either in a geometric fashion using Hausdorff di-
mension, or in a statistical one through a large deviation analysis.
In this paper, we will focus on the statistical approach, which leads
to consider a quantity called thelarge deviation multifractal spec-
trum. This spectrum is defined as follows. Consider a stochastic
process����, � � � � � on a probability space (��	 � ��). For
ease of notation, we shall assume without loss of generality that
� � 	�� �
.

Set: � 

���� � �

 � � � � � ��� � � � ��, where��� is

the coarse-grained Hölder exponent corresponding to the dyadic
interval��� �

�


��� �
 � ��
��

�
, i.e.:

��� �
��� �� �

� �

� ��� �

Here,� �
� is some quantity that measures the variation of� in the

interval ���. The choice� �
� �� �

�
�
 � ��
��

�
� �

�


��

�
leads to the simplest analytical computations. Another possibil-
ity, that will be the one used in this work, is to take� �

� to be the
wavelet coefficient���� of � at scale� and location
. This def-
inition is convenient in many respects, as it allows to make use of
the versatility ofwavelet bases. However, it also has a disadvan-
tage: Indeed, the multifractal spectrum so obtained will depend
heavily on the chosenwavelet�. Thus, if one sets� �

� �� ����,
it does not make sense to speak of the spectrum of� without a
reference to the chosen analyzingwavelet.
The large deviation spectrum
���� is defined as follows:


���� � ���

��

��� ���
���

��� �

����

��� �

Note that, whatever the choice of� �
� , 
� always ranges in�� �


�
�. The value�
 corresponds to values of the coarse-grained
exponent which are not observed at all sufficiently small scales.

The intuitive meaning of
� is as follows. For� large enough,
one has roughly:

�����
�
� � �� � 
�����������

where��� denote the uniform distribution over
�� �� � � � � 
����.
Thus, for all� such that
���� � �, � � 
���� measures the ex-
ponential rate of decay of the probability of finding an interval���
with coarse-grained exponent equal to�, when� tends to infinity.

In general,
� is a random function. In applications, it is con-
venient to consider the following deterministic version of
� :

����� � � � ���

��

��� ���
���

��� �
����

������
�

where�
���� �� ��� ���	�
�
� � ��� �� �� ��


4. THE SET OF PARAMETERIZED CLASSES ������

In [10], a theoretical approach for signal denoising, based on the
use of the pointwise H¨older exponent and the associated multifrac-
tal spectrum, was investigated. A practical approach based on the
local Hölder exponent is detailed in [6] in a functional analysis
frame, and in [11] in a stochastic frame. In these works, denoising
is performed through an increase of the H¨older exponent� in an
non-parametric fashion.

We develop here another technique based on the multifractal
spectrum rather than the use of the sole H¨older exponent. This will
in general allow for more robust estimates, since one uses a higher
level description subsuming information on the whole signal. In
addition, we adopt a semi-parametric point of view. More pre-
cisely, we make the assumption that the considered signals belong
to a given set of parameterized classes, that is described now.

Let 	 be the set of lower semi-continuous functions from
�

� to �� � 
�
�. We consider classes of random functions
����� � � 	�� �
, defined on (��	 � ��) described by Definition (2)
below. Each class���� �� is characterized by the functional pa-
rameter� � 	 and a wavelet� such that the set
�������� forms
a basis of��. Let K be a positive constant and define:

��


� ����� � ��� ������ � �

��	����	������

��
� �� ��

Definition 2

������ � 
� � �� � �� 	� � � � �	 � 	�� ���� and �����

are identically distributed for �
� 
�� � 
�� �� � � � 
� � �� and
��	� ��

�
������

�
� ���� � ���
���� where ���
��� is such that:

���
�� ���������
��� � � uniformly in �.

