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ABSTRACT

We present a novel nearest neighbor rule-based implementation of
the structural risk minimization principle to address a generic clas-
sification problem. We propose a fast reference set thinning algo-
rithm on the training data set similar to a support vector machine
approach. We then show that the nearest neighbor rule based on
the reduced set implements the structural risk minimization princi-
ple, in a manner which does not involve selection of a convenient
feature space. Simulation results on real data indicate that this
method significantly reduces the computational cost of the conven-
tional support vector machines, and achieves a nearly comparable
test error performance.

1. INTRODUCTION

Structural Risk Minimization (SRM) principle [1–3], is a tech-
nique for nonparametric inference which has found application in
classification and estimation problems. It is essentially based on
an Empirical Risk Minimization principle, in an effort to control
the performance on future (yet to be observed) data. The con-
struction of such a performance measure is based on a training
data set, and its subsequent minimization over the set of all can-
didate estimates, ultimately leads to a solution. The drawback of
this approach is over-fitting the data set: given samples from a real
valued function on the real line, one can always perfectly fit these
samples with a polynomial of unlimited high order. The perfor-
mance of such a fit is too specific to be useful for future data, and
hence, unsatisfactory. Similarly, with a sufficient number of nodes,
Neural Networks have been shown to approximate any continuous
function to any desired degree of precision [4]. Much like model
order selection and the related description length [5], and based
on the given set of observed samples, the goal is to then select an
estimate that would perform well on unseen data. This is called a
generalization ability of an estimator [3].

The aim of SRM is to control the generalization ability of an
estimator, via the so-called capacity [3] of the set of candidate
functions. One should pick as thebestestimate the function which
most agrees with the training data set, from a candidate function
set with the lowest capacity.

Support Vector Machines (SVM) have been proposed [3] to
implement a SRM principle. In a classification setting, this en-
tails the construction of a linear discriminant between classes in
a nonlinear feature space, based on asmall subset of the training
data, called thesupport vectors. When mapped back to the orig-
inal space, this discriminant corresponds to a nonlinear decision
surface. One of the main limitations of this approach is its compu-
tational cost: finding a linear discriminant in a feature space ensues

a quadrature optimization problem over a number of parameters
equal to the number of data in the training set. A number of tech-
niques and studies making use of support vectors separately from
the rest of the training set have been proposed [3, 6, 7]. The basic
problem, however, remains: the support vectors are only known
upon solving the problem, and their number may be comparable to
the size of the training set. In addition to the computational cost, a
natural question often arises, namely that of selecting aconvenient
nonlinear space in which to construct the linear discriminant.

Towards improving on computational complexity in the im-
plementation of what is widely contemplated as a very promising
classification strategy, namely the SRM-based classification, we
propose a novel nearest neighbor rule-based [8] approach to im-
plement the SRM principle in a binary classification problem.

The idea of the nearest neighbor (NN) classification rule may
be traced back to [9], and perhaps to even earlier alternative views.
The convergence properties were established in [10]. In [8], Devi-
jver and Kittler provide a comprehensive overview of the method
extending tok nearest neighbors rules with or without rejections.
Bhattacharya and Kaller [11] show how to obtain exact thinnings
for the k nearest neighbors rule usingk-Delaunay graphs of the
training set. A step towards using nearest neighbor rule in non-
Euclidean spaces and using Hausdorff metrics is provided in [12].

The paper is outlined as follows: the next section is devoted to
the classification problem formulation. In Section 3, we establish
an equivalence between SRM and reference set thinning of nearest
neighbor rule based on order statistics. In Section 4, we propose
an efficient and practical algorithm to achieve the desired classifi-
cation. And finally Section 5 provides substantiating examples to
show the much improved performance of the proposed technique
for breast cancer detection.

2. PROBLEM STATEMENT

The classification problem can be formulated as follows. LetT =
{(xi, yi) ∈ X × Y : i ∈ I} a training data set, whereX is a
Hilbert space with an induced metricρ which measures the sim-
ilarity between patterns,Y = {y1, . . . , yM} a set ofM classes,
andI = {1, . . . , `}. By a classifier we mean a functionf : X →
Y that classifies a given feature vectorx to the classy = f(x).

