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ABSTRACT approximated by amndependent identically distributed (iid) se-

. . guence of random variables with Gamma distribution whose pa-
The paper addresses the important problem of signal segmentarameters ard and L, [3], [2, p. 99].

tion, when signals are corrupted by multiplicative noise. A hierar- « The uncorrupted line of the SAR image intensity, can

chica] Bayesian anglysis Is proposed to estimate the change-poinBe modeled byK steps, wherK fields with different reflectivities
locations and amplitudes. However, closed form expressions ofalre considered. This model referred to as the Cartoon Model [2,

the change-point parameter estimators are difficult to obtain. The 197] is a good approximation for important scene types such as
proposed methodology draws samples distributed according to the: 9 pp P yp

change-point parameter posteriors by a Metropolis-within-Gibbs agricultural fields.
algorithm. The main advantage of the algorithm is that it allows Denoteli -1 (with lo = 0 andix = N) as the sample

. L . point after which there is théth sudden change in the signal
g;:;?gg?i}lgge?f the parameters and hyperparameters of the hi (@i = 1,..., K). In the following, the integerg_,will be referred

to as change locations and the corresponding actual change loca-
1. INTRODUCTION AND PROBLEM FORMULATION tions aret;_; = li_1 T + 7, With 0 < 7 < T'. The uncorrupted
line of the SAR image can then be defined by:
Change-point detection has received considerable attention in sig-
nal and image processing applications. These applications include m, =4, neli,l], i=1,.,K 2
sighal segmentation, fault detection, monitoring (for an overview
see [1] and references therein) or image segmentation [2]. MostwhereA; > 0 is theith step amplitude.
change-point detection strategies are based on the signal (or im-  This paper addresses the problem of estimating the change-
age) characteristics and on the statistical properties of the noisepoint locationsl; for ¢ € {1,..., K — 1} from the observed data
This paper focuses on signals corrupted by multiplicative non Gausv.. This edge detection problem is crucial in image segmenta-
sian speckle noise as in [2, 3, 4]. Such signals have been showrion. Once the change-point locations have been estimated, the
to model accurately lines or columns of SAR images. As a conse-line of the SAR image can be recovered by estimating the change-
quence, their segmentation is interesting for SAR image edge de{oint amplitudesA;. Consequently, the edge detection problem
tection. It is also interesting to note that these signals could modelcan also be used to recover the radar reflectivity (ideal image with-
with minor changes (regarding the noise statistics) the Gaussiarout speckle) (problem usually referred to as speckle filtering).
signals with piecewise-constant variances studied in [5]. Many change-point detection strategies have already been stud-
The complex SAR reflectivity of a scene constitutes the pri- ied in the literature for the segmentation of SAR images. Fjortoft
mary geophysical data. However, a variety of other images can beet als [3] have proposed to model the change locations as random

obtained from the complex reflectivity. For instansiace phase Poisson points and have derived the minimum mean square error
provides no information, we can get rid of it and use only am- (MMSE) estimator of the image reflectivity. By comparing the re-
plitude, log, or intensity data [2, p. 91]. This paper studies the flectivity MMSE estimator on opposite sides of the central pixel,
segmentation of SAR image intensities as in [2, chapeiB]. A they have obtained the so-called Ratio Of Exponentially Weighted
given line (or column) of the complex reflectivity SAR image will Averages (ROEWA) detector. The ROEWA detector has shown in-
be modeled as: teresting properties for the detection of multiple changes corrupted
Vn = byptin, n=1,..,N (1) by multiplicative speckle noise [3]. Bayesian strategies studied in
[7] have been adapted to the segmentation of piecewise constant
whereT is the sampling periody, = b(nT), m, = m(nT), processes corrupted by multiplicative speckle noise [8]. Appropri-

