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ABSTRACT

The paper addresses the important problem of signal segmenta-
tion, when signals are corrupted by multiplicative noise. A hierar-
chical Bayesian analysis is proposed to estimate the change-point
locations and amplitudes. However, closed form expressions of
the change-point parameter estimators are difficult to obtain. The
proposed methodology draws samples distributed according to the
change-point parameter posteriors by a Metropolis-within-Gibbs
algorithm. The main advantage of the algorithm is that it allows
joint estimation of the parameters and hyperparameters of the hi-
erarchical model.

1. INTRODUCTION AND PROBLEM FORMULATION

Change-point detection has received considerable attention in sig-
nal and image processing applications. These applications include
signal segmentation, fault detection, monitoring (for an overview
see [1] and references therein) or image segmentation [2]. Most
change-point detection strategies are based on the signal (or im-
age) characteristics and on the statistical properties of the noise.
This paper focuses on signals corrupted by multiplicative non Gaus-
sian speckle noise as in [2, 3, 4]. Such signals have been shown
to model accurately lines or columns of SAR images. As a conse-
quence, their segmentation is interesting for SAR image edge de-
tection. It is also interesting to note that these signals could model
with minor changes (regarding the noise statistics) the Gaussian
signals with piecewise-constant variances studied in [5].

The complex SAR reflectivity of a scene constitutes the pri-
mary geophysical data. However, a variety of other images can be
obtained from the complex reflectivity. For instance,since phase
provides no information, we can get rid of it and use only am-
plitude, log, or intensity data [2, p. 91]. This paper studies the
segmentation of SAR image intensities as in [2, chapter7], [3]. A
given line (or column) of the complex reflectivity SAR image will
be modeled as:

vn = bnmn, n = 1; :::; N (1)

whereT is the sampling period,bn = b(nT ), mn = m(nT ),
vn = v(nT ) are the multiplicative speckle noise, the uncorrupted
and corrupted line of the SAR image intensity respectively. Note
that the present study focuses on the detection of vertical edges.
However, two-dimensional implementations similar to those pre-
sented in [3, 6] can easily be developed using the proposed method-
ology. The properties of the signal and noise sequencesbn andmn

can be defined as follows:
� the autocovariance function of the speckle may decrease

very rapidly. In this case, the speckle noise sequencebn can be

approximated by anindependent identically distributed (iid) se-
quence of random variables with Gamma distribution whose pa-
rameters areL andL [3], [2, p. 99].

� The uncorrupted line of the SAR image intensitymn can
be modeled byK steps, whenK fields with different reflectivities
are considered. This model referred to as the Cartoon Model [2,
p. 197] is a good approximation for important scene types such as
agricultural fields.

Denote li�1 (with l0 = 0 and lK = N ) as the sample
point after which there is theith sudden change in the signal
(i = 1; :::; K). In the following, the integersli�1will be referred
to as change locations and the corresponding actual change loca-
tions areti�1 = li�1T + � , with 0 < � < T . The uncorrupted
line of the SAR image can then be defined by:

mn = Ai; n 2 ]li�1; li] ; i = 1; :::; K (2)

whereAi > 0 is theith step amplitude.
This paper addresses the problem of estimating the change-

point locationsli for i 2 f1; :::; K � 1g from the observed data
vn. This edge detection problem is crucial in image segmenta-
tion. Once the change-point locations have been estimated, the
line of the SAR image can be recovered by estimating the change-
point amplitudesAi. Consequently, the edge detection problem
can also be used to recover the radar reflectivity (ideal image with-
out speckle) (problem usually referred to as speckle filtering).

Many change-point detection strategies have already been stud-
ied in the literature for the segmentation of SAR images. Fjortoft
et als [3] have proposed to model the change locations as random
Poisson points and have derived the minimum mean square error
(MMSE) estimator of the image reflectivity. By comparing the re-
flectivity MMSE estimator on opposite sides of the central pixel,
they have obtained the so-called Ratio Of Exponentially Weighted
Averages (ROEWA) detector. The ROEWA detector has shown in-
teresting properties for the detection of multiple changes corrupted
by multiplicative speckle noise [3]. Bayesian strategies studied in
[7] have been adapted to the segmentation of piecewise constant
processes corrupted by multiplicative speckle noise [8]. Appropri-
ate priors for the change locations and amplitudes allow to estimate
the change locations and amplitudes. However, the parameters of
these priors, referred to as hyperparameters, have to be adjusted
very carefully since they control the resolution level of the seg-
mentation [7]. The estimation of hyperparameters was addressed
in [8] by using an empirical Bayes analysis. Empirical Bayes anal-
ysis consists of estimating the unknown hyperparameters from the
observed data, by using an appropriate estimation technique such
as the moment method or the maximum likelihood method [9, p.
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307]. The unknown hyperparameters are then replaced by their es-
timated values in the Bayesian model. However, empirical Bayes
analysis may suffer from several problems. In particular, the ap-
proximated posterior obtained after replacing the hyperparameters
by their estimates is only acceptable for large sample sizes (see [9,
p. 309], for more details). The main contribution of this paper is to
study a hierarchical Bayesian analysis (HBA) for the change-point
detection problem. Such analysis allows to estimate the change-
point locations and amplitudes as well as the hyperparameters.

