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ABSTRACT CART). Hence, our title, Classificatiaor Regression Trees. Sec-

In this paper we challenge three of the underlying principles of ond, we argue that growing trees that are adapted to fit the data
CART, a well know approach to the construction of classification IS @an unnecessary step, and advocate the use of dyadic trees in-
and regression trees. Our primary concern is with the penalizationstéad. We show that dyadic trees provide sufficient flexibility, are
strategy employed to prune back an initial, overgrown tree. We €asy to construct, and produce near-optimal results when properly
reason, based on both intuitive and theoretical arguments, that thePruned. Third, in the regression setting, we replace the usual sum-
pruning rule for classification should be different from that used Of-squared errors criterion with the negative log-likelihood func-
for regression (unlike CART). We also argue that growing a tree- tion, which more accurately reflects the randomness in the data
structured partition that is specifically fitted to the data is unnec- and leads to near-optimal theoretical performance.

essary. Instead, our approach to tree modeling begins with a non-

adapted (fixed) dyadic tree structure and partition, much like that 2. REVIEW OF CART

underlying multiscale wavelet analysis. We show that dyadic trees

provide sufficient flexibility, are easy to construct, and produce CART traditionally involves two phases: growing and pruning. In
near-optimal results when properly pruned. Finally, we advocate the growing phase, the input domain is recursively partitioned into
the use of a negative log-likelihood measure of empirical risk. This cells. Each cell corresponds to a leaf of a large initial tree. The
is a more appropriate empirical risk for non-Gaussian regressionpartitioning is often done to fit the data as closely as possible, al-
problems, in contrast to the sum-of-squared errors criterion usedthough as we will discuss later non-adaptive initial trees/partitions

in CART regression. have certain advantages. The initial tree usually provides a very

good, perhaps perfect, fit to the data. Unfortunately, this can mean
1. INTRODUCTION that the tree is overfitting, and that its true predictive capabilities

may be very sub-optimal. To avoid overfitting, the initial tree is

In regression, the objective is to estimate a functiph : pruned. LetZ denote the set consisting of the initial tree and all

R?Y — R based on a random sample of input-output pairs possible prunings of this tree. CART selects the tred ithat

(x1,11), ..., (Tn,yn), wherez; € R? andy; € R. In clas- minimizes

sification, the objective is to construct a classifier whose per- .

formance is close to the Bayes-optimal classifiér : R¢ — C(T) = La(T) + T, 1)

{0,1,..., M — 1}, also based on a random sample of points ~ ) S o -

{($i7 yi)}?:lv where nowy; c {O7 17 ceey M — 1} represents class WhereL7L(T) IS theemplrlcal rlsk(estlmatlon or classification er-

label associated with the input. In this paper we consider the ror on the training data) using the trég || is the cardinality

two-class problend/ = 2. of the tree (i.e., the number of leaf nodes or partition cells), and

A common approach to so|ving classification and regression a > Ols a constant that controls the trade-off between fldellty to
problems is to partition the input space in a tree-structured fashion,the training data and the complexity of the tree. For regression the
and construct an estimatgror a classifies by fitting to the data ~ €MPirical risk is typically of the form

in each cell of the partition. The first such tree-based method to "

gain wide recognition was CART (Classification and Regression fn(T) _ 1 Z(fT(xi) — )

Trees) [1]. After nearly two decades, the techniques presented in ne

that seminal work continue to influence the design of new tree-

based algorithms. Recent results discussed herein and in [2, 3] demonstrate that this

In this paper we challenge several of the underlying principles criterionis appropriate for Gaussian regression problems. For clas-
of CART. Our first concern is with the penalization strategy em- Sification, the empirical risk is
ployed to prune back an overgrown tree. We reason, based on both N
intuitive and theoretical arguments, that the pruning rule for clas- 7 1 I
o . ’ . . L,(T) = — 1 i i)
sification should be different from that used for regression (unlike () n ; (@r(w:) # vi)