For the sake of simplicity and without loss of generality, con-
sider a two-class classification problem withY = {−1, 1}. The
objective is to then construct a classifier that would, as accurately
as possible, classify a priori unknown data into one of the classes.
One of the concepts of multivariate ordering is theψ-ordering de-
fined asx ≤ψ z if ψ(x) ≤ ψ(z), whereψ is a real-valued
function. Denote bỹx(k) thek-th ψ-order statistic ofx1, . . . ,x`,
that isx̃(1) ≤ψ . . . ≤ψ x̃(`). One advantage of this type of or-
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dering compared to the marginal ordering, is thatx̃(k) is a point
of the original sample. We fixx ∈ X, and consider the func-
tion ψ(z) = ρ(x, z) defined onX, thenx̃(k) is thek-th nearest
neighbor ofx, andd(k) = ρ(x, x̃(k)) is thek-th order statistic of
the` univariate random variablesdi = ρ(x,xi), i ∈ I, arranged
in nondecreasing order. Let(x̃(k), ỹ(k)) be thek-th order statis-
tic of the samples inT according to increasing values ofdi. The
k-nearest neighbor classifier is then defined as

f(x) =

�−1 if 1
k

Pk
i=1 I{ỹ(i)=−1} ≥ 1

k

Pk
i=1 I{ỹ(i)=1}

1 otherwise,
(1)

whereI{·} is an indicator function. Whenk = 1, thek-nearest
neighbor is exactly the nearest neighbor (NN) classifier. Note that
the NN classifier requires computation ofρ(x,xi) for all i ∈ I,
for each datumx to be classified. For a large sample size`,
this represents a significant computational cost, and it only makes
sense to attempt to alleviate this problem by developing intelligent
search algorithms which quickly yield an overall minimal distance.
Another effective way of coping with the computational challenge
is to reduce the sample size and to approximate the classifier in Eq.
(1) by restricting the indicesi, j to a subsetJ of the original index
setI. The NN classifierfJ corresponding to the setJ is given by

fJ(x) =

� −1 if I{ỹ(1)=−1} ≥ I{ỹ(1)=1}
1 otherwise,

(2)

whereỹ(1) is the second component of(x̃(1), ỹ(1)) minimum order
statistic of the samples in the training data setTJ = {(xj , yj) ∈
X × Y : j ∈ J} according to increasing values ofdj .

3. SRM PRINCIPLE AND NN CLASSIFIER

Let F be a set of indicator functions defined onX with values in
Y = {−1, 1}. The riskR(f) of an indicator functionf ∈ F has
the following upper bound [3] with probability1− ν:

R(f) ≤ Remp(f) + ε(f, h, ν) (3)

whereν ∈ [0, 1], Remp(f) is the training error off (or empir-
ical risk), ε(f, h, ν) is the confidence term, andh is the Vapnik-
Chervonenkis (VC) dimension ofF . Recall that the VC dimension
of F is the size of the largest subsetS of X such thatF|S = F .
Consider a nondecreasing sequence of subsets{Fn}n≥1 ofF with
corresponding VC dimensions{hn}n≥1,

F1 ⊂ F2 ⊂ . . . ⊂ Fn ⊂ . . .

which impliesh1 ≤ h2 ≤ . . . ≤ hn ≤ . . . .
Clearly, one can further lower the training error overFn asn

grows large. The confidence termε(f, h, ν), however, increases
with increasing VC dimension (or increasingn). The SRM princi-
ple leads to minimizing the empirical risk by choosing an indicator
function from a particular setFn? , so that overall, the right hand
side of Eq. (3) is minimized. One natural way of minimizing this
bound is to keep the first termRemp(f) at zero while minimizing
the second one,ε(f, h, ν). In addition, it can be shown that the
confidence termε(f, hn, ν) monotonically increases with increas-
ing VC dimensionhn [3]. The problem of constructing/training a
classifier may be viewed as that of selecting a functionf from a
set of indicator functionsFn subject toRemp(f) = 0 andhn ≤
hi ∀i ∈ I0 = {j ∈ N | ∃fj ∈ Fj such thatRemp(fj) = 0}.

The problem is thus reduced to identifying the minimum VC-
dimension setFn? among all possible setsFn which have an ele-
mentfn achieving zero training error. The NN classifier in Eq. (2)
clearly attains zero training error since each point’s distance to it-
self is zero and eventually, each point in the training set is assigned
back to its true class. The following result [13] relates the nature
of the NN classifier to the VC dimension.

Proposition 1 The VC dimensionh associated with a function set
that produces the classifier in Eq. (2) is equal to Card(J), the
cardinality of the index setJ .

In order to reduce the VC dimension associated with the NN clas-
sifier in Eq. (2), we hence need to reduce the cardinality ofJ .

