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ABSTRACT
In this paper we challenge three of the underlying principles of
CART, a well know approach to the construction of classification
and regression trees. Our primary concern is with the penalization
strategy employed to prune back an initial, overgrown tree. We
reason, based on both intuitive and theoretical arguments, that the
pruning rule for classification should be different from that used
for regression (unlike CART). We also argue that growing a tree-
structured partition that is specifically fitted to the data is unnec-
essary. Instead, our approach to tree modeling begins with a non-
adapted (fixed) dyadic tree structure and partition, much like that
underlying multiscale wavelet analysis. We show that dyadic trees
provide sufficient flexibility, are easy to construct, and produce
near-optimal results when properly pruned. Finally, we advocate
the use of a negative log-likelihood measure of empirical risk. This
is a more appropriate empirical risk for non-Gaussian regression
problems, in contrast to the sum-of-squared errors criterion used
in CART regression.

1. INTRODUCTION

In regression, the objective is to estimate a functionf∗ :
Rd → R based on a random sample of input-output pairs
(x1, y1), . . . , (xn, yn), wherexi ∈ Rd and yi ∈ R. In clas-
sification, the objective is to construct a classifier whose per-
formance is close to the Bayes-optimal classifierφ∗ : Rd →
{0, 1, . . . , M − 1}, also based on a random sample of points
{(xi, yi)}n

i=1, where nowyi ∈ {0, 1, . . . , M−1} represents class
label associated with the inputxi. In this paper we consider the
two-class problemM = 2.

A common approach to solving classification and regression
problems is to partition the input space in a tree-structured fashion,
and construct an estimator̂f or a classifier̂φ by fitting to the data
in each cell of the partition. The first such tree-based method to
gain wide recognition was CART (Classification and Regression
Trees) [1]. After nearly two decades, the techniques presented in
that seminal work continue to influence the design of new tree-
based algorithms.

In this paper we challenge several of the underlying principles
of CART. Our first concern is with the penalization strategy em-
ployed to prune back an overgrown tree. We reason, based on both
intuitive and theoretical arguments, that the pruning rule for clas-
sification should be different from that used for regression (unlike
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CART). Hence, our title, Classificationor Regression Trees. Sec-
ond, we argue that growing trees that are adapted to fit the data
is an unnecessary step, and advocate the use of dyadic trees in-
stead. We show that dyadic trees provide sufficient flexibility, are
easy to construct, and produce near-optimal results when properly
pruned. Third, in the regression setting, we replace the usual sum-
of-squared errors criterion with the negative log-likelihood func-
tion, which more accurately reflects the randomness in the data
and leads to near-optimal theoretical performance.

2. REVIEW OF CART

CART traditionally involves two phases: growing and pruning. In
the growing phase, the input domain is recursively partitioned into
cells. Each cell corresponds to a leaf of a large initial tree. The
partitioning is often done to fit the data as closely as possible, al-
though as we will discuss later non-adaptive initial trees/partitions
have certain advantages. The initial tree usually provides a very
good, perhaps perfect, fit to the data. Unfortunately, this can mean
that the tree is overfitting, and that its true predictive capabilities
may be very sub-optimal. To avoid overfitting, the initial tree is
pruned. LetT denote the set consisting of the initial tree and all
possible prunings of this tree. CART selects the tree inT that
minimizes

C(T ) = L̂n(T ) + α |T |, (1)

whereL̂n(T ) is theempirical risk(estimation or classification er-
ror on the training data) using the treeT , |T | is the cardinality
of the tree (i.e., the number of leaf nodes or partition cells), and
α > 0 is a constant that controls the trade-off between fidelity to
the training data and the complexity of the tree. For regression the
empirical risk is typically of the form

L̂n(T ) =
1

n

n∑
i=1

(f̂T (xi)− yi)
2.

Recent results discussed herein and in [2, 3] demonstrate that this
criterion is appropriate for Gaussian regression problems. For clas-
sification, the empirical risk is

L̂n(T ) =
1

n

n∑
i=1

I(φ̂T (xi) 6= yi),

whereI denotes the indicator function.
Minimizing (1) produces a treêT and a corresponding esti-

mator f̂ = f(T̂ ) or classifierφ̂ = φ(T̂ ). Specifically, a model
(regression function or classification label) is fitted to each cell of
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the partition associated witĥT to minimize the empirical risk. For
example, the estimator̂f could be constant on each cell of the par-
tition, with the constant value equal to the average ofyi in that
cell. Similarly, the classifier̂φ is constant on each cell, with the
classification label determined by a majority vote of the training
data in the cell.

