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ABSTRACT a quadrature optimization problem over a number of parameters
. . ) equal to the number of data in the training set. A number of tech-
We present a novel nearest neighbor rule-based implementation of,iques and studies making use of support vectors separately from
the structural risk minimization principle to address a generic clas- ihe rest of the training set have been proposed [3, 6, 7]. The basic
sification problem. We propose a fast reference set thinning algo- yroblem, however, remains: the support vectors are only known
rithm on the training data set similar to a support vector machine upon solving the problem, and their number may be comparable to
approach. We then show that the nearest neighbor rule based of¢ sjze of the training set. In addition to the computational cost, a
the reduced set implements the structural risk minimization princi- natyral question often arises, namely that of selectiograenient
ple, in a manner which does not involve selection of a convenient jyojinear space in which to construct the linear discriminant.
feature space. Simulation results on real data indicate that this  Towards improving on computational complexity in the im-
r_nethod significantly reducgs the computgtlonal cost of the CONVen- plementation of what is widely contemplated as a very promising
tional support vector machines, and achieves a nearly comparable|assification strategy, namely the SRM-based classification, we
test error performance. propose a novel nearest neighbor rule-based [8] approach to im-
plement the SRM principle in a binary classification problem.
1. INTRODUCTION The idea of the nearest neighbor (NN) clagsification r.ule may
be traced back to [9], and perhaps to even earlier alternative views.

Structural Risk Minimization (SRM) principle [1-3], is a tech- ~The convergence properties were established in [10]. In [8], Devi-
nique for nonparametric inference which has found application in iver and Kittler provide a comprehensive overview of the method
classification and estimation problems. It is essentially based on€xtending tok nearest neighbors rules with or without rejections.
an Empirical Risk Minimization principle, in an effort to control ~ Bhattacharya and Kaller [11] show how to obtain exact thinnings
the performance on future (yet to be observed) data. The con-for the k nearest neighbors rule usidgDelaunay graphs of the
struction of such a performance measure is based on a trainingraining set. A step towards using nearest neighbor rule in non-
data set, and its subsequent minimization over the set of all can-Euclidean spaces and using Hausdorff metrics is provided in [12].
didate estimates, ultimately leads to a solution. The drawback of ~ The paper is outlined as follows: the next section is devoted to
this approach is Over_fitting the data set: given Samp|es from a rea|the classification problem formulation. In Section 3, we establish
valued function on the real line, one can always perfectly fit these an equivalence between SRM and reference set thinning of nearest
samples with a polynomial of unlimited high order. The perfor- neighbor rule based on order statistics. In Section 4, we propose
mance of such a fit is too Specific to be useful for future data, and an efficient and practical algorithm to achieve the desired classifi-
hence, unsatisfactory. Similarly, with a sufficient number of nodes, cation. And finally Section 5 provides substantiating examples to
Neural Networks have been shown to approximate any continuousShow the much improved performance of the proposed technique
function to any desired degree of precision [4]. Much like model for breast cancer detection.

order selection and the related description length [5], and based

on the given set of observed samples, the goal is to then select an 2. PROBLEM STATEMENT
estimate that would perform well on unseen data. This is called a
generalization ability of an estimator [3]. The classification problem can be formulated as follows.Z et

The aim of SRM is to control the generalization ability of an  {(z;,y;) € X x Y : i € I} atraining data set, wher¥ is a
estimator, via the so-called capacity [3] of the set of candidate Hilbert space with an induced metricwhich measures the sim-

functions. One should pick as thestestimate the function which ilarity between patternsy” = {y1,...,ynm} a set of M classes,
most agrees with the training data set, from a candidate functionand/ = {1, ..., ¢}. By a classifier we mean a functigh: X —
set with the lowest capacity. Y that classifies a given feature vecioto the clasy = f(x).

