
RECONSTRUCTION OF BANDLIMITED SIGNALS FROM NOISY DATA BY
THRESHOLDING

Vu-Luu Nguyen and M. Pawlak

Department of Electrical and Computer Engineering
University of Manitoba,Winnipeg, Manitoba R3T 5V6, Canada

Emails:{nvluu, pawlak}@ee.umanitoba.ca

ABSTRACT

The problem of recovering bandlimited signals from dis-
crete and noisy data is studied. A non-linear signal pro-
cessing algorithm based on thresholding noisy data prior to
reconstruction is proposed for improving the accuracy and
robustness of reconstruction. The upper bound and the exact
formula for mean integrated squared error of the proposed
reconstruction scheme is established. The performance of
the proposed reconstruction scheme is compared to that of
the classical Whittaker-Shannon interpolation scheme.

1. INTRODUCTION AND PRELIMINARIES

The Whittaker-Shannon (W-S) sampling theorem plays a
fundamental role in representing signals and images in the
discrete domain. The result may be briefly stated as follows.
Let signalx(t) belong to a class ofL2(R) signals where its
Fourier transformX(ω) vanishes outside the finite interval
(−Ω, Ω), i.e. X(ω) = 0 for |ω| > Ω. The finite numberΩ
is called the signal’s bandwidth and the class of signals with
this property is often referred to as the class of bandlim-
ited signals, which we will denoteBL(Ω) in the subsequent
discussion.

The W-S sampling theorem says that everyx(t) ∈ BL(Ω)
can be reconstructed exactly from its discrete samples
x(kτ), k = 0,±1,±2, ...±∞, by:

x(t) =
∞∑

k=−∞
x(kτ)sinc

(
t

τ
− k

)
. (1.1)

provided thatτ ≤ π
Ω , wheresinc(t) = sin(πt)

πt .
A number of properties and extensions of (1.1) have

been given in literature. In particular, truncation, aliasing,
location (jitter), amplitude errors of the W-S interpolation
series (1.1) have been examined. Furthermore, generaliza-
tions to multiple dimensions, random signals, not neces-
sarily bandlimited signals, missing data, wavelet subspaces
and irregular sampling have been proposed. We refer to
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[1],[2],[3],[4] for an extensive overview of the theory and
applications of (1.1) and its extensions.

Only recently, the statistical aspects of the W-S sam-
pling theorem, i.e. the statistical analysis of (1.1) when only
finite record of noisy data is available, have been throughly
investigated [3],[5],[6],[7], [8]. In these studies, the follow-
ing observation model was considered:

yk = x(kτ) + εk = xk + εk, |k| ≤ n (1.2)

where{εk} is an additive noise process. We shall assume
in this paper that{εk} is a zero-mean white Gaussian noise
process, independent of{xk} and having the varianceσ2.

The naive reconstruction algorithm would replaces
{x(kτ)} in (1.1) by{yk} yielding the following estimate:

x̃n(t) =
∑

|k|≤n

yksinc
(

t

τ
− k

)
. (1.3)

In the subsequent discussions, we shall refer to this recon-
struction scheme as the Whittaker-Shannon interpolation.

Let us consider mean integrated squared error (MISE)
as a measure of performance ofx̃n(t) and other estimates
examined in the paper.

MISE(x̃n) = E

[∫ ∞

−∞
(x̃n(t)− x(t))2dt

]
. (1.4)

Due to Paseval’s formula, the error can be expressed as
follows, see [7]:

MISE(x̃n) = τ
∑

|k|≤n

E[(yk − xk)2] + τ
∑

|k|>n

x2
k

= τσ2(2n + 1) + τ
∑

|k|>n

x2
k. (1.5)

The first term in the right-hand side of (1.5) represents
the error due to the noise, whereas the second term repre-
sents the truncation error. For any finiteτ , the first term
approaches infinity, whereas the second term approaches
zero asn → ∞. Hence,MISE(x̃n) → ∞ asn → ∞.
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Therefore, the reconstruction scheme based on (1.3) yields
a diverged reconstruction.

The interpretation of the above is that the signal recon-
struction based on the Whittaker-Shannon interpolation in
(1.3) does not have noise-diminishing property. This is due
to the fact that this reconstruction scheme interpolates noise.

