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ABSTRACT yields a parametric form for the prior distribution of thavelet

coefficients ofX. We obtain estimates of these coefficients using
a classicaimaximum a posteriori technique. As a consequence,
) - - - . our estimate is defined to be the signal “closest” to the observa-
essentlally_ assumesra_nlmal local regu_larlty. This assumption . tions which has the desired multifractal spectrum (or a degenerate
translates into constraints on the multifractal spectrum of the Sig- e 5ion of it, see below). Because the multifractal spectrum sub-
nals. Such constraints are in turn used in a Bayesian frameworkymeg information about the pointwiseldér regularity, this pro-
to _estlmate thevavelet coefﬂments of the original signal _from the cedure is naturally adapted for signals which have sudden changes
noisy ones. Our scheme is well adapted to the processing of i€gy, yoqarity. From a broader perspective, such a scheme is appro-
ular signals, su_ch as (multi-)iractal ones, and_ls potent!ally_ useful priate when one tries to recover signals which are highly irregular
for the processing of e.g. turbulence, bio-medical or seismic data. 50 for which it is important that the restoration procedure yields
the right regularity structure (i.e. preserves the evolution of the
1. INTRODUCTION local regularity along the path). An example of this situation is
when denoising is to be followed by segmentation based on textu-
A large of number of techniques have been proposed for signal en+al information: Suppose we wish to differentiate highly textured
hancement. The basic frame is as follows. One observes a signatones (appearing for instance in MR or radar imaging) in a noisy
Y which is some combinatio®’(X, B) of the signal of interest  image. Applying an enhancement technique which assumes that
X and a “noise”B. Making various assumptions on the noise, the the original signal is, say, piecewig#', will induce a loss of the
structure ofX and the function’, one tries to derive a method to  information which is precisely the one needed for segmentation:
obtain an estimat& of X which is optimal in some sense. Most Indeed, the denoised image will not contain much texture. The
commonly,B is assumed to be independent®f and, in the sim- same difficulty occurs in other situations such as change detection
plest case, is taken to be white, Gaussian and centétersually from noisy sequences of aerial images; automatic monitoring of
amounts to convoluting’ with a low pass filter and adding noise. the evolution of lung diseases from scintigraphic images; turbu-
Assumptions onX are almost always related to its regularity, e.g. lence data analysis; or the characterization of non-voiced parts of
X is supposed to be piecewi€® for somen > 1, or X belongs voice signals. Our denoising technique is thus well suited to the
to a ball in some Besov spad#) , . Techniques proposed in this  case where the original signal displays the following features: a)
setting resort to two domains: Functional analysis and statistical X is everywhere irregular, b) the regularity & may vary rapidly
theory. In this work, we adopt a stochastic point of view. in time, ¢) the multifractal spectrum orditier function ofX bears
In the last ten yearsyavelet-based approaches [1, 2] have had essential information for subsequent processing. As we show be-
great success in the field of denoising, both from the theoretical low, this technique is simple from an algorithmic point of view,
and applied point of views. Under general assumptions, it is pos-and yields good results on several kind of signals.
sible to prove that simple thresholding schemes are asymptoticallyThe remaining of this paper is organized as follows. Section 2 and
minimax in various situations. Experiments on real data show that3 recall some basic facts aboubldér regularity and multifrac-
thresholding schemes perform well in many cases. Recently, re-tal analysis, which are the bases of our approach. Our model is
finements using Bayesian techniques have been proposed. Thes#escribed in section 4. The denoising method is explained in sec-
allows to take into account any prior knowledge on the signals. tion 5. Finally, numerical results are displayed in section 6. Lack
When such knowledge is available, Bayesweawvelet techniques  of space does not permit to develop fully the theoretical aspects
have proven to be even more efficient [3, 4]. of the method (e.g. convergence results, speed of approximation,
Our approach in this work differs from previous ones in one etc...). The interested reader is referred to [5]. Throughout the
important respect. Instead of requiring tbatbelongs to a given  paper, thavavelet coefficients of a signél are denoted by; .
global smoothness class, we imposeal regularity constraints.  wherej is scale and: is location. An orthonormalvavelet basis
More precisely, we develop an estimator under the assumption thawith sufficient regularity/vanishing moments is used.
the original signal belongs to a certain set of parameterized classes
S described below. Functions belonging to such classes have a .
minimal local regularity, but may have wildly varying pointwise 2. HOLDER REGULARITY ANALYSIS
Holder exponent (see section 2 for definitions). We interpret the
minimal local regularity requirement as a constraint on the multi- A popular way of evaluating the regularity of a real function is
fractal spectrum. Along with possible additional conditions, this to consider klder spaces, either in their local or pointwise ver-