Support Vector Machines (SVM) have been proposed [3] to For the sake of simplicity and without loss of generality, con-
implement a SRM principle. In a classification setting, this en- sider a two-class classification problem with= {—1,1}. The
tails the construction of a linear discriminant between classes in objective is to then construct a classifier that would, as accurately
a nonlinear feature space, based @nall subset of the training  as possible, classify a priori unknown data into one of the classes.
data, called thesupport vectos. When mapped back to the orig- One of the concepts of multivariate ordering is th@rdering de-
inal space, this discriminant corresponds to a nonlinear decisionfined asxz <, z if (x) < v¥(z), wherey is a real-valued
surface. One of the main limitations of this approach is its compu- function. Denote by i) the k-th ¢-order statistic ofc, . . ., @,
tational cost: finding a linear discriminant in a feature space ensuesthat isz 1y <y ... <y @(,. One advantage of this type of or-
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dering compared to the marginal ordering, is tiat, is a point
of the original sample. We fixx € X, and consider the func-
tion ¢ (2z) = p(x, z) defined onX, thenz ) is thek-th nearest
neighbor ofe, andd ) = p(x, (x)) is thek-th order statistic of
the ¢ univariate random variableg = p(z,z;), ¢ € I, arranged
in nondecreasing order. Lé& ), 7)) be thek-th order statis-
tic of the samples ir¥” according to increasing values @f. The
k-nearest neighbor classifier is then defined as

: k k
— —1if %Eizl H{@(i)ifl} 2 %Ei:l E{ﬂ(i)il}
f(x) 1 otherwise

@

wherely .y is an indicator function. Whek = 1, the k-nearest

neighbor is exactly the nearest neighbor (NN) classifier. Note that

the NN classifier requires computation effx, ;) for all i € I,
for each datume to be classified. For a large sample size

The problem is thus reduced to identifying the minimum VC-
dimension sefF,,~ among all possible setg,, which have an ele-
mentf,, achieving zero training error. The NN classifier in Eq. (2)
clearly attains zero training error since each point’s distance to it-
self is zero and eventually, each pointin the training set is assigned
back to its true class. The following result [13] relates the nature
of the NN classifier to the VC dimension.

Proposition 1 The VC dimensioh associated with a function set
that produces the classifier in Eq. (2) is equal to Cafg(the
cardinality of the index sef.

In order to reduce the VC dimension associated with the NN clas-
sifier in Eq. (2), we hence need to reduce the cardinality.of

4. CLASSIFIER CONSTRUCTION

this represents a significant computational cost, and it only makes o ]
sense to attempt to alleviate this problem by developing intelligent The problem of eliminating data points from a reference set of a
search algorithms which quickly yield an overall minimal distance. NN classifier is referred to as the reference set thinning problem,

Another effective way of coping with the computational challenge

and is introduced to reduce the cost of compufifg, ;) for all

is to reduce the sample size and to approximate the classifier in Eq¢ € /. The goal is to then obtain an index setC I that results

(1) by restricting the indiceg j to a subsey/ of the original index
setl. The NN classifierf; corresponding to the sétis given by

-1

f@={ )

whereg() is the second component @ 1), 7¢1y) minimum order
statistic of the samples in the training data et= {(x;,y,) €
X x Y : j € J}according to increasing values @&f.

if ]I{ﬂ(l):—l} 2 H{ﬂ(1)=1}
otherwise,

@)

3. SRM PRINCIPLE AND NN CLASSIFIER

Let F be a set of indicator functions defined ahwith values in
Y = {-1,1}. The riskR(f) of an indicator functiory € F has
the following upper bound [3] with probability — v:

R(f) S RT™(f) +e(f,h,v) ©)
wherev € [0,1], R°™P(f) is the training error off (or empir-
ical risk), (f, h,v) is the confidence term, artdis the Vapnik-
Chervonenkis (VC) dimension ¢f. Recall that the VC dimension
of F is the size of the largest subsgtof X such thatF|s = F.
Consider a nondecreasing sequence of sufgets$,, > of 7 with
corresponding VC dimensiof$i, }>1,

Fi1CFoC...CFnC...

which impliesh; < h, < ... <h, <....

Clearly, one can further lower the training error ov&r asn
grows large. The confidence temf, h, ), however, increases
with increasing VC dimension (or increasing The SRM princi-
ple leads to minimizing the empirical risk by choosing an indicator
function from a particular sef,,~, so that overall, the right hand
side of Eq. (3) is minimized. One natural way of minimizing this
bound is to keep the first terlR°*?( f) at zero while minimizing
the second one;(f, h,v). In addition, it can be shown that the
confidence terma(f, h,,, ) monotonically increases with increas-
ing VC dimensionh,, [3]. The problem of constructing/training a
classifier may be viewed as that of selecting a functfdinom a
set of indicator functions”,, subject toR*"*?(f) = 0 andh,, <
h; Vi € I° = {j € N| 3f; € F; such thatR*"?(f;) = 0}.

in an exact/approximate classification rule foralle X. Devi-

jver and Kittler [8] propose editing and condensing algorithms to
achieve that. In [11], Bhattacharya and Kaller propose a Delau-
nay graph-based approach to produce exact thinnings of the initial
training set fork-NN rule.