Several the reconstruction schemes have been proposed
in order to overcome this problem. For instance, moving
average filtering and exponential weighting algorithms have
been proposed for smoothing the noisy data prior to recon-
struction [5],[6],[8]. However, since these reconstruction
schemes require very high sampling rate, their applicability
is somehow limited.

In this paper, we propose a reconstruction scheme for
reconstruction of bandlimited signals from noisy data when
oversampling is not the option, i.e. whenτ = τq = π/Ω.
The proposed scheme does not require oversampling but
effectively reduce the contribution of noise in the recon-
structed signal, especially when signal-to-noise ratio (SNR)
is low. It consists of two steps as follows:

Step 1:Thresholding noisy samples to obtain:

ŷk =

{
yk if |yk| > T

0 if |yk| ≤ T.
(1.6)

Step 2:Using{ŷk} founded above to form the following
estimate:

x̂n(t) =
∑

|k|≤n

ŷksinc
(

t

τq
− k

)
. (1.7)

The idea of using thresholding for removal of noise is
well-known in wavelet literature [9],[10]. Unlike wavelet
thresholding procedures where wavelet coefficients are
thresholded, in our proposed reconstruction scheme, thresh-
olding is applied directly to the plain data, which is a
sequence of signal’s samples.

The paper is organized as follows. In section 2, we give
the upper bound as well as the exact formula for computing
MISE of the proposed reconstruction scheme. In section 3,
we investigate the influence of the choice of thresholding
valueT on the reconstruction accuracy. Section 4 provides
some simulation results. Section 5 concludes the paper.

2. ERROR ANALYSIS

The exact formula and upper bound for MISE of the
proposed reconstruction scheme are presented without proof
in the subsequent theorems.

Theorem 2.1. Mean integrated squared error of the esti-

matex̂n(t) is found to be:

MISE(x̂n) = τqσ
2(2n + 1)− τqσ

2 · 1√
π

{

∑

|k|≤n;|xk|<T

[
γ

(
3
2
,
(xk − T )2

2σ2

)
+ γ

(
3
2
,
(xk + T )2

2σ2

)]

+
∑

|k|≤n;|xk|≥T

[
γ

(
3
2
,
(xk − T )2

2σ2

)
− γ

(
3
2
,
(xk + T )2

2σ2

)]

−
√

π

2

∑

|k|≤n

x2
k

σ2

[
erf

(
xk + T

σ
√

2

)
− erf

(
xk − T

σ
√

2

)]}

+ τq

∑

|k|>n

x2
k. (2.1)

where,γ(α, x) and erf(x) are incomplete gamma function
and error function, respectively [11].

Theorem 2.2. Mean integrated squared error of̂xn(t) is
upper bounded by:

MISE(x̂n) ≤ τqσ
2(2n + 1)

− τqσ
2(2n + 1)

[
2√
π

γ

(
3
2
,

T 2

2σ2

)

−
∑
|k|≤n x2

k

σ2(2n + 1)
erf

(
T

σ
√

2

)]
+ τq

∑

|k|>n

x2
k. (2.2)

3. CHOICE OF THRESHOLD T

Let

f(Gn, T ) =
2√
π

γ

(
3
2
,

T 2

2σ2

)
−Gnerf

(
T

σ
√

2

)
. (3.1)

where,Gn =
P
|k|≤n x2

k

σ2(2n+1) .
It should be noted that (2.2) can be re-written as follows:

∆ = MISE(x̃n)−MISE(x̂n)
≥ τqσ

2(2n + 1)f(Gn, T ). (3.2)

Consequently, to maximize∆, we have to chooseT
such thatf(Gn, T ) is maximum. Figure 1 plotsf(Gn, a)
as the function ofa for variousGn, wherea relates toT by
T = σ

√
a. Here, parametera is used to control the recon-

struction accuracy. The following conclusions can be drawn
from the plot:

• For Gn ≥ 1, one should selectT = 0. In this case,
the Whittaker-Shannon interpolation scheme yields
better reconstruction accuracy compared to the
proposed reconstruction scheme.
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Fig. 1. f(Gn, a) versusa

• For Gn < 1, T = 0 is no longer the best choice.
In fact, one should selectT ≥ 4σ. In this case, the
proposed reconstruction scheme yields better recon-
struction accuracy compared to Whittaker-Shannon
interpolation scheme.

Taking the above observation into account, we further
propose the following joint detection/estimation scheme for
reconstruction of bandlimited signals from noisy data:

Step 1:EstimatingP =
∑
|k|≤n x2

k from data. Comput-
ing Gn using the estimatedP

Step 2: If Gn ≥ 1, settingT = 0. Otherwise, setting
T = 4σ.