The assumption that, for	 large enough, thewavelet coeffi-
cients������� at scale	 are identically distributed entails that:

�
� ����� �� �� � ������ � �
�������������

�	
� �� ��

� ����� � �
�������������

�	
� � � ��

As a consequence, definition (2) has a simple interpretation in
terms of multifractal analysis: For a givenwavelet�, we con-
sider the set of random signals� such that the normalized signal
�� has deterministic multifractal spectrum����� (with respect
to �) equal to� � �, with the following additional condition:��
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is obtained as a limit in	 rather than a��� ���, this limit being
attained uniformly in to�. This condition ensures that, for suffi-
ciently large	, the rescaled statistics of the���� are close enough
to their limit, allowing meaningful inference.
The classes������ encompass a fairly wide variety of signals.
Most models of (multi-)fractal processes and certain other ”clas-
sical” processes belong to such classes. These include IFS, mul-
tiplicative cascades, fractional Brownian motion and stable pro-
cesses. Such processes have been used in the modelling of Internet
traffic, financial records, speech signals, medical images and more.
See [5] for a study of certain classes of processes in���� ��.

5. BAYESIAN DENOISING IN ���� ��

We recall here the main steps in the classicalMaximum a Posteri-
ori (MAP) approach in a Bayesian frame, adapted to our setting.
We observe the noisy signal� , and we assume that� � � ��,
where� is a ”noise” independent from the original signal�, with
known law. Thus, we have:���� � ���� � ����. The MAP es-
timate ����� of ���� from the observation���� is defined to be an
argument that maximizes�������������. Using Bayes rules, and
since�������� does not depend on����, maximizing�������������
amounts to maximizing the product���������������������. The
MAP estimate is thus:����� � argmax		���������������
.

The term���������� is easily computed from the law of� if
one assumes that� is white, since the���� then have the same law
as� (recall that we use orthonormalwavelets). The prior��������
is deduced from our assumption that� belongs to���� �� in the
following way. For� � �, set����� �

��	���	�

��
.

��������� � �� � ��

�
�������������

�	
� �����

�
� 
������ �	�����

This leads to define anapproximate Bayesian MAP estimate as:

����� � argmax	��		��
�����

����

�	
� � ����������������
sgn������

(2)
where sgn��� is the sign of� and �� � �������� �����������

��.
The estimate for� can be heuristically justified as follows: Writ-

ing
��	����	�����

��
� � with � � � implies that������� � � for all

couples (	� 
). �� is chosen as the smallest normalizing factor that
entails the latter inequality.
In our experiments, we shall deal with the case where the noise is
centered, Gaussian, with variance��. The MAP estimate reads:

����� � argmax	��		��
�����

����

�	
��

����� � ���


��

sgn������ (3)

While (2) gives an explicit formula for denoising� , it is of-
ten of little practical use. Indeed, in most applications, one does
not know to the multifractal spectrum of�: Without an evaluation
of �, it is not possible to use (2) to obtain�����. In addition, one
should recall that�� depends in general on the analyzingwavelet.
One would thus need to know the shape of the spectrum for the
specificwavelet in use. Furthermore, a major aim of our approach
is to be able to extract the multifractal features of� from the de-
noised signal��: A strong justification for the use of our multi-
fractal Bayesian approach is to be able to estimate��

� as follows.

a) denoise� , b) evaluate numerically the spectrum�

�
� , c) set

���
� � �


�
� . Obviously, from this point of view, it does not make

sense to require prior knowledge of��
� in the Bayesian approach.

We thus present a ”degenerated” version of (2) which uses as input
a single real parameter instead of the whole spectrum. The heuris-
tic is as follows: From a regularity point of view, an important
information contained in the spectrum is itssupport, i.e. the set of
all occurring Hölder exponents. Let�� denote the smallest regu-
larity actually observed in the signal. While the shapes of the��
spectra obtained with different analyzingwavelets depends on the
wavelet, their support are always included in	���
�. The ”flat
spectrum”�����
� thus contains intrinsic information. Further-
more, it only depends on the positive real��. Re-writing (2) with
a flat spectrum yields the following explicit simple expression:

����� � ���� if ������� � 
���� (4)

� 
���� otherwise (5)

Although�� is really a prior information, it can be estimated from
the noisy observations (see [5]). In this respect, it is comparable to
the threshold used in the classical hard or softwavelet threshold-
ing scheme. Furthermore, in applications, it is useful to think of
�� rather as a tuning parameter: Increasing�� yields a smoother
estimate (since the original signal is assumed to have a larger min-
imal exponent). It is interesting to compare (2) with, e.g. the hard-
thresholding policy on thewavelet coefficients. See [5] for more.