We argue here that the CART criterion is natural and in a cer-
tain sense optimal for regression problems, but that it tends to pe-
nalize large trees too aggressively in the classification context. In-
stead, for classification we show that an alternative criterion of the
form

C(T ) = L̂n(T ) + α |T |1/2, (2)

is appropriate and optimal for the classification problem. Remark-
ably, both (1) and (2) can be solved by the efficient, bottom-up
pruning process traditionally used in CART. We also suggest that
in non-Gaussian regression problems (e.g., Poisson, multinomial)
it is more appropriate to employ the negative log-likelihood func-
tion as the empirical risk instead of the usual sum of squared errors
(note the two are the same in the Gaussian case). In fact, the theo-
retical performance bounds discussed later will only hold with the
negative log-likelihood measure of empirical risk.

3. BIAS-VARIANCE TRADE-OFF IN CLASSIFICATION
AND REGRESSION

The theoretical performance of the estimatorf̂ or classifierφ̂ is
measured in terms of arisk function, denoted byR. The empirical
risk described in the preceding section,L̂n, is an estimate of the
true risk,R. For regression, the risk is typically a mean square er-
ror (MSE). If the observations{yi} are Gaussian distributed, then

R(f̂ , f∗) = E
[
(f∗ − f̂)2

]
,

whereE denotes the expectation operator. In the case where the
observations are Poisson or multinomial distributed, as arises in
intensity or density estimation,

R(f̂ , f∗) = E

[(√
f∗ −

√
f̂

)2
]

.

This “square-root” scale MSE is necessary to stabilize the density-
dependent variance of Poisson or multinomial processes. For clas-
sification, the risk function is

R(φ̂, φ∗) = E
[
L(φ̂)

]
− L(φ∗).

Here,L(φ) = P{φ(X) 6= Y } is the probability of error for the
classifierφ, andL(φ∗) is the Bayes error, which is the minimum
probability of error among all possible classifiers.

While the risk functions for classification and regression are
different, both risk functions have a decomposition of the form
R = R1 + R2, such thatR1 decreases andR2 increases as the
complexity of the classifier/estimator increases. For regression in
the Gaussian case, we have the familiar bias-variance decomposi-
tion:

R(f̂ , f∗) =
(
f∗ −E[f̂ ]

)2

+ E
[
(f̂ −E[f̂ ])2

]
.

Thus, we haveR1 = (f∗ − E[f̂ ])2 as the squared bias term and

R2 = E
[
(f̂ −E[f̂ ])2

]
as the variance term; a similar decompo-

sition holds in the Poisson/multinomial cases.
In classification, the risk is written in terms of theapproxima-

tion error andestimation error:

R(φ̂, φ∗) = (LC − L(φ∗)) +
(
E

[
L(φ̂)

]
− LC

)
,

whereLC = infφ∈C L(φ). For example,C might be the collection
of all tree classifiers with no more than10 leaf nodes. Here the
approximation error,R1 = (LC − L(φ∗)), functions as the bias

term, while the estimation error,R2 =
(
E

[
L(φ̂)

]
− LC

)
func-

tions as the variance. For convenience, we use the terms “bias” and
“variance” to refer toR1 andR2, respectively, for both regression
and classification problems.

4. PROPER PENALTIES FOR TREE PRUNING

For tree-based methods, the complexity of a classifier or estimator
is quantified in terms of the number of leaf nodes of the tree. Let
R(k) denote the risk associated with a tree estimator or classifier
based on a tree withk leaf nodes. LetR1(k) andR2(k) denote the
corresponding bias and variance, respectively. Generally, the bias
cannot be gauged without some knowledge of the true function or
Bayes optimal classifier. The variance, however, can be assessed
in both cases, without knowledge of the underlying functions or
distributions, as we will see below. Thus, assume the variance
R2(k) grows like (or is bounded by) a certain functiong(k) de-
pending on the number of leaf nodesk. For simplicity, assume
thatR2(k) = αg(k), for someα > 0.