Step 3: Passing data through the thresholding device,
and then, the reconstruction filter to reconstruct the original
signal.

Remark3.1. For sufficiently largen and/or for fast decay
functions, we do not need to estimateP in order to deter-
mineGn. In this case we have

∑
|k|≤n x2

k ≈ E0/τq, which
implies Gn ≈ E0/(τqσ

2(2n + 1)). We assume that the
signal-to-noise ratioE0/σ2 is known in advance.

Remark3.2. For n sufficiently large and/or for fast decay
functions, we haveMISE(x̃n) ≈ τqσ

2(2n + 1). Let R =
MISE(x̂n)/MISE(x̃n). We can re-write (3.2) as follows:

R ≤ 1− f(Gn, T ) = 1− f

(
E0

τqσ2(2n + 1)
, T

)
. (3.3)

Figure 2 plots the right-hand side of (3.3) as the function
of E0/σ2 when the duration of measurement
τq(2n + 1) = 1 second,T = 0 andT = 4σ, respectively.
The plot clearly shows the advantage of using thresholding-
based reconstruction scheme for the region of low SNR

The behavior of∆ andR asn → ∞ is stated in the
following theorem:

Theorem 3.1. SelectingT = 4σ, then∆ →∞ andR → 0
asn →∞
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Fig. 2. Upper bound ofR versusE0/σ2

4. SIMULATION RESULTS

The signal we selected for simulation is

x(t) =
√

2fmaxsinc(2fmaxt).

with fmax = 3900 Hz. Therefore,x(t) is a unit energy
BL(Ω) signal, whereΩ = 2πfmax is the corresponding
radian frequency.

The experiment was repeatedM = 100 times for var-
ious realization of random errors{εk}. The empirical coun-
terpart of MISE, further called EMISE, was calculated
according to the following formula:

EMISE(x̂n) =
τ̄

M

M∑

j=1

n∑

k=−n

[x̂(kτ̄)− x(kτ̄)]2. (4.1)

whereτ̄ ¿ τq is the simulation sampling period.
Figure 3 plotsEMISE(x̂n) as a function ofE0/σ2

whenT = 4σ was chosen. In this simulation,2n = 100
andτq = 1.25 · 10−4 seconds (sampling frequency is just
slightly larger than the Nyquist rate) were selected. For
comparison,EMISE(x̃n) andEMISE of reconstruction
schemes based on moving average (MA) filtering and me-
dian filtering are also plotted. For MA-based and median-
based signal reconstructions, the over-sampling factor of 2,
length-3 moving average filter and length-3 median filter
were used. The plot clearly shows the advantage of us-
ing the proposed reconstruction scheme over the others in
the region of low SNR. The figure also indicates that the
signal reconstruction scheme based on thresholding is very
robust again noise variance, while the Whittaker-Shannon
interpolation scheme is not.

Figure 4 plotsEMISE(x̂n) as a function ofn when
T = 4σ was chosen. For comparison,EMISE(x̃n) is also
plotted. In this simulation,E0/σ2 = −5 dB and
τq = 1.25 · 10−4 seconds were selected. The plot clearly
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Fig. 3. EMISE(x̂n) versusE0/σ2

shows that theEMISE of the proposed reconstruction
scheme is less dependent onn compared to that of Whittaker-
Shannon interpolation scheme. It also indicates that the
performance gap between two reconstruction schemes
becomes wider asn increases.
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Fig. 4. EMISE(x̂n) versusn

5. CONCLUSIONS

A signal reconstruction scheme based on thresholding was
proposed for recovering band-limited signals from noisy data.
It was shown that in the region of low SNR, the proposed
reconstruction scheme gives better reconstruction accuracy
compared to the classical reconstruction scheme based on
Whittaker-Shannon interpolation. This improvement can
be achieved without requiring oversampling. In fact, sam-
pling at the Nyquist rate was considered in this paper. In
contrast, in the region of high SNR, it is always better to
use the Whittaker-Shannon interpolation for signal recon-
struction.

In addition, by adaptively tuning the threshold valueT
with noise variance, the robust signal reconstruction can be
obtained. The MISE of the proposed reconstruction scheme
increases asn increases, but at much slower rate compared
to that of the classical Whittaker-Shannon interpolation
scheme.
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