The objective of reference set thinning techniques is to achieve
identical or very similar classification rules based on a smaller ref-
erence set than the original. If the smaller set produces an identi-
cal partition of the observation space, it is calleceaact thinning
On the other hand, if a significant reduction in the number of data
points in the reference set can be achieved by allowing small devi-
ations from the original NN classification, thé@mexact thinning
are also considered admissible [11].

The algorithm proposed in this paper is similar in spirit to an
index set thinning algorithm, but is drastically different from the
conventional techniques cited above as our algorithm is obtained
by explicitly applying the SRM principle to NN classification. The
goal of the algorithmis to construct a novel NN classifier by imple-
menting the SRM principle rather than to reduce the size of the ref-
erence set in an attempt to alleviate the computational complexity
of the original NN classifier. A comparative analysis of the devel-
oped algorithm and conventional set thinning techniques may be
interesting but inconsequential to our primary goal as it provides
no additional insight. LeT = {(x;,v:) € X xY : ¢ € I} be
a training data set. Denote By = Card({y; € Y : y; = —1})
andl; = Card({y; € Y : y; = 1}). Our problem can be formu-
lated as:

minimize CardJ) 4
subject to JcC{1,2,...,¢} (5)
RT™(f1) = 0. (6)

An exhaustive search is clearly impractical, since one would need
to construct classifiers on a total number(eft — 1)(2°2 — 1)
different index sets, test them on the training set, and pick the
one that has the smallest cardinality corresponding to a classi-
fier with no training errors. We instead propose the following
algorithm: Consider all pairwise distance$x;,x;) such that

Yi —1 andy; = 1, and letd, be an enumeration of those
distances fork = 1,...,/1¢>. Letd) denote thek-th order
statistics in the increasing order.
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1. initialize J =0,k =1 boundary region between the two classes, and deviate towards the
o pemp end points. The reason is intuitive: the shape of the NN decision
2. while R*7(f,) > 0 do curve in a neighborhood is governed by the closest points in the
(@) finda; andx; so thatp(x:, ;) = dw), y: = —1, reference set. As the points between the two classes are mostly
y; =1 common to both reference sef§x) and f;(x) decision curves
(b) if {i,j}¢ J, update] — J U {i, j} are therefore expected to overlap over that region.

(c) increments «— k + 1

Note that the proposed procedure increases the inclusion of !
indices of closest pairs of points from the two classes, and keeps
updating the sef to a successful and complete classification of °2f
the training set. The underlying intuition is that most classification
errors occur in the regions where the domains of the two classes.s|-
are closest to each other. Given a set of training data, these re-
gions are identified by the pairs of data points of opposite classes_,|
with the smallest distance, and the separating surface should serve -
primarily these high-risk points. When constructing the NN rule
based classifief; (x), one therefore needs to include these points
in the reference sef. The algorithm clearly converges, since in
a worst case scenario all the points in the training set are included o
in J, and it is guaranteed to classify itself perfectly. While signifi-
cantly reduced relative to Delaunay graphs and support vector ma-
chines, the remaining computational complexity of the proposed
technique may be mostly accounted for by the computation of the

pairwise distances and the subsequent construction and testing of o . o .
f7(z) while updating.J. It can be shown that the overall com- It is interesting to note the similarity between the construction

plexity of the algorithm isD(n?) [13]. A graphical illustration of ~ Of f7(x) and, to a large extent, that of the SVM [3]. In both cases,
the resulting classifier is shown in Fig. 1. The crosses and dotsthe resulting classifiers and the corresponding decision surfaces are
represent points of two classes. The circled points are included inba@sed on only fractions of the data points in the training set. As
the final set indexed by, and the edges in between indicate the the complexity of the classification rules are directly related to the
smallest distance pairs taken into account in the course of the al-number of points involved, they both seek tiienplestclassifier
gorithm. The resulting classifier is based on 21 data points out of that agrees with the training data, and hence implement the SRM