The Bayesian change-point detector is studied in section2.
Section3 addresses the problem of hyperparameter estimation by
using HBA. Simulation results and conclusions are reported in sec-
tions4 and5.

2. BAYESIAN CHANGE-POINT DETECTION

Bayesian estimators are based on the posterior distribution of the
unknown parameters. The unknown parameters for the problem
defined in section1 are the change-point locationsli, the change-
point amplitudesAi and the number of change-pointsK. A stan-
dard reparametrization consists of defining indicatorsri such that:�

rj = 1 if there is a change-point at instantj
rj = 0 otherwise

(3)

for j = 1; :::; N � 1. Conventionally,rN = 1 such that the num-
ber of step changes equals the number of steps denotedK(r) =PN

j=1 rj with r = (r1; :::; rN�1)
T . When using the indicatorsri,

the unknown parameter vector for the change-point detection prob-
lem is� = (r; A)T , whereA = (A1; :::; AK)T . Any Bayesian in-
ference is based on the posterior distribution of� conditional upon
the observationsvn; n = 1; :::; N . This posterior distribution is
usually determined from the Bayes rule, which requires to know
the likelihood of the observations and to define appropriate priors
for the unknown parameters.

2.1. Likelihood

Since the multiplicative speckle noise is distributed according to
a Gamma distribution, the likelihood of the observed data can be
expressed as:

f (vjK;A; l) /
NY
i=1

vi
L�1

KY
k=1

1

ALnk
k

exp

 
�

KX
k=1

LSk
Ak

!
(4)

with nk = lk � lk�1 andSk =
Plk

i=lk�1+1 vi. Equivalently, the
likelihood can be expressed as a function of the indicatorsri and
the change amplitudes:

f (vj �) / exp

0
@�LK(r)X

k=1

�
Sk(r)

Ak

+ nk(r) logAk

�1A (5)

2.2. Parameter Priors
In Bayesian inference, the choice of parameter priors is important
and has received much attention in the literature [9]. This study
uses the following priors for the change-point detection problem:
� IndependentBernoulli priors are chosen for the change-point
locations:

f(rj�) = �K(r)�1 (1 � �)N�K(r) r 2 f0; 1gN�1 (6)

The parameter� 2 ]0; 1[ is the Bernoulli parameter which is thea
priori probability of having a change-point at a given position.

� Independent Inverse Gamma (IG) priors (denotedAi � IG(�; 
))
are chosen for the step amplitudes:

f (Aj r; �; 
) =

K(r)Y
i=1


� exp
�
� 


Ai

�
� (�)Ai

�+1
IR+ (Ai) (7)

where� > 0 and
 > 0 are two constants,�(t) is the standard
Gamma function� (t) =

R +1
0

ut�1e�udu andIR+(:) is an indi-
cator function (IR+(t) = 1 if t 2 R+ andIR+(t) = 0 if t =2 R+).
A suitable choice of parameters� and
 allow to incorporate ei-
ther very vague or more specific prior information about the step
amplitude. A motivation for choosing the IG prior is that the IG
belongs to the conjugate family of priors forA with respect to the
likelihood f (vj �). In other words,f (Aj r; �; 
) has the same
“structure” asf (vj �), whenf (vj �) is viewed as a function of
A. This yields analytically tractable integration off (�j v; �; �; 
)
with respect toAi, i.e., allows marginalization.

To summarize, the prior distribution of the unknown parame-
ter vector� is defined as follows

f (�j�) = f (Aj r; �; 
) f(rj�) (8)

where� = (�; �; 
)T .

2.3. Posterior distribution

Using Bayes’ theorem, we can express the parameter posterior pdf
as:

f (�j v;�) / f (vj �) f(�j�) (9)

where f (vj �) and f (�j�) have been defined in (5) and (8).
Change-point detection may only require the estimation of the
change-point vectorr. In this case, the so called “nuisance pa-
rameters”Ai can be eliminated by integrating outAi from the
posterior pdf (9). Some straightforward computations allow to ob-
tain the marginal posterior ofr:

f(rj v;�) = C(v; L)f(rj�)

K(r)Y
k=1

� (�+ Lnk(r))

(
 + LSk(r))
Lnk(r)+�

(10)

withC(v; L) =
�

LL

(L�1)!