R. Nowak was partially supported by the National Science Foundation, whereI denotes the indicator function
grant no. MIP-9701692, the Army Research Office, grant no. DAAD19- T d ~ d di .
99-1-0349, the Office of Naval Research, grant no. N00014-00-1-0390. R, Minimizing (1) produces a tre& and a corresponding esti-

Willett was partially supported by the National Science Foundation Grad- mator f = f(T') or classifierp = ¢(T)). Specifically, a model
uate Student Fellowship. (regression function or classification label) is fitted to each cell of

0-7803-7663-3/03/$17.00 ©2003 IEEE VI - 153 ICASSP 2003




the partition associated witf to minimize the empirical risk. For ~ Thus, we haveR, = (f — E[f])2 as the squared bias term and

example, the estimatgfcould be constant on each cell of the par- Ry = E {(f_ E[ﬂ)ﬂ as the variance term; a similar decompo-
tition, with the constant value equal to the averageyofn that sition holds in the Poisson/multinomial cases.
cell. Similarly, the classifiep is constant on each cell, with the In classification, the risk is written in terms of thpproxima-
classification label determined by a majority vote of the training ion error andestimation error
data in the cell.

We argue here that the CART criterion is natural and in a cer- R(, ") = (Le — L(67)) + <E [L(g)] _ Lc) ,
tain sense optimal for regression problems, but that it tends to pe-

nalize large trees too aggressively in the classification context. In-\wherer; = inf,cc L(¢). For exampleg might be the collection
stead, for classification we show that an alternative criterion of the of 5| tree classifiers with no more tha leaf nodes. Here the

form approximation errorR; = (Lc — L(¢*)), functions as the bias

or) = En(T) T a \T|1/2, @) term, while the estimation erroRs = (E [L($)] — Lc> func-
tions as the variance. For convenience, we use the terms “bias” and
is appropriate and optimal for the classification problem. Remark- “variance” to refer tol2; and Ra, respectively, for both regression
ably, both (1) and (2) can be solved by the efficient, bottom-up and classification problems.
pruning process traditionally used in CART. We also suggest that
in non-Gaussian regression problems (e.g., Poisson, multinomial) 4. PROPER PENALTIES FOR TREE PRUNING
it is more appropriate to employ the negative log-likelihood func-
tion as the empirical risk instead of the usual sum of squared errorsror tree-based methods, the complexity of a classifier or estimator
(note the two are the same in the Gaussian case). In fact, the theois quantified in terms of the number of leaf nodes of the tree. Let
retical performance bounds discussed later will only hold with the R(k) denote the risk associated with a tree estimator or classifier
negative log-likelihood measure of empirical risk. based on a tree with leaf nodes. LeR, (k) andRz (k) denote the
corresponding bias and variance, respectively. Generally, the bias
cannot be gauged without some knowledge of the true function or
Bayes optimal classifier. The variance, however, can be assessed
in both cases, without knowledge of the underlying functions or
distributions, as we will see below. Thus, assume the variance
R2(k) grows like (or is bounded by) a certain functig(k) de-
pending on the number of leaf nodgs For simplicity, assume
that R2 (k) = ag(k), for somea > 0.
Since the risk is the sum a®, (k) and Rz(k), two positive
quantities, it is clear that nk-leaf tree can achieve a risk lower
. - than Rz (k). Therefore, if a tree has an empirical error that falls
R(f,f")=E [(f* - f)ﬂ ; below this lower bound, then the empirical error is no longer an
accurate estimate of the true error, and one can infer that the tree is
whereE denotes the expectation operator. In the case where theoverfitting the training data, as depicted in Figure 1. This reason-
observations are Poisson or multinomial distributed, as arises ining forms the intuitive basis for tree pruning strategies. As shown

3. BIAS-VARIANCE TRADE-OFF IN CLASSIFICATION
AND REGRESSION

The theoretical performance of the estimafoor cIassifierqA& is
measured in terms ofrésk function denoted byR. The empirical
risk described in the preceding secticfm, is an estimate of the
true risk, R. For regression, the risk is typically a mean square er-
ror (MSE). If the observation§y; } are Gaussian distributed, then

intensity or density estimation, in the next section, for regression problems the funchiaiik) is

linear ink. This agrees with the usual CART penalty. For classifi-
o 2\ 2 cation, R, (k) is sublinear and behaves liké/?, as shown below
R(f,f")=E (\/ = \/;) . in Figure 1. This suggests the modified CART criterion in (2).