This work presents an approach for signal/image denoising in a
semi-parametric frame. Our model isvavelet-based one, which
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sion. We will focus in this paper on thmintwise Holder exponent
(see [6] for an approach based on theal Holder exponent). To
simplify notations, we assume that our signals are nowhere differ-
entiable. Generalization to other signals is straightforward ([7]).

Definition 1 Pointwise Holder exponent
Leto € (0,1),and zo € K C R. Afunction f : K — R is
in Cg, if for all = ina neighbourhood of zo,

|f(x) = f(zo)| < clw — ol 1)

wherec is a constant. The pointwiseditler exponent of at xo,
denotedx(zo), is the supremum of the for which (1) holds.

This regularity characterization is widely used in fractal analysis
because it has direct interpretations both mathematically and in
applications. It has been shown for instance thabrresponds to
the auditive perception of smoothness for voice signals. Similarly,
computing the ldlder exponent at each point of an image already

The intuitive meaning of, is as follows. Fom large enough,
one has roughly:

P, (af ~a)~ 2 n0=fole)
wherelP,, denote the uniform distribution ovéf, 1,...,2" —1}.
Thus, for alla such thatf, (a) < 1,1 — f,(a) measures the ex-
ponential rate of decay of the probability of finding an interéfal
with coarse-grained exponent equahtonvhenn tends to infinity.
In general,f, is a random function. In applications, it is con-
venient to consider the following deterministic versionfpf

log 7, ()
log(n)
whererS (o) := P x P, € (a —e,a +¢)]

Fy(a) =1+ lim limsup

e=0 psco

4. THE SET OF PARAMETERIZED CLASSES S(g,)

gives a good idea of its structure, as for instance its edges [8]. See

[9] for more on the theory on the pointwiseotdér exponent.

3. RECALLS ON MULTIFRACTAL ANALYSIS

We briefly state in this section some basic facts about multifractal
analysis. Multifractal analysis is concerned with the study of the
regularity structure of processes, both from a local and global point
of view. More precisely, one starts by measuring in some way the
pointwise regularity, usually with some kind obltier exponents.
The second step is to give a global description of this regularity.
This can be done either in a geometric fashion using Hausdorff di-
mension, or in a statistical one through a large deviation analysis.
In this paper, we will focus on the statistical approach, which leads
to consider a quantity called tharge deviation multifractal spec-
trum. This spectrum is defined as follows. Consider a stochastic
processX (t),t € T C R on a probability spaceX, F, IP). For
ease of notation, we shall assume without loss of generality that
T =[0,1].

Set: Ni(a) = #{k : a —e < af < a+ ¢}, wherea? is
the coarse-grained Holder exponent corresponding to the dyadic
interval I} = [k27", (k +1)27"], i.e.:

k _ log |Yor|
" —logn

Here,Y;* is some quantity that measures the variatiokoih the
interval I}. The choiceY,’ := X ((k+1)2°") — X (k2°")
leads to the simplest analytical computations. Another possibil-
ity, that will be the one used in this work, is to tal(é“ to be the
wavelet coefficient:,, , of X at scalen and locationk. This def-
inition is convenient in many respects, as it allows to make use of
the versatility ofwavelet bases. However, it also has a disadvan-
tage: Indeed, the multifractal spectrum so obtained will depend
heavily on the chosewavelety. Thus, if one set&;* := x4,

it does not make sense to speak of the spectrud¥ afithout a
reference to the chosen analyzingvelet.