�N QN
i=1 v

L�1
i . Equivalently, the marginal

pdf of r can be written asf (rj v;�) / exp (�U (rj v;�))where

U (rj v;�) = �K(r) +

K(r)X
k=1

log
(
 + LSk(r))

Lnk(r)+�

� (�+ Lnk(r))
(11)

is referred to as the energy function and� = log 1��
�

� log 
�

�(�)
.

Note that the parameter� is a decreasing function of�. Con-
sequently, the smaller�, the higher thea priori probability of a
change and the fewer the omissions. On the other hand, the bigger
�, the fewer the false alarms. The parameter� controls the resolu-
tion level of the segmentation: changes with small amplitudes will
be detected for small values of�.

3. HYPERPARAMETER ESTIMATION USING HBA

The Bayesian analysis summarized in the previous section assumes
that the hyparameters�; � and
 are known a priori. This section
proposes to estimate these parameters by using HBA. More pre-
cisely, we assume that the Bayesian statistical model(f(vj�); f(�))
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is such thatf(�) is the marginal distribution off(�;�), where
� = (�; �; 
)T contains the hyperparameters:

f(�) =

Z
f(�;�)d� =

Z
f(�j�)f(�)d� (12)

In (12),f(�) is referred to as the (a priori) hyperparameter distri-
bution. In the proposed implementation, the hyperparameter dis-
tribution has been chosen as follows:

f(�) = f(�)f(
)f(�) =
1



IR+(
)I]0;c[(�)Æ(�� 1) (13)

whereÆ(:) is the Dirac delta function. In other words,� is not
updated and set a priori to� = 1 (as in [10]), the prior probabil-
ity to have a change-point at a given position� is supposed to be
uniform on]0; c[ and the hyperparameter
 is a priori distributed
according to a non-informative Jeffreys prior. Note that parameter
c is the only parameter which is adjusted in the algorithm (c = 0:1
in our implementation). As explained in [9, p. 291], by decom-
posing the prior into several conditional levels of distributions, we
improve the robustness of the resulting Bayes estimator. As a con-
sequence, HBA has been extensively studied in the literature (for
motivations, see [9] and references therein).

As a result of HBA, the joint distribution of(�;�) conditional
upon the observationsvn; n = 1; :::; N , can be determined by us-
ing the hierarchical structure:

f (�;�j v) / f (vj �) f(�j�)f(�) (14)

Any Bayesian inference regarding the parameter vector� is based
on the posterior distributionf (�jv). Unfortunately, a closed form
expression of the marginal distributionf (�jv) =

R
f(�;�jv)d�

is difficult to obtain. In such situation, Markov Chain Monte Carlo
(MCMC) methods are classically used to draw samples accord-
ing to the density of interest. This paper proposes to generate
samples(�n;�n) = (An; rn; 
n; �n) distributed according to
f(�;�jv) by using an hybrid MCMC sampler which combines
Gibbs steps and Metropolis-Hastings steps. Such algorithm some-
times referred to as Metropolis-within-Gibbs algorithm has received
much attention in the literature (see for instance [11]). After a suf-
ficiently long burn-in, the MMSE estimator of the change-point
parameters (locations and amplitudes) can be determined by com-
puting the time average of the Markov chain output samples. The
different steps of the Metropolis-within-Gibbs algorithm are de-
tailed below:

3.1. Initialization
Set(�0;�0) = (r0; A0; �0; 
0) andn = 1.

3.2. Generation of samples distributed according to f(�j�n�1; v)

In order to simplify notations, we drop the subscriptn�1 from
variables at iterationn. The distribution of� = (A; r) given the
hyperparameter vector� can be expressed as

f(�j�; v) = f(Ajr;�; v)f(rj�; v)
= f(Ajr;�; v)

R
f(A; rj�; v)dA

(15)

Equation (15) shows that the determination off(�j�; v) requires
to determinef(Ajr;�; v) andf(rj�; v).