4. CLASSIFIER CONSTRUCTION

The problem of eliminating data points from a reference set of a
NN classifier is referred to as the reference set thinning problem,
and is introduced to reduce the cost of computingρ(x,xi) for all
i ∈ I. The goal is to then obtain an index setJ ⊂ I that results
in an exact/approximate classification rule for allx ∈ X. Devi-
jver and Kittler [8] propose editing and condensing algorithms to
achieve that. In [11], Bhattacharya and Kaller propose a Delau-
nay graph-based approach to produce exact thinnings of the initial
training set fork-NN rule.

The objective of reference set thinning techniques is to achieve
identical or very similar classification rules based on a smaller ref-
erence set than the original. If the smaller set produces an identi-
cal partition of the observation space, it is called anexact thinning.
On the other hand, if a significant reduction in the number of data
points in the reference set can be achieved by allowing small devi-
ations from the original NN classification, theninexact thinnings
are also considered admissible [11].

The algorithm proposed in this paper is similar in spirit to an
index set thinning algorithm, but is drastically different from the
conventional techniques cited above as our algorithm is obtained
by explicitly applying the SRM principle to NN classification. The
goal of the algorithm is to construct a novel NN classifier by imple-
menting the SRM principle rather than to reduce the size of the ref-
erence set in an attempt to alleviate the computational complexity
of the original NN classifier. A comparative analysis of the devel-
oped algorithm and conventional set thinning techniques may be
interesting but inconsequential to our primary goal as it provides
no additional insight. LetT = {(xi, yi) ∈ X × Y : i ∈ I} be
a training data set. Denote by`1 = Card({yi ∈ Y : yi = −1})
and`2 = Card({yi ∈ Y : yi = 1}) . Our problem can be formu-
lated as:

minimize Card(J) (4)

subject to J ⊂ {1, 2, . . . , `} (5)

Remp(fJ) = 0. (6)

An exhaustive search is clearly impractical, since one would need
to construct classifiers on a total number of(2`1 − 1)(2`2 − 1)
different index sets, test them on the training set, and pick the
one that has the smallest cardinality corresponding to a classi-
fier with no training errors. We instead propose the following
algorithm: Consider all pairwise distancesρ(xi,xj) such that
yi = −1 and yj = 1, and letdk be an enumeration of those
distances fork = 1, . . . , `1`2. Let d(k) denote thek-th order
statistics in the increasing order.
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1. initialize J = ∅, k = 1

2. whileRemp(fJ) > 0 do

(a) findxi andxj so thatρ(xi,xj) = d(k), yi = −1,
yj = 1

(b) if {i, j} /⊂ J , updateJ ← J ∪ {i, j}
(c) incrementk ← k + 1

Note that the proposed procedure increases the inclusion of
indices of closest pairs of points from the two classes, and keeps
updating the setJ to a successful and complete classification of
the training set. The underlying intuition is that most classification
errors occur in the regions where the domains of the two classes
are closest to each other. Given a set of training data, these re-
gions are identified by the pairs of data points of opposite classes
with the smallest distance, and the separating surface should serve
primarily these high-risk points. When constructing the NN rule
based classifierfJ(x), one therefore needs to include these points
in the reference setJ . The algorithm clearly converges, since in
a worst case scenario all the points in the training set are included
in J , and it is guaranteed to classify itself perfectly. While signifi-
cantly reduced relative to Delaunay graphs and support vector ma-
chines, the remaining computational complexity of the proposed
technique may be mostly accounted for by the computation of the
pairwise distances and the subsequent construction and testing of
fJ(x) while updatingJ . It can be shown that the overall com-
plexity of the algorithm isO(n`3) [13]. A graphical illustration of
the resulting classifier is shown in Fig. 1. The crosses and dots
represent points of two classes. The circled points are included in
the final set indexed byJ , and the edges in between indicate the
smallest distance pairs taken into account in the course of the al-
gorithm. The resulting classifier is based on 21 data points out of
a total number of40, and all the training set is classified correctly.
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Fig. 1. Illustration of the classifierfJ(x)

Fig. 2 shows the decision curves constructed byfJ(x), f(x)
in Eq. (1), and the support vector machine (SVM) classifierfSV M (x)
based on the polynomial kernelK(xi,xj) = (〈xi,xj〉+ 1)6.