v, = v(nT') are the multiplicative speckle noise, the uncorrupted ate priors for the change locations and amplitudes allow to estimate
and corrupted line of the SAR image intensity respectively. Note the change locations and amplitudes. However, the parameters of
that the present study focuses on the detection of vertical edgesthese priors, referred to as hyperparameters, have to be adjusted
However, two-dimensional implementations similar to those pre- very carefully since they control the resolution level of the seg-
sented in [3, 6] can easily be developed using the proposed methodmentation [7]. The estimation of hyperparameters was addressed
ology. The properties of the signal and noise sequebceaadm,, in [8] by using an empirical Bayes analysis. Empirical Bayes anal-
can be defined as follows: ysis consists of estimating the unknown hyperparameters from the
e the autocovariance function of the speckle may decreaseobserved data, by using an appropriate estimation technique such
very rapidly. In this case, the speckle noise sequéncean be as the moment method or the maximum likelihood method [9, p.
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307]. The unknown hyperparameters are then replaced by their ese Independent Inverse Gamma (IG) priors (denoted- ZG(a, 7))
timated values in the Bayesian model. However, empirical Bayesare chosen for the step amplitudes:
analysis may suffer from several problems. In particular, the ap-
proximated posterior obtained after replacing the hyperparameters K(r) 4% exp (_%)
by their estimates is only acceptable for large sample sizes (see [9, f(A|r,a,v) = 71
p. 309], for more details). The main contribution of this paper is to i=1 I'(a) dic*
study a hierarchical Bayesian analysis (HBA) for the change-point )
detection problem. Such analysis allows to estimate the changeWwherea > 0 and~y > 0 are two constantd;(¢) is the standard
point locations and amplitudes as well as the hyperparameters. Gamma functiorT (t) = [, u'~e~"du andI +(.) is an indi-
The Bayesian change-point detector is studied in se@ion cator function {z+(t) = 1if t € RT andIz+(t) = 0if ¢t ¢ R™).
Section3 addresses the problem of hyperparameter estimation byA suitable choice of parametessand~y allow to incorporate ei-
using HBA. Simulation results and conclusions are reported in sec-ther very vague or more specific prior information about the step

Ig+ (Al) (7)

tions4 and5. amplitude. A motivation for choosing the IG prior is that the IG
belongs to the conjugate family of priors fdrwith respect to the
2. BAYESIAN CHANGE-POINT DETECTION likelihood f (v|6). In other words,f (A|r,«a,v) has the same

Bayesian estimators are based on the posterior distribution of thejtr_?ﬁfgrﬁelzzfa;gl et)i;:;\’”hi?a]; t(:klli)irﬁewregvtii?w a; Ha fu;ctlon)of
unknown parameters. The unknown parameters for the problem’: y yticarty  integration p{6] v, A, &,y

) . . . - with respect ta4;, i.e., allows marginalization.
defined in sectiorl are the change-point locatiohs the change- To summarize, the prior distribution of the unknown parame-
point amplitudes4; and the number of change-poifts A stan- ' P P

dard reparametrization consists of defining indicatpisuch that: ter vectord is defined as follows

{ r; =1 ifthereis a change-point at instajt f(0]@) = f(Alr,a,7) f(r|A) ®

_ 3
r; =0 otherwise ®) where® = (A, a,7)7.

forj =1,..., N — 1. Conventionallyyx = 1 such that the num-

ber of step changes equals the number of steps dettteyl = 2.3. Posterior distribution

Zj\’zl rj withr = (r1,...,7x-1)" . When using the indicators, Using Bayes’ theorem, we can express the parameter posterior pdf
the unknown parameter vector for the change-point detection prob-as:

lemisf = (r, A)", whereA = (A, ..., Ax)”. Any Bayesian in- f(0lv,®) x f(v]0) f(O]P) 9

ference is based on the posterior distributio ebnditional upon

the observations,,,n = 1, ..., N. This posterior distribution is
usually determined from the Bayes rule, which requires to know
the likelihood of the observations and to define appropriate priors
for the unknown parameters.

where f (v|6) and f (6| ®) have been defined in (5) and (8).
Change-point detection may only require the estimation of the
change-point vector. In this case, the so called “nuisance pa-
rameters”A; can be eliminated by integrating out; from the
posterior pdf (9). Some straightforward computations allow to ob-
2.1. Likelihood tain the marginal posterior of

Since the multiplicative speckle noise is distributed according to K(r) T (a + Lng(r))
L . - o+ Lng(r

a Gamma dls_trlbutlon, the likelihood of the observed data can be F(r|v, ®) = C(v, L) f(r|\) H fn Ta

expressed as: ko1 (v + LSk(r)) ™"

(10)

N K K
L-1 1 LS, . r \N_n _ . .
(v K, Al o Hlm H pr exp (— Z A, ) 4) with C(v, L) = (ﬁ) [1;., v/~ ' Equivalently, the marginal
= k=1 k=1 pdf of  can be written ag (r| v, ®) « exp (—U (7| v, ®)) where

with ny, = Iy —I—1 andSy = 31, v;. Equivalently, the o
likelihood can be expressed as a function of the indicatpesd U (r|v, ®) = BK(r) + Z lo (y + LSy (r))Lmr ()t )

the change amplitudes: I (a+ Lng(r))

k=1

Note that the paramete? is a decreasing function of. Con-
sequently, the smalles, the higher thea priori probability of a

2.9 Parameter Priors change and the fewer the omissions. On the other hand, the bigger
3, the fewer the false alarms. The parameéteontrols the resolu-

tion level of the segmentation: changes with small amplitudes will
be detected for small values gf

