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ABSTRACT

A more general solution and a new didactic demonstration of the
maximization of the multidimensional case of the Generalized
Rayleigh Quotient are described. This solution will not only be
the well-known eigenvectors solution widely available in the lit-
erature but also a general transformation that is not necessarily
orthogonal. The demonstration uses only basic linear algebra and
simple lagrangian maximization to find the transformation matrix
that maximizes the multidimensional Generalized Rayleigh Quo-
tient for Linear Discriminant Analysis, widely used in signal clas-
sification applications.

1. INTRODUCTION

Linear discriminant analysis (LDA) have been widely used as a
signal classification tool in many signal processing applications
such as speech recognition and image processing.

In speech recognition applications such as one described in
[1], LDA is applied to the mel-cepstral feature space, linearly trans-
forming the mel-cepstral coefficients such that less parameters are
used by the hidden markov models in the pattern recognition stage.
This parameters, at the same time, will have most of the discrimi-
nation information between the different phones or triphones given
the chosen dimensionality.

In image processing applications such as the face recognition
method described in [2] they use LDA to reduce the number of
features after projecting the original space using non-linear kernel
mapping. Specially in this case, where the dimensionality of an
image is high, LDA provides a way to reduce the computational
cost by reducing the number of dimensions while keeping high
discrimination between classes.

As seen in both of the examples above, the aim of LDA is to
reduce the dimensionality of the analysis space such that the dis-
crimination between different signal classes is maximum given a
certain measure. The measure that is used to quantify the discrim-
ination between different signal classes using only one dimension
is the Generalized Rayleigh Quotient, that is defined as ([3]):

wT Spw

Qw) = w € Ry, 1)

wT Sww
Sw € Raxn, SB € Ruxn
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If we want to measure the discrimination between signal classes
in a higher dimensional space, we can use the d-dimensional ver-
sion of the quotient that is:

|W'SpW|

T o 1| Ryxd, 2
W SwWv] W € Ryxd )

QW)=

SW S Ran, SB € Ran

where Sp is the between class scatter matrix of the training data,
it’s rank is r > d and it is symmetric and positive semi-definite
(PSD). Sw is the within class scatter matrix of the training data,
it is full rank and positive definite (PD). W is a full rank linear
transformation that will transform the original feature space into a
lower dimensional space of size d.

The objective of this paper is to to find a more general defi-
nition of the argument that maximizes @ (W), showing that there
is an infinite number of transformations W that maximize @ (W)
and formally defining it’s characteristics. As we can see in formula
65 we will find that the eigenvectors solution widely available in
literature ([3]) is not a general solution.

At the same time we show a demonstration, different than the
ones available in the literature, that uses only basic linear alge-
bra and lagrangian maximization to find the general solution of
the problem of maximizing @ (W). This, at the same time, will
serve as a new proof for the specific case when the maximum of
Q (W), in formula 2, is attained when the columns w; of W are
eigenvectors such that Spw; = A; Sww;.

For this, we first define the quotient maximization problem
and it’s widely known eigenvectors solution in section 2. To reach
our general solution, in section 3, we show a demonstration in in 5
different steps that can be grouped in the following way:

1. Reduce the Quotient maximization problem to a determi-
nant maximization problem in sections 3.1 and 3.2.

2. In the determinant maximization problem, bound the deter-
minant, maximize the bound and show that, for the argu-
ment that maximizes the bound, both the determinant and
the bound are equal. (sections 3.3 and 3.4).

3. Recover the original solution from the solution of the deter-
minant maximization problem. Show that, the eignevectors
solution is not the only solution and there is an infinite num-
ber of solutions to the problem. (section 3.5)
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2. PROBLEM

The maximization problem is stated as:

o~

W=arg max (Q(W)) @)
Carg max (2 SEW @
T &\ WT S W |

where:

W € Ruxd, full rank.
Sw € Ruoxn, SB € Ryxn.
SW 18 PD, SB 18 PSD
The rankof Spisr>d
The widely known solution to this problem is such that ([3]):
Spw; = MiSww; w; ER,,0<¢<d Q)
W = [’U)1 w2 ... wd]

According to this specific solution, the multidimensional Gen-
eralized Rayleigh quotient is maximized when the columns of W
are the d eigenvectors of S;;' Sy corresponding to the d highest
eigenvalues.

This problem was initially analyzed by Fisher ([4]), and it’s
solution gave birth to the method of statistical analysis called lin-
ear discriminant analysis (LDA). A more precise treatment of the
problem is given in [5] where they analyze independently the uni-
dimensional case and the multidimensional case of the problem.
In the demonstration of the multidimensional case, the solution is
found by maximizing several unidimensional cases, one for each
column of W. As a result, the non general eigenvectors solution is
found.