Determination of f(rj�; v):
The pdf ofr conditioned upon the hyperparameter vector� and
the observation vectorv has been obtained in (10). A possibil-
ity to sample from the non standard full conditional distribution

of r consists of introducing a Metropolis-Hastings step. Here,
we propose to apply the methodology described in [8]. Differ-
ent kernels are used in turn to increase the algorithm convergence
(the resulting hybrid strategy is called acycle). The Markov chain
state space and current state are denoted by
 = f0; 1gN�1 and
rn = (rni )i=1;:::;N�1 2 
, respectively. The Markov chain
moves are defined as follows:

a) The candidatezn+1 2 
 is drawn independently of the cur-
rent locationrn yielding the independence sampler [11] defined by
q(zn+1jrn) = q(zn+1), whereq is an instrumental distribution.
For our experiment,q is a Bernoulli distribution with parameter�.
In this procedure, the candidatezn+1 is selected using the classi-
cal acceptance probability,

b) Local changes are made following theone-variable-at-a-
time MH algorithm. This variable-at-a-time step was suggested
for instance in [11, p. 10] to increase the convergence speed. A
random permutation off1; :::; N � 1g is uniformly drawn. Ac-
cording to this permutation, each component is flipped from0 to
1 or from1 to 0. The move is then accepted with the usual accep-
tance probability. This move visits each site randomly and all sites
are visited in each scan.
The decomposition of the target distribution as a function of the
energy functionf (rjv;�) / exp (�U (rjv;�)) allows to obtain
the following acceptance probability (the instrumental distribution
q in moves a) and b) is symmetric):�

rn+1 = zn+1 if ln(rand) < �U(zn+1jv;�) + U(rnjv;�)
rn+1 = rn otherwise

(16)
where rand is drawn according to a uniform distribution on[0; 1].

Determination of f(Ajr;�; v):
The pdf of the change amplitude vectorA conditioned upon the
change location vectorr, the hyperparameter vector� and the ob-
servation vectorv can be expressed in closed form as follows

f(Ajr;�; v) /

K(r)Y
k=1

exp
�
� 
+LSk(r)

Ak

�
A
�+Lnk(r)+1
k

(17)

Equivalently,f(Ajr;�; v) is the product ofK(r) IG pdfs:

f(Ajr;�; v) =

K(r)Y
k=1

IG (�+ Lnk(r); 
 + LSk(r)) (18)

As a consequence, samples distributed according tof(Ajr;�; v)
can be generated with standard IG generators.

3.3. Generation of samples distributed according to f(�j�n�1; v)

As previously, in order to simplify notations, we drop the subscript
n�1 from all variables at iterationn. Eqs (5), (6), (7) and (13) show
that

f(�j�; v) / �K(r)�1(1��)N�K(r)
�K(r)�1 exp

0
@�
 K(r)X

i=1

1

Ai

1
A

(19)
As a consequence, the second step of the Gibbs sampler consists
of sampling� and
 as follows

� � Be(K(r); N �K(r) + 1)


 � G
�
�K(r);

PK(r)
i=1

1
Ai

� (20)

whereBe(a; b) andG(a; b) denote the Beta and Gamma distribu-
tions with parametersa andb (see [9, p. 381]).
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4. SIMULATION RESULTS

Many simulations have been performed to illustrate the previous
theoretical results. This papers considers a line of synthetic4 look
image (L = 4) depicted in Fig.1. The change-point parameters
areA = (33:74; 16:73; 66:93; 16:73), l = (0; 21; 112; 132; 174)
and the number of samples isN = 174.

Indicators distributed according tof(rj v) are simulated with
the algorithm detailed in this paper. The minimum mean square er-
ror (MMSE) estimator ofr is then computed by the time average
of the last Markov chain output samples (convergence is guaran-
teed by the ergodic theorem for Markov chains). Fig.1 shows
the estimated posterior distribution̂f (rjv) computed after1000
iterations (i.e.1000 cycles) of the algorithm and a burn-in period
of 1000 cycles. The MMSE estimator ofr provides the posterior
change-point probabilities which are in good agreement with the
true change locations.

The algorithm studied in this paper draws vectorsri distributed
according to the distributionf(rj v). For each vectorri, the num-
ber of change-points isK

�
ri
�
=
PN

j=1 r
i
j . As a consequence, the

posterior distribution ofK can be easily estimated from the vec-
torsri. Fig. 2 shows the estimated posterior distribution ofK(r).
The histogram has a maximum value forK(r) = 4, which is in
good agreement with the actual number of change-points (indeed,
we have assumed that there is a change atN = 174).

Once the change-point locations been determined, the signal
amplitudes can be estimated for signal reconstruction. Fig.3
shows the histograms of the signal amplitudeAi conditioned upon
K = 4. These histograms have to be compared with the true val-
ues of parametersAi. Note that the noise has more influence on
large amplitudes, which explains the bias for the estimate ofA3.
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Fig. 1. Line of a SAR image and the estimated posterior change-
point probabilities.

5. CONCLUSIONS

This paper studied the problem of detecting change-points in sig-
nals corrupted by multiplicative speckle noise. A hierarchical model
similar to the model studied in [10] allowed to estimate jointly the
change-point parameters and the model hyperparameters. The ap-
plication of this model to SAR image edge detection requires to
define an appropriate edge strength map [3]. This application is
currently under investigation.
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