The large deviation spectruify («) is defined as follows:

log Ny (a)
log n

fg¢(a) = lim lim sup
e=0 poo
Note that, whatever the choice Bf", f, always ranges iR* U
{—o0}. The value—co corresponds to values of the coarse-grained
exponent which are not observed at all sufficiently small scales.

In [10], a theoretical approach for signal denoising, based on the
use of the pointwise blder exponent and the associated multifrac-
tal spectrum, was investigated. A practical approach based on the
local Hélder exponent is detailed in [6] in a functional analysis
frame, and in [11] in a stochastic frame. In these works, denoising
is performed through an increase of theldéiEr exponenty in an
non-parametric fashion.

We develop here another technique based on the multifractal
spectrum rather than the use of the sotddé exponent. This will
in general allow for more robust estimates, since one uses a higher
level description subsuming information on the whole signal. In
addition, we adopt a semi-parametric point of view. More pre-
cisely, we make the assumption that the considered signals belong
to a given set of parameterized classes, that is described now.

Let F be the set of lower semi-continuous functions from
R* to RT U {—cc}. We consider classes of random functions
X(t),t € ]0,1], defined on, F, IP) described by Definition (2)
below. Each clas§(g,) is characterized by the functional pa-
rameterg € F and a wavelet) such that the sef); 1 };,1 forms
a basis ofL.2. Let K be a positive constant and define:

P (a, K) =P x IP; (o — & < 282zl o 4 o)

Definition 2
S(g,¢) ={X :3K > 0,jo € Z :Vj > jo,xj, and z; s

are identically distributed for (k, k') € {0,1,...27 — 1} and

262Bi8) — g(a) + Rnc(a)} where R,..(a) is such that:

lim. 0 limy 00 Rn,c (@) = 0 uniformly in a.

The assumption that, foi large enough, thevavelet coeffi-
cients(z; ) at scalej are identically distributed entails that:

log, (K |xz; k
(o, K) = IPXIPj(a—6<7Og2(_|,xJ’L|)<a+5)

< 10g2(K|ﬁﬂj,k|)

P(a — <a+e)

As a consequence, definition (2) has a simple interpretation in
terms of multifractal analysis: For a givemavelety, we con-
sider the set of random signal$ such that the normalized signal

K X has deterministic multifractal spectrufy (o) (with respect

to ¢) equal tol + g, with the following additional conditionF,
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FX = F:*. Obviously, from this point of view, it does not make
sense to require prior knowledgeEf‘ in the Bayesian approach.
We thus present a "degenerated” version of (2) which uses as input
to their limit, allowing meaningful inference. a single real parameter instead of the whole spectrum. The heuris-
The classesS(g,v) encompass a fairly wide variety of signals. tic is as follows: From a regularity point of view, an important
Most models of (multi-)fractal processes and certain other "clas- information contained in the spectrum is $tgport, i.e. the set of
sical” processes belong to such classes. These include IFS, mulall occurring Hilder exponents. Leto denote the smallest regu-
tiplicative cascades, fractional Brownian motion and stable pro- |arity actually observed in the signal. While the shapes offihe
cesses. Such processes have been used in the modelling of Interngpectra obtained with different analyzingvelets depends on the

is obtained as a limit iy rather than dim sup, this limit being
attained uniformly in tax. This condition ensures that, for suffi-
ciently largey, the rescaled statistics of theg ; are close enough

traffic, financial records, speech signals, medical images and morewavelet, their support are always included[if, co). The "flat

See [5] for a study of certain classes of processeHin1).