We shall now proceed with a demonstration that will allow us
to find a more general solution.

3. DEMONSTRATION

3.1. Decompose Sw intoit’s cholesky components

Since Sw is PSD we can decompose it using it’s cholesky factor-
ization:

Sw = RR"
‘WTSWW‘ = ‘WTRRTW‘ )

R is lower triangular, R € R,y  (6)

then, we can define Y as the transformation of W by RT and
replace it into formula 2:

Y=R"W, W=R""Y (8)
YTR 'SR TY
QW)= | VY] | ©)

Given that W is full rank and Sw is PD, then Y is full rank.

3.2. Decompose Sw intoit’s SVD components

Given that Y is full rank, then it’s singular value decomposition
(SVD, [6]) is such that:

Yy =Usv” U€Ryxd,® € Ryxa,V € Ryxq. (10)
w =R Tuxv”® (11)
where the columns of U are orthonormal, the columns of V' are
orthonormal and the matrix X is a diagonal matrix containing the

singular values of Y: ;. Then, we can reduce our problem even
further realizing that:

vy =vzvutuzv? (12)
YTy =ve*v” (13)
d
‘YTY‘ =[I< (14)
=1

and applying it to formula 9:

|[YTR™'SsR™"Y|

QW) = R (15)
i=17i
|[VSUTR™'SpR™TULVT|
= - (16)
i:10i2
V|IZ| [UTR-*SsR™TU||Z||VT
_ VIS TR S BTV
i=19%
UTR'SgRTU|TI., o?
— | Bd |Hz:10- (18)
l_IiZIO-i2
= ‘UTR’lng’TU‘ (19)

For convenience in the following steps of our demonstration,
we now define the matrix M and the function P(U), and replace
them into formula 19:

M=R'SgRT M €Ryuxn (20)

P(U) = QW) = ‘UTMU‘ @1)

From formula 20 we can see that M has the same rank as Sg (r),
it is symmetric and PSD.

As we see in formula 21, we have reduced Q(W) to a single
determinant. Then our problem is transformed into:

U=arg ,max P(U) =arg ,max UTMU| (22)

Rnxd ER,xa

The columns of U are orthonormal.

We can already conclude that the solution of our original prob-
lem is independent of V" and X. As it will become evident in sec-
tion 3.5, the variation of V" and X is the difference between our
general solution and the restricted eigenvectors solution.

3.3. Bounding the deter minant

We know from [6] that the determinant of a PSD matrix is less or
equal than the product of it’s diagonal elements. Taking this bound
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into account, representing M by it’s eigenvalue decomposition (M
has rank r) and applying it to formula 21:

i=1
Z=U"MU (24)
= Z AM; UTin- q],l\;[i U (25)
171 ,
Zii =) Au (UJT in) (26)
i=1
1Z| = P(U) = |UTMU‘ @7
<T12s =TI 2w (W)’ @
j=1 j=1i=1

where Z;; are the diagonal elements of Z, u; are the column vec-
tors of U, and gas; and Ans, are the eigenvectors and eigenvalues
(ordered in descending order, A, > A, > 0) of M respec-
tively. As a result, formula 28 sets an upper bound for the deter-
minant stated in formula 21.

3.4. Maximizing the Bound and M aximizing the deter minant

From formula 28 we can make the following statement: If we max-
imize the bound such that «; are orthonormal, and the argument
u; found makes |Z| = H}izl Z;;, then we can say that:

d d

1Zz1< ]2 <]] jj=‘Z‘ (29)
j=1 j=1

121 < |2 (30)

and this means that, we would have found the matrix T that maxi-
mizes | Z| = P(U) and we would have solved the problem stated
in formula 22.

Following this reasoning, in this section, we will find a ma-
trix U that is the argument that maximizes Hj,:l Z;;. Then we
will prove that the matrix U found is such that there is an equality
relationship between P(U) = |Z| and H?zl Z;j. Then we will
conclude that T maximizes P(U).