This “square-root” scale MSE is necessary to stabilize the density- 5. BOUNDING THE VARIANCE TERM

dependent variance of Poisson or multinomial processes. For clas- ) ) )

sification, the risk function is In this section we derive bounds on the variad®g(k) for the
classification and regression problems. These bounds will help us

R(@, ¢*)=E [L(a)} — L(6"). to establish the proper penalties for pruning.

Here,L(¢) = P{¢(X) # Y} is the probability of error for the 5.1. Regression
classifierg, andL(¢") is the Bayes error, which is the minimum  The variance terni, (k)  k, the number of leaves (degrees of
probability of error among all possible classifiers. freedom) in the tree-based estimator. To see this, consider the case

While the risk functions for classification and regression are in which are data are. samples of a signal contaminated with
different, both risk functions have a decomposition of the form Gaussian white noise with powef. LetT be a tree withk leaves,
R = Ri + Ro, such thatRk, decreases ant; increases as the  anq define the estimatgras the sample-average over each of the
complexity of the classifier/estimator increases. For regression incg|is in the partition defined by. The average of the samples in
the Gaussian case, we have the familiar bias-variance decomposigach cell is Gaussian with varianeg, and thus the total variance
tion: of the estimator i%:c2. Similar conclusions can be made for other

R N2 R R data types (e.g., Poisson, multinomial), and more sophisticated re-
R(f, f") = (f* - E[f]> +E [(f - E[f])Q] . gression models (e.g., polynomial fits in each cell).
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7 where in the last step we use Chernoff’s bound and the fact that
nLy(¢$) ~ Binomial(n, L(¢)). For the third step, let = L(¢)—
mingec, L(¢). We want to bound[z] = Rz (k). Now observe

Regression
Overfitting

E[2’] = /OOOP(z2 > t)dt

/P(22>t)dt+/ P(z* > t)dt
0 u

Classification o
u+/ 2ke™ /2 gy

IA

Overfitting

k+1 5
""""""""""""""" = u-+ e—nu/ .

Minimizing this bound with respect to, we obtain

2
— Empirical error E [zz] < - (klog2+1),
— Regression penalty
----- Regression objective function and thus, by Jensen’s inequality, we have
—— Classification penalty
----- Classification objective function Ry(k) = E[2] < VE[2] < avk,

whereq is a constant not depending &n The square-root bound

on the growth of the variance in classification holds in much more
general cases, for both adaptive and non-adaptive tree structures
[4,5]. The key to such results is to replace Chernoff’'s bound by the
Vapnik-Chervonenkis inequality [6, 7] or extensions of the Vapnik-
Chervonenkis inequality for data-dependent partitions [5].

Fig. 1. Penalty structures for classification and regression. When
the empirical risk is less than the variance, overfitting occurs. By
choosing a penalty proportional to the variance term (which is
different for classification than for regression), CORT produces a
pruned tree near the beginning of the overfitting region.

5.2. Classification 6. RISK BOUNDS FOR DYADIC CLASSIFICATION AND
REGRESSION TREES
Let us first consider a simple case in whigh= Cy, is the collec-

tion of all tree classifiers corresponding to the different possible To characterize the theoretical performance of classification and

labelings of a fixed tree-structured partitionRf havingk cells. regression trees, the rate at which the risk converges to zero can be
In this case, there arg® different classification trees if;, and bounded by assuming the true function or Bayes classifier belongs
Ry(k) = E [L(ZS) — Le,. The classifie is chosen to mini- 0 @ certain (smoothness) class and then carefully balancing the

bias and variance components of the risk to achieve a minimum.
The details behind such bounds are beyond the scope of this paper,
and here we simply state the key results. For more information
the reader is referred to [4,8,9]. A key assumption behind our
results is that the class of tre€s, considered is the set of all
pruned dyadic trees (i.e., dyadic partitions like those underlying

mize the empirical risk, in which case each cell of the partition is
labelled by majority vote.