a total number ofl0, and all the training set is classified correctly. Principle. There is, however, one major difference: while support
vector machines may not always be able to achieve perfect clas-

sification of the training setf;(x) is guaranteed to achieve that,
provided there are no poinis; andx; with y; = —1 andy; = 1

such thate; = x;. The separation capability of the support vector
machines is directly related with the choice of the feature space. In
general, a feature space in which the training set is linearly separa-
ble may not be found. In that case, one needs to solve a modified
1 optimization problem to construct an SVM classifier [3] with an
even yet greater computational complexity.
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Fig. 2. Decision curves.
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5. SIMULATION RESULTS

We apply the proposed technique to breast cancer detection, which

: is a two-class problem, and then compare its computational and

classification performances to the conventional SVM classifiers.
Given a nonlinear feature space into which the data are mapped,

and a positive definite symmetric functién which defines its in-

ner product measure, the SVM classifier is given by

I I
0.2 1.4

Fig. 1. lllustration of the classifief;(x)

Fig. 2 shows the decision curves constructedfbix), f(x) ‘
in Eq. (1), and the support vector machine (SVM) classjfigr s (x) = fsvm(z) = sign{ Z iy K (x4, ) + bo }, @)
based on the polynomial kern&l(xz;, ;) = ({x:, ;) + 1)°. im1

The curves denoted bys_nn and fs_nn are the decision _ S
boundaries of 3-neighbor and 5-neighbor NN classifiers respec-wherea; andb, are found by solving the optimization problem
tively. The dark curve represenfs (z), the lighter piece-wise

linear continuous curve representéx), and the smooth curve maximize AT1 — lATDA (8)
representssv v () decision boundaries. An interesting obser- 2
vation is that the curves gf; () and f(x) overlap for most of the subject to A e ]R‘i 9)
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whereA = (ai,...,a0)T, 1 = (1,...,1)T an¢-dimensional
vector ofl’s, andD; ; = y;y,; K (x:, ;). Solving for the SVM
classifier in Eq. (7) therefore involves the computation ofétixe/
matrix D and solving the quadrature optimization problem in Eq.
(8). Our method requires the computation/efs pairwise dis-
tances which is about/4'" the size ofD for £, = £, = £/2 10
proceed with the algorithm. Given that the computational com-
plexity of the algorithm is polynomial@(n£?)), it is considered

to be aneasy[8] problem and proves to be in general faster than
quadrature optimizations. In the following simulations, we con-
struct both a SVM-based classifier and our proposed classifier on
a breast cancer data set [14]. The data set consists &f 9
measurements ofy 444 benign andl> = 239 malignant
cells. We randomly select (inclusive) sets of training data of sizes
£ = 40, 120, 200, 280, 360, 440 with equal number of points from
the two classes, and use them as the basis for our classifier con-
struction. We record the computation times and test error perfor-
mances on the whole data set. The SVM based classifier was con-
structed using the kernel

seconds

e

K(zi, ;) =€ = 22 (10)

with 7 = 3. A general rule of thumb for selectingrafor a Ra-

dial Basis Function kernel is to ha&? at the same order of
magnitude as the average bk; — x;||>. As T goes to 0, the
corresponding nonlinear transformation maps the data points to
different vertices of the unit cube in the transform space, so that
K(x;,z;) becomes very small. On the other hand, wheap-
proaches infinity K (x;, ;) goes to 1, indicating that the images
of all data points are in a close neighborhood of each other. In
the former case, linear separation is trivially obtained. In the lat-
ter case, however, separating the two classes becomes increasingly
difficult, since all data points are aggregated together. This partic-
ular value forr was chosen as a result of a line search over several
different values at the same order of magnitude as the average of
|lx: — x;||. The constructed classifiers are able to perfectly sep-
arate the training sets in all simulations. The computation times
are displayed in Fig. 3. As expected, constructing the SVM clas-
sifier takes more time than our nearest neighbor classifier for all
simulated values of. This agrees with the fact that our algorithm
has a polynomial order of computational complexity, and hence is
easier to solve than the optimization in Eq. (8). Fig. 4 shows the
classification errors over the whole data set. The number of mis-
classifications of the two methods are fairly similar and the overall
performances are almost indistinguishable.

error
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