Let’s first define J(U) as the bound found in formula 28:

1) =125 =TI 2w (W) @)

Let’s then solve the problem of maximizing the bound J(U):

~

U =arg max J(U) (32)

llugll=1

Given that M is PSD, then the values Aaz; are greater than
zero for 1 < ¢ < r and J(U) is convex over every w;. Having
J(U) as a convex function guarantees that applying a lagrangian
maximization method on it will give a global maximum. Then, we

now define the lagrangian L(U) and we proceed to maximize it:
d
LW)=JU)+ > N (1—|lw]”) (33)
=1

oL (D)

Oy,

o (7)) e Ans (W ) qus
=2J (U) 2 k doss) 01
Ei:l An; (Uk in)
=0 (35)
i1 A (W gm;) qur;
S A (@)’

We now left-multiply both sides of formula 36 by &% and rewrite
it again. As a result we get the solution %y :

— 2\l (34)

Aty = J ((7) (36)

J (ﬁ) Dima A (al{in)z

Dol A (angi)Q

J(O) = A (38)

::1 A (ﬂng@') qM;
22:1 Am; (aqui )2

To simplify our answer, we left-multiplying both sides of formula
39 by qlﬂh:

=Mlste =M (37)

= (39)

2221 A, (ﬁngi)q{lthi T A~ 40
S s @an)? 0
=1 i k i
Ay, (Uk quy) dir,av, G 1)
22:1 An; (angz)2 -
A, G qumr ~
A (42)

D1 A (ag‘in)2
Since every A, is greater than zero, then, formula 42 is true for
every k and every h if and only if:

For everyinteger k € [1 d] there is an integer (43)

h € [1 7] such that (44)
g qu, =1 (45)
Grqu, =0 forl#h (46)

To maximize J(U) we will choose h such that gas, correspond to
the highest eigenvalues Axgz, , i.e. we will chose k& = A:

g g, = 1 (47)
g, =0, forl#k (48)

Adding the fact that ||@|| = 1:
Ur = g, (49)

In formula 49 we have just found the solution of the problem of
maximizing the upper bound of the determinant defined in for-
mula 21, that is that the eigenvectors of the matrix M maximize
the bound J(U).

Now we will show that P(ﬁ) = J([?) (i.e. the determinant
of |UT MU] is equal to the product of it’s diagonal components).
For this, we first notice that the resulting Z is a diagonal matrix:

Z=U0"MU (50)
= A, (51)
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where Az, contains the highest d eigenvalues of M. Given that A
is a diagonal matrix, then, it’s determinant is equal to the product
of it’s diagonal components:

Zi = J(U) (52)

-

P) = ‘Z‘ -

i=1

Concluding with this section of the demonstration, we have found
U with orthonormal columns such that, for every matrix U €
R, x4 that has orthonormal columns, the following is true:

P(U) = ‘UTMU‘ <JU)<JO)=P@O) (3

that is the same as saying that U (i.e. the matrix which columns
are the eigenvectors of M) maximizes P(U).

3.5. Transforming the solution into one for the original prob-
lem

To transform the solution we found for the determinant maximiza-
tion problem of formula 22 into a solution for the original problem
of formula 4 we first rewrite formula 49:

MU =UAu, (54)
(55)
and combining this with formulas 10, 8, 20 and 6:
MUSVT = UAm,2V" (56)
MY =USVT VA, VT (57)
MY =YVAu, VT (58)
MR™W = RTWVAu, VT (59)
R 'SpR™TR™W = RTWVAuM, VT (60)
SgW = RRTWV Ay, VT (61)
SEW = SwWVAu, VT (62)

Formula 62 states an implicit version of the general solution
for the problem in formula 4 where, as we have seen in formulas
17 and 18, the matrix V' can be chosen arbitrarily as far as it’s
columns are orthonormal.

If we choose V' to be the identity matrix, then the solution of
the original problem for that specific case is:

SpW = SwWIAp,I (63)

= SWWAMd (64)

what means that there is a specific solution that maximizes the

multidimensional Generalized Rayleigh Quotient, and that specific

solution is a matrix which columns are the eigenvectors of the sys-
tem Ss, Sw. This is the well known eigenvectors solution.

We shall now write an explicit formula for the definition of the
general solution of maximization of the multidimensional Gener-
alized Rayleigh Quotient (formula 4). That solution is built based
on formulas 49 and 11:

W=Rr"TUsV" (65)
R is the cholesky decomposition of Sw

¥ is any diagonal matriz , ¥ € Ryxq

V is any orthogonal matriz , V € Ryxq

R'SpR™TU = UAwu,

4. CONCLUSIONS

We have found a more general solution to the maximization of
the multidimensional generalized rayleigh quotient. Our solution
doesn’t only include the well known eigenvectors solution, but also
an infinite number of solutions where our projection matrix can be
non orthogonal. To find this solution we have divided the demon-
stration in 5 parts, where we use cholesky decomposition and sin-
gular value decomposition to reduce the problem to a determinant
maximization problem. Then we have used a property of the deter-
minant of a PSD matrix to find a bound for that determinant. Then
we find the argument that maximizes that bound, and we show
that argument maximizes the determinant too. At the end, given
the solution of the determinant maximization problem we recover
the solution of the original problem. Both implicitly and explicitly.
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