The derivation of a bound oR (k) proceeds in three steps.
In the first step, we observe

~

L(¢) Lcj conventional wavelet analysis); they are not grown adaptively to
= L(¢)— ;relicn L(¢) fit the data, which makes certain key analysis steps possible.
k
= L(¢) — Ln(¢) + Ln(¢) — min L(¢) Classification Risk Bound: Assume that the Bayes boundary is
$€Ck essentially al — 1 dimensional manifold in the original dimen-
< L(QAﬁ) — En(,g) 4 max f,n(¢) — L(¢) s_ional_ feat_ure space; a very reasonable assumption for most prac-
PEC tical situations. Technically, we require that the Bayes optimal de-
< 92 max ‘Zn(qb) _ L(d?)‘ ] cision boundary has a box-counting dimensiod ef1 [4]. Select
»ECK a classification tree iffip, that minimizes the criterion
In the second step, the above fact is used to bound N
o) = Loy + /2B gz )
P (L(¢) - félcli Lig) > E) wheren is the number of label training data. Then the risk of the
N ¢ corresponding classifier is bounded according to
< P (max L.(¢) — L(qﬁ)‘ > 7)
PEC 2 R log 1 1/(d+1)
‘ RGe) < o(FEn) T @
< Y P(Lo)-L@)|>3) (6. n

whereC' > 0 is a constant. It can also be shown that this upper
bound is close to the minimax lower bound for this classification
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problem [4], which demonstrates that dyadic classification trees 3. Likelihood-based regression: CART usually employs a sum-

cannot be significantly outperformed by other methods (e.g.,
neural networks, support vector machines, standard CART, etc.)
under the stated assumptions.

Regression Risk Bound:For the sake of simplicity, let us assume
that the functionf is one-dimensional. Extensions to multidimen-
sional function estimation (e.g., images) can be made. Assume
that the true functiory belongs to a Besov space with smooth-
ness parametg?. This space includes functions that are generally
smooth, but may have discontinuities as well; again a very rea-
sonable assumption for most practical problems. A regression tree
is based on a pruned dyadic partition, with polynomials of degree
r > (3 fitted to the data on each cell of the partition. Select such a
regression tree frorip, according to the criterion

of-squared errors criterion for regression. Here we advo-
cate a negative log-likelihood criterion which enables us
to devise near-optimal estimators for Gaussian and non-
Gaussian data types. The theoretical findings described
in this paper are also supported by empirical evidence in
a number of different non-Gaussian regression problems,
including applications in astronomical data analysis, den-
sity estimation, and medical imaging [8,9]. These re-
sults demonstrate that the theoretical and practical benefits
associated with wavelet analysis in Gaussian noise prob-
lems can be obtained in a much broader class of problems,
through the use of dyadic partitions and piecewise polyno-
mial data fitting.

In addition to the desirable flexibility and theoretical perfor-
mance characteristics of our tree-based methods, these classifiers

cT) = fn(T) + 3+ and estimators can be constructed very efficiently [4,8,9]. The

logn [T, ()

2

criterion in (1) or (2) can be evaluated for every possible prun-

wheren is the number of data. Then the risk of the resulting esti- Ing of a initial N leaf tree inO(NN log N) operations. In practice,

matorfis bounded according to

it is unnecessary to consider initial trees with more leaves than

available datan, and thusN < n. Moreover, our penalties are

2 28/(28+1)
RFfH < © (“J)

n

; (6)

whereC' > 0 is a constant. It can also be shown that this upper
bound is within a logarithmic factor of the minimax lower bound
for this regression problem [9], which demonstrates that dyadic re-
gression trees cannot be significantly outperformed by other meth-
ods (e.g., splines, radial basis functions, standard CART, etc.).

set according to theoretical bounds, and no tuning or adjustment
is required. CART usually employs computationally demanding
cross-validation procedures to select a good pruning. Therefore,
the overall computational cost of our method®ig:), which may

be much less than that required by traditional CART.
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