The curves denoted byf3−NN andf5−NN are the decision
boundaries of 3-neighbor and 5-neighbor NN classifiers respec-
tively. The dark curve representsfJ(x), the lighter piece-wise
linear continuous curve representsf(x), and the smooth curve
representsfSV M (x) decision boundaries. An interesting obser-
vation is that the curves offJ(x) andf(x) overlap for most of the

boundary region between the two classes, and deviate towards the
end points. The reason is intuitive: the shape of the NN decision
curve in a neighborhood is governed by the closest points in the
reference set. As the points between the two classes are mostly
common to both reference sets,f(x) andfJ(x) decision curves
are therefore expected to overlap over that region.
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Fig. 2. Decision curves.

It is interesting to note the similarity between the construction
of fJ(x) and, to a large extent, that of the SVM [3]. In both cases,
the resulting classifiers and the corresponding decision surfaces are
based on only fractions of the data points in the training set. As
the complexity of the classification rules are directly related to the
number of points involved, they both seek thesimplestclassifier
that agrees with the training data, and hence implement the SRM
principle. There is, however, one major difference: while support
vector machines may not always be able to achieve perfect clas-
sification of the training set,fJ(x) is guaranteed to achieve that,
provided there are no pointsxi andxj with yi = −1 andyj = 1
such thatxi = xj . The separation capability of the support vector
machines is directly related with the choice of the feature space. In
general, a feature space in which the training set is linearly separa-
ble may not be found. In that case, one needs to solve a modified
optimization problem to construct an SVM classifier [3] with an
even yet greater computational complexity.

5. SIMULATION RESULTS

We apply the proposed technique to breast cancer detection, which
is a two-class problem, and then compare its computational and
classification performances to the conventional SVM classifiers.

Given a nonlinear feature space into which the data are mapped,
and a positive definite symmetric functionK which defines its in-
ner product measure, the SVM classifier is given by

ŷ = fSV M (x) = sign
n X̀

i=1

αiyiK(xi,x) + b0

o
, (7)

whereαi andb0 are found by solving the optimization problem

maximize ΛT 1− 1

2
ΛT DΛ (8)

subject to Λ ∈ R`
+ (9)
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whereΛ = (α1, . . . , α`)
T , 1 = (1, . . . , 1)T an `-dimensional

vector of1’s, andDi,j = yiyjK(xi,xj). Solving for the SVM
classifier in Eq. (7) therefore involves the computation of the`× `
matrix D and solving the quadrature optimization problem in Eq.
(8). Our method requires the computation of`1`2 pairwise dis-
tances which is about1/4th the size ofD for `1 = `2 = `/2 to
proceed with the algorithm. Given that the computational com-
plexity of the algorithm is polynomial (O(n`3)), it is considered
to be aneasy[8] problem and proves to be in general faster than
quadrature optimizations. In the following simulations, we con-
struct both a SVM-based classifier and our proposed classifier on
a breast cancer data set [14]. The data set consists ofn = 9
measurements oǹ1 = 444 benign and`2 = 239 malignant
cells. We randomly select (inclusive) sets of training data of sizes
` = 40, 120, 200, 280, 360, 440 with equal number of points from
the two classes, and use them as the basis for our classifier con-
struction. We record the computation times and test error perfor-
mances on the whole data set. The SVM based classifier was con-
structed using the kernel

K(xi,xj) = e
− ||xi−xj ||2

2τ2 (10)

with τ = 3. A general rule of thumb for selecting aτ for a Ra-
dial Basis Function kernel is to have2τ2 at the same order of
magnitude as the average of||xi − xj ||2. As τ goes to 0, the
corresponding nonlinear transformation maps the data points to
different vertices of the unit cube in the transform space, so that
K(xi,xj) becomes very small. On the other hand, whenτ ap-
proaches infinity,K(xi,xj) goes to 1, indicating that the images
of all data points are in a close neighborhood of each other. In
the former case, linear separation is trivially obtained. In the lat-
ter case, however, separating the two classes becomes increasingly
difficult, since all data points are aggregated together. This partic-
ular value forτ was chosen as a result of a line search over several
different values at the same order of magnitude as the average of
||xi − xj ||. The constructed classifiers are able to perfectly sep-
arate the training sets in all simulations. The computation times
are displayed in Fig. 3. As expected, constructing the SVM clas-
sifier takes more time than our nearest neighbor classifier for all
simulated values of̀. This agrees with the fact that our algorithm
has a polynomial order of computational complexity, and hence is
easier to solve than the optimization in Eq. (8). Fig. 4 shows the
classification errors over the whole data set. The number of mis-
classifications of the two methods are fairly similar and the overall
performances are almost indistinguishable.
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