Since the risk is the sum ofR1(k) andR2(k), two positive
quantities, it is clear that nok-leaf tree can achieve a risk lower
thanR2(k). Therefore, if a tree has an empirical error that falls
below this lower bound, then the empirical error is no longer an
accurate estimate of the true error, and one can infer that the tree is
overfitting the training data, as depicted in Figure 1. This reason-
ing forms the intuitive basis for tree pruning strategies. As shown
in the next section, for regression problems the functionR2(k) is
linear ink. This agrees with the usual CART penalty. For classifi-
cation,R2(k) is sublinear and behaves likek1/2, as shown below
in Figure 1. This suggests the modified CART criterion in (2).

5. BOUNDING THE VARIANCE TERM

In this section we derive bounds on the varianceR2(k) for the
classification and regression problems. These bounds will help us
to establish the proper penalties for pruning.

5.1. Regression

The variance termR2(k) ∝ k, the number of leaves (degrees of
freedom) in the tree-based estimator. To see this, consider the case
in which are data aren samples of a signal contaminated with
Gaussian white noise with powerσ2. LetT be a tree withk leaves,
and define the estimator̂f as the sample-average over each of the
cells in the partition defined byT . The average of the samples in
each cell is Gaussian with varianceσ2, and thus the total variance
of the estimator iskσ2. Similar conclusions can be made for other
data types (e.g., Poisson, multinomial), and more sophisticated re-
gression models (e.g., polynomial fits in each cell).
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Fig. 1. Penalty structures for classification and regression. When
the empirical risk is less than the variance, overfitting occurs. By
choosing a penalty proportional to the variance term (which is
different for classification than for regression), CORT produces a
pruned tree near the beginning of the overfitting region.

5.2. Classification

Let us first consider a simple case in whichC = Ck is the collec-
tion of all tree classifiers corresponding to the different possible
labelings of a fixed tree-structured partition ofRd havingk cells.
In this case, there are2k different classification trees inCk, and

R2(k) = E
[
L(φ̂)

]
− LCk . The classifier̂φ is chosen to mini-

mize the empirical risk, in which case each cell of the partition is
labelled by majority vote.

The derivation of a bound onR2(k) proceeds in three steps.
In the first step, we observe

L(φ̂)− LCk

= L(φ̂)− min
φ∈Ck

L(φ)

= L(φ̂)− L̂n(φ̂) + L̂n(φ̂)− min
φ∈Ck

L(φ)

≤ L(φ̂)− L̂n(φ̂) + max
φ∈Ck

∣∣∣L̂n(φ)− L(φ)
∣∣∣

≤ 2 max
φ∈Ck

∣∣∣L̂n(φ)− L(φ)
∣∣∣ .

In the second step, the above fact is used to bound

P

(
L(φ̂)− min

φ∈Ck

L(φ) > ε

)
≤ P

(
max
φ∈Ck

∣∣∣L̂n(φ)− L(φ)
∣∣∣ >

ε

2

)
≤

∑
φ∈Ck

P
(∣∣∣L̂n(φ)− L(φ)

∣∣∣ >
ε

2

)
≤ 2ke−nε2/2,

where in the last step we use Chernoff’s bound and the fact that
nL̂n(φ) ∼ Binomial(n, L(φ)). For the third step, letz = L(φ̂)−
minφ∈Ck L(φ). We want to boundE[z] = R2(k). Now observe

E
[
z2] =

∫ ∞

0

P(z2 > t) dt

=

∫ u

0

P(z2 > t) dt +

∫ ∞

u

P(z2 > t) dt

≤ u +

∫ ∞

u

2ke−nt/2 dt

= u +
2k+1

n
e−nu/2.

Minimizing this bound with respect tou, we obtain

E
[
z2] ≤ 2

n
(k log 2 + 1) ,

and thus, by Jensen’s inequality, we have

R2(k) = E[z] ≤
√

E[z] ≤ α
√

k,

whereα is a constant not depending onk. The square-root bound
on the growth of the variance in classification holds in much more
general cases, for both adaptive and non-adaptive tree structures
[4, 5]. The key to such results is to replace Chernoff’s bound by the
Vapnik-Chervonenkis inequality [6, 7] or extensions of the Vapnik-
Chervonenkis inequality for data-dependent partitions [5].