£ (0]6) o exp (—L ) {Sk(T‘) + g (r) log Ak}) ©) is referred to as the energy function aid= log 5* — log F‘Y(Z—)
k=

In Bayesian inference, the choice of parameter priors is important
and has received much attention in the literature [9]. This study
uses the following priors for the change-point detection problem:

e IndependenBernoulli priors are chosen for the change-point
locations: 3. HYPERPARAMETER ESTIMATION USING HBA

Fr|A) = A\E()-1 (1- )\)N—K(r) r € {0, 1}N—1 (6) The Bayesian analysis summarized in the previous section assumes
that the hyparameters o and~ are known a priori. This section
The parametek € )0, 1] is the Bernoulli parameter which is tlae proposes to estimate these parameters by using HBA. More pre-
priori probability of having a change-point at a given position. cisely, we assume that the Bayesian statistical mogiel|#), f(6))
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is such thatf(6) is the marginal distribution of (4, ), where of r consists of introducing a Metropolis-Hastings step. Here,
® = (A, a,7)T contains the hyperparameters: we propose to apply the methodology described in [8]. Differ-
ent kernels are used in turn to increase the algorithm convergence
f(6) = /f(gy 3)dd = /f(9|¢)f(¢)dq> (12) (the resulting hybrid strategy is calledbgcle). The Markov chain
state space and current state are denotef by {0,1}¥ ! and
r" = (r!)i=1,...n-1 € €, respectively. The Markov chain
moves are defined as follows:
a) The candidate™™ € Q is drawn independently of the cur-
rent location" yieldingtheindependence sampler [11] defined by
_ _ 1 _ q(z"THr") = g(z" ), whereq is an instrumental distribution.
1(®) = FNf()fla) = 71R+(7)I]0’°[()\)6(a H a9 FE)r our| ex)perimgent] is)a Bernoulli distribution with parametey.
In this procedure, the candidat&™! is selected using the classi-
cal acceptance probability,
b) Local changes are made following thee-variable-at-a-
time MH algorithm. This variable-at-a-time step was suggested
for instance in [11, p. 10] to increase the convergence speed. A
random permutation of1, ..., N — 1} is uniformly drawn. Ac-
) . - ; . cording to this permutation, each component is flipped ftbta
in our implementation). As explained in [9, p. 291], by decom- 1 or from1 to 0. The move is then accepted with the usual accep-

posing the prior into several conditiqnal levels of djstributions, W€ tance probability. This move visits each site randomly and all sites
improve the robustness of the resulting Bayes estimator. As a con-,

) o : are visited in each scan.
sequence, HBA has been extensively stqdled in the literature (forThe decomposition of the target distribution as a function of the
motivations, see [9] and references therein).

L " energy functionf (r|v, ®) « exp (—U (r|v, ®)) allows to obtain
Asha rezult of HBA, thef)mt d'smbunogqu’ ) cqnd:jtlcénal the following acceptance probability (the instrumental distribution
upon the observations,, n = .1, ..., N, can be determined by us- ¢ in moves &) and b) is symmetric):
ing the hierarchical structure:

=zt if In(rand) < —U (2" v, @) + U (" |v, @
£(6,310) o £ (116) £(618) (@) ay  {onZ: o < T BT

"t =¢"  otherwise
Any Bayesian inference regarding the parameter vetisbased
on the posterior distributioffi (6|v). Unfortunately, a closed form
expression of the marginal distributigh(8|v) = [ f(6, ®|v)d®

In (12), f(®) is referred to as thea(priori) hyperparameter distri-
bution. In the proposed implementation, the hyperparameter dis-
tribution has been chosen as follows:

whered(.) is the Dirac delta function. In other words, is not
updated and set a priori ® = 1 (as in [10]), the prior probabil-

ity to have a change-point at a given positibiis supposed to be
uniform on]0, ¢[ and the hyperparameteris a priori distributed
according to a non-informative Jeffreys prior. Note that parameter
cis the only parameter which is adjusted in the algoritlara=(0.1

(16)
where rand is drawn according to a uniform distributior@r].
Determination of f(A|r, ®,v):
The pdf of the change amplitude vectdrconditioned upon the

is difficult to obtain. In such situation, Markov Chain Monte Carlo h | . he h d the ob
(MCMC) methods are classically used to draw samples accord-C ange ocation vector, the yperpar ameter vect@rand the ob-
servation vector can be expressed in closed form as follows

ing to the density of interest. This paper proposes to generate

samples(6”,®") = (A™,r", 4™, A") distributed according to K() exp (_ 'Y+I:45k(7‘))

f(_9,<I>|u) by using an hyt_)rid MC_:MC sampler which cpmbines f(Alr, ®,v) T(TI;H (17)
Gibbs steps and Metropolis-Hastings steps. Such algorithm some- 1 A k

times referred to as Metropolis-within-Gibbs algorithm has receive . . .