5. BAYESIAN DENOISING IN S(g,v)

We recall here the main steps in the classiMakimum a Posteri-

ori (MAP) approach in a Bayesian frame, adapted to our setting.

We observe the noisy sign#l, and we assume that = X + B,
whereB is a "noise” independent from the original sigrié| with
known law. Thus, we havey; » = z;x + bj . The MAP es-
timate Z; , of z; , from the observationy; . is defined to be an
argument that maximizeB(z; /y;x). Using Bayes rules, and
sincelP(y;,x) does not depend ary ;,, maximizinglP(z; x /y;,x)
amounts to maximizing the produ(y;,./z;x)P(z;%). The
MAP estimate is thust; , = argmax [IP(y;,x/x)P(z)].

The termiP(y;,x /) is easily computed from the law @ if
one assumes thdk is white, since thé; ; then have the same law
asB (recall that we use orthonormafavelets). The priolP(z; )
is deduced from our assumption th€tbelongs taS(g, ) in the

following way. Forz > 0, seta; (z) = %.

Kl|zjx|)

P(|z; 1| = ) = P <l°g2(_J = q; (x)) ~ 99(9(a;(@)-1)

This leads to define aapproximate Bayesian MAP estimate as:

log, (Rz)

) + log, (IP(yj,1/2))Isg(y; »)

X )
where sgiy) is the sign ofy andK = (sup;s, ;, sup, (z;1)) "
The estimate foK can be heuristically justified as follows: Writ-
ing 282K 12ikl) ~ o with @ > 0 implies thatK|z; | < 1 forall
couples {, k). K is chosen as the smallest normalizing factor that
entails the latter inequality.

&;, = argmax; . o[jg(

spectrum”1jao, o) thus contains intrinsic information. Further-
more, it only depends on the positive real Re-writing (2) with
a flat spectrum yields the following explicit simple expression:

(4)
(6)

Althoughay is really a prior information, it can be estimated from
the noisy observations (see [5]). In this respect, it is comparable to
the threshold used in the classical hard or saftelet threshold-

ing scheme. Furthermore, in applications, it is useful to think of
ap rather as a tuning parameter: Increasingyields a smoother
estimate (since the original signal is assumed to have a larger min-
imal exponent). It is interesting to compare (2) with, e.g. the hard-
thresholding policy on thevavelet coefficients. See [5] for more.

Yj.k if K|yj,k| < 2-i%0
2799 otherwise

Tj.k

6. NUMERICAL EXPERIMENTS

We show some results on synthetic data. All original signals are
corrupted with additive Gaussian white noise. We display in each
case the result of the Bayesian multifractal denoising and the clas-
sical hard-thresholding technique. For all procedures and all sig-
nals, the parameters were manually set so as to obtain the best fit
to the known original signal. By and large, the following conclu-
sions can be drawn from these experiments. First, it is seen that,
for irregular signals such as the ones considered here which be-
long toS(g, 1), the Bayesian method yields more satisfactory re-
sults than classicavavelet thresholding.n particul ar, this method
preserves a roughly correct regularity along the path, while the
wavelet shrinkage yields a signal with both too smooth and too
irregular regions. Second, it appears that using the degenerate in-
formation provided by the "flat” spectrum does not significantly
decrease the quality of the denoising.

In our experiments, we shall deal with the case where the noise is

centered, Gaussian, with variangg The MAP estimate reads:

L) - O sar) @

. .1
&;, = argma; o [jig(

While (2) gives an explicit formula for denoising, it is of-

6.1. A general type of signals irS(g, )

We consider signals of the following kind:

S = {X : |$j,k~| = Kﬁj,k27j’y} (6)

where K and~ are positive constants and eagh, is a random

ten of little practical use. Indeed, in most applications, one does yariable supported in0,1]. All ¢ are independent, and they

not know to the multifractal spectrum &f: Without an evaluation
of g, it is not possible to use (2) to obtain ;. In addition, one
should recall thaF, depends in general on the analyzingvelet.