6. NUMERICAL EXPERIMENTS

We show some results on synthetic data. All original signals are
corrupted with additive Gaussian white noise. We display in each
case the result of the Bayesian multifractal denoising and the clas-
sical hard-thresholding technique. For all procedures and all sig-
nals, the parameters were manually set so as to obtain the best fit
to the known original signal. By and large, the following conclu-
sions can be drawn from these experiments. First, it is seen that,
for irregular signals such as the ones considered here which be-
long to������, the Bayesian method yields more satisfactory re-
sults than classicalwavelet thresholding.In particular, this method
preserves a roughly correct regularity along the path, while the
wavelet shrinkage yields a signal with both too smooth and too
irregular regions. Second, it appears that using the degenerate in-
formation provided by the ”flat” spectrum does not significantly
decrease the quality of the denoising.

6.1. A general type of signals in���� ��

We consider signals of the following kind:

� � 
� � ������ � � ���

���� (6)

where� and! are positive constants and each ��� is a random
variable supported in	�� �
. All  ��� are independent, and they
have the same law level-wise, i.e. ��� and  ���� are identically
distributed with probability distribution"� for all 	� 
� 
�. Further-
more, we suppose that"���� � � for infinitely many	.

Depending on the law"� , the local regularity behaviour of
the functions in� may be very different. Here, we will consider
the particular case of signals with uniformly distributedwavelet
coefficients. Other examples are discussed in [5]. More precisely,
for all 	, we take"� to be the uniform law on	�� �
, i.e. the ���
are iid random variables uniformly distributed in	�� �
. It is easy
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to see that, for all�, almost surely,���� � ! � ��
. Furthermore,
����� � � for � � ! � ��
 and����� � �
 otherwise.
Tests with these type of signals are displayed on figure 1.

6.2. Fractional Brownian motion

Our second type of signals features one of the simplest fractal
stochastic process, namely fractional Brownian motion (fBm). As
is well known, fBm is the zero mean Gaussian process���� with

covariance function���� #� � ��

�
������ � �#��� � �� � #����,

where$ is a real number in��� �� and� is a real number. fBm
has stationary correlated increments when$ �� ��
. At all points,
the Hölder exponent of fBm is$ almost surely. As said above, the
large deviation spectrum depends on the definition of� �

� : If one
considers increments, then, almost surely, for all�:


���� �

��
	

�
 if � � $
$ � �� � if $ � � � $ � �
�
 if � � $ � �

Moreover, whether one computes the spectrum using increments
or wavelet coefficients, one gets that
���� is given by a plain
limit in 	 rather than a��� ���. Together with the stationarity
property of thewavelet coefficients, this entails that fBm belongs
to a class������. If one defines the� �

� to be wavelet coefficients,
the spectrum will depend on the analyzingwavelet�. All spectra
with upper envelop equal to the characteristic function of	$�
�
may be obtained with an adequate choice of�. The result of our
denoising procedure will thus in principle bewavelet-dependent.
The influence of thewavelet is controlled through the choice of the
prior, i.e. the multifractal spectrum among all admissible ones. In
practice, we found that few variations were observed if one uses
a Daubechieswavelet with length between 2 and 20, and a non-
increasing spectrum supported on	$�
� with 
��$� � �. In
particular, taking
� to be the theoretical spectrum obtained with
increments, or taking
���� � � for � � $ and�
 otherwise
(the flat spectrum), leads to comparable results (see figure 2).
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Fig. 1. First line: Signal with uniformly distributed ��� , � � �

and ! � ��� (left), noisy version with additive Gaussian noise
(right). Second line: Denoising with hard-thresholding (left),
Bayesian denoising (right).
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Fig. 2. First line: fBm with $ � ��� (left) and noisy version
with Gaussian noise (right). Second line: Denoised versions with
a classicalwavelet thresholding; hard-thresholding (left), soft-
thresholding (right). Third line: Bayesian denoising with the in-
crements’spectrum (left), Bayesian denoising with the flat spec-
trum (right).
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