much attention in the literature (see for instance [11]). After asuf-quu'mlemly'f(AV’ ®, v) is the product o (r) IG pdfs:
ficiently long burn-in, the MMSE estimator of the change-point K(r)

parameters (locations and amplitudes) can be determined by com-  f(A|r, ®,v) = H ZG (a+ Lny(r),y + LSk(r))  (18)
puting the time average of the Markov chain output samples. The k=1

?;H:Ejegélz:/\elps of the Metropolis-within-Gibbs algorithm are de- s, consequence, samples distributed according( tir, ®, v)

can be generated with standard |G generators.

3.1. Initialization

3.3. Generation of samplesdistributed accordingto f(®|6™~*
Set(6°, @°) = (r°, A%, X°,7°) andn = 1. ! plesdistribu ingto f(2[6"~", v)

As previously, in order to simplify notations, we drop the subscript
3.2. Generation of samplesdistributed accordingto f(6|®" *,v) "' fromall variables atiteration. Egs (5), (6), (7) and (13) show

In order to simplify notations, we drop the subscript’ from that
variables at iteratiom. The distribution ofy = (A, r) given the K@)
hyperparameter vectdr can be expressed as F(@]0,v) oc AEO=H A \)N=EO 2R =1 o | —y Z T
i=1 g
[612.0) = (Al 2 0)f(r|,v) (15) 19)

= f(Alr,@,v) [ f(A,r|® v)dA As a consequence, the second step of the Gibbs sampler consists

Equation (15) shows that the determinationf¢f|®, v) requires of sampling and-y as follows

to determinef (A|r, ®, v) and f(r|®, v). A~ Be(K(r),N — K(r)+ 1)
Deter mination of f(r|®, v): ~G (aK(r) FE) L) (20)
The pdf ofr conditioned upon the hyperparameter veckoand 7 Tei=l Ay

the observation vectar has been obtained in (10). A possibil-  whereBe(a,b) andG(a, b) denote the Beta and Gamma distribu-
ity to sample from the non standard full conditional distribution tjons with parameters andb (see [9, p. 381)).

VI - 167



4. SIMULATION RESULTS [3]
Many simulations have been performed to illustrate the previous
theoretical results. This papers considers a line of syntddtiok [4]
image ¢ = 4) depicted in Fig.1. The change-point parameters
areA = (33.74,16.73,66.93,16.73), | = (0,21,112,132,174) [5]

and the number of samplesé = 174.

Indicators distributed according #( r| v) are simulated with
the algorithm detailed in this paper. The minimum mean square er- [6]
ror (MMSE) estimator of- is then computed by the time average
of the last Markov chain output samples (convergence is guaran-

teed by the ergodic theorem for Markov chains). Figshows 7]
the estimated posterior distributigi{r|v) computed afted000
iterations (i.e.1000 cycles) of the algorithm and a burn-in period  [8]

of 1000 cycles. The MMSE estimator of provides the posterior
change-point probabilities which are in good agreement with the
true change locations. _ [9

The algorithm studied in this paper draws vectdrdistributed
according to the distributioffi( r| v). For each vector, the num-
ber of change-points i& (r') = Zj\;l ri. As a consequence, the
posterior distribution ofK can be easily estimated from the vec-
torsr*. Fig. 2 shows the estimated posterior distributionfofr).
The histogram has a maximum value #K(r) = 4, which is in
good agreement with the actual number of change-points (indeed,
we have assumed that there is a chang¥ at 174).

Once the change-point locations been determined, the signal
amplitudes can be estimated for signal reconstruction. Hig.
shows the histograms of the signal amplitutieconditioned upon
K = 4. These histograms have to be compared with the true val-
ues of parameterd;. Note that the noise has more influence on
large amplitudes, which explains the bias for the estimatésof

(10]

(11]

Line of a SAR image
T T

L L L
120 140 160

L L L
[ 20 40 60 80

100

Posterior probabiliies for change-point positions.

0.8 B

0.6 ~

0.4 ~

0.2 -

0 20 40 60 80 120 140 160

Fig. 1. Line of a SAR image and the estimated posterior change-

point probabilities.
5. CONCLUSIONS

This paper studied the problem of detecting change-points in sig-
nals corrupted by multiplicative speckle noise. A hierarchical model
similar to the model studied in [10] allowed to estimate jointly the
change-point parameters and the model hyperparameters. The ap-
plication of this model to SAR image edge detection requires to
define an appropriate edge strength map [3]. This application is
currently under investigation.
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