One would thus need to know the shape of the spectrum for the

have the same law level-wise, i.e; , ande; ;s are identically
distributed with probability distributiop; for all j, &, k. Further-
more, we suppose thaf(0) < 1 for infinitely many .

Depending on the law;, the local regularity behaviour of

specificwavelet in use. Furthermore, a major aim of our approach the functions inS may be very different. Here, we will consider

is to be able to extract the multifractal features¥firom the de-
noised signalX: A strong justification for the use of our multi-
fractal Bayesian approach is to be able to estinl@feas follows.

a) denoiseY’, b) evaluate numerically the spectruﬁgx, c) set

the particular case of signals with uniformly distributedvelet
coefficients. Other examples are discussed in [5]. More precisely,
for all j, we takep; to be the uniform law orf0, 1], i.e. thee; x

are iid random variables uniformly distributed(in 1]. It is easy
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to see that, for alt, almost surelyq(t) = v — 1/2. Furthermore,
Fy(a) =1fora =+~ —1/2 andF,(a) = —oo otherwise.
Tests with these type of signals are displayed on figure 1.

6.2. Fractional Brownian motion

[9] K. Daoudi, J. Llévy Véhel, and Y. Meyer, “Construction of
functions with prescribed local regularityConstructive Ap-
proximation, vol. 014(03), pp. 349-385, 1998.

[10] J. Lévy Véhel and B. Guiheneuf, “Multifractal Image De-
noising,” SCIA, 1997.

Our second type of signals features one of the simplest fractal[11] P.Legrand and J.&vy Véhel, “Statistical denoising of irreg-

stochastic process, namely fractional Brownian motion (fBm). As
is well known, fBm is the zero mean Gaussian procEgs) with
covariance functionR(t, s) §(|t|2H + |82 — |t — s|?7),
whereH is a real number irf0, 1) ando is a real number. fBm
has stationary correlated increments wiigs 1/2. At all points,

the Holder exponent of fBm i$ almost surely. As said above, the
large deviation spectrum depends on the definitioi;bf If one
considers increments, then, almost surely, fonall

—00 if a<H
fola)=¢ H+1—a if H<a<H+1
—00 if a>H+1

Moreover, whether one computes the spectrum using increments 12

or wavelet coefficients, one gets thAt(«) is given by a plain
limit in j rather than dimsup. Together with the stationarity
property of thewavelet coefficients, this entails that fBm belongs
to a classS(g, ). If one defines th&;* to be wavelet coefficients,
the spectrum will depend on the analyziwgvelety. All spectra
with upper envelop equal to the characteristic functiofiféfoo)
may be obtained with an adequate choice)ofThe result of our
denoising procedure will thus in principle beavelet-dependent.
The influence of thevavelet is controlled through the choice of the
prior, i.e. the multifractal spectrum among all admissible ones. In

practice, we found that few variations were observed if one uses

a Daubechiesvavelet with length between 2 and 20, and a non-
increasing spectrum supported P, co) with fo(H) = 1. In
particular, takingf, to be the theoretical spectrum obtained with
increments, or taking, (o) = 1 for @« > H and —oco otherwise
(the flat spectrum), leads to comparable results (see figure 2).
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Fig. 1. First line: Signal with uniformly distributeel; ;, , K = 32
andy = 1.3 (left), noisy version with additive Gaussian noise
(right). Second line: Denoising with hard-thresholding (left),

Bayesian denoising (right).
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Fig. 2. First line: fBm with H = 0.6 (left) and noisy version
with Gaussian noise (right). Second line: Denoised versions with
a classicalwavelet thresholding; hard-thresholding (left), soft-
thresholding (right). Third line: Bayesian denoising with the in-
crements’'spectrum (left), Bayesian denoising with the flat spec-

trum (right).
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