6. RISK BOUNDS FOR DYADIC CLASSIFICATION AND
REGRESSION TREES

To characterize the theoretical performance of classification and
regression trees, the rate at which the risk converges to zero can be
bounded by assuming the true function or Bayes classifier belongs
to a certain (smoothness) class and then carefully balancing the
bias and variance components of the risk to achieve a minimum.
The details behind such bounds are beyond the scope of this paper,
and here we simply state the key results. For more information
the reader is referred to [4, 8, 9]. A key assumption behind our
results is that the class of treesTDy considered is the set of all
pruned dyadic trees (i.e., dyadic partitions like those underlying
conventional wavelet analysis); they are not grown adaptively to
fit the data, which makes certain key analysis steps possible.

Classification Risk Bound: Assume that the Bayes boundary is
essentially ad − 1 dimensional manifold in the originald dimen-
sional feature space; a very reasonable assumption for most prac-
tical situations. Technically, we require that the Bayes optimal de-
cision boundary has a box-counting dimension ofd−1 [4]. Select
a classification tree inTDy that minimizes the criterion

C(T ) = L̂n(T ) +

√
32(log(n) + 1)

n
|T |1/2, (3)

wheren is the number of label training data. Then the risk of the
corresponding classifier̂φ is bounded according to

R(φ̂, φ∗) ≤ C

(
log n

n

)1/(d+1)

, (4)

whereC > 0 is a constant. It can also be shown that this upper
bound is close to the minimax lower bound for this classification
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problem [4], which demonstrates that dyadic classification trees
cannot be significantly outperformed by other methods (e.g.,
neural networks, support vector machines, standard CART, etc.)
under the stated assumptions.

Regression Risk Bound:For the sake of simplicity, let us assume
that the functionf is one-dimensional. Extensions to multidimen-
sional function estimation (e.g., images) can be made. Assume
that the true functionf belongs to a Besov space with smooth-
ness parameterβ. This space includes functions that are generally
smooth, but may have discontinuities as well; again a very rea-
sonable assumption for most practical problems. A regression tree
is based on a pruned dyadic partition, with polynomials of degree
r ≥ β fitted to the data on each cell of the partition. Select such a
regression tree fromTDy according to the criterion

C(T ) = L̂n(T ) +
3 + r

2
log n |T |, (5)

wheren is the number of data. Then the risk of the resulting esti-
matorf̂ is bounded according to

R(f̂ , f∗) ≤ C

(
log2 n

n

)2β/(2β+1)

, (6)

whereC > 0 is a constant. It can also be shown that this upper
bound is within a logarithmic factor of the minimax lower bound
for this regression problem [9], which demonstrates that dyadic re-
gression trees cannot be significantly outperformed by other meth-
ods (e.g., splines, radial basis functions, standard CART, etc.).

7. CONCLUSIONS

The work summarized in this paper pointed to three key modifica-
tions of the classical CART program.

1. Different penalties for classification and regression:The
variance component of the risk functions grows differently
for classification and regression; like|T | for regression
and |T |1/2 for classification. This implies that the proper
penalization for tree pruning should be modified to account
for this distinction. With the appropriate penalties, it is
shown that the risks of classification and regression trees
converge rapidly to zero, at near minimax-optimal rates in
a broad range of cases. Without the proper penalty, CART
is well known to “overprune” in classification problems.

2. Dyadic trees: CART usually begins by growing a tree (and
corresponding partition) to fit the data as closely as possi-
ble. This can be a computationally expensive process, and
based on our theoretical analysis, as well as our practical
experience, appears to be unnecessary. Pruned dyadic trees
perform about as well, and sometimes better than, grown
and pruned trees. A classification benchmark study [4, 10]
demonstrates that the pruning criterion in (3) produces clas-
sification trees that perform nearly as well, and sometimes
better than, the standard CART-based trees. Moreover,
adaptively grown trees are very difficult to analyze, and risk
bounds analogous to those presented here for dyadic trees
are not currently known. Our use of dyadic partitions for
classification here complements the connection made be-
tween CART and wavelet-based regression in [3].

3. Likelihood-based regression:CART usually employs a sum-
of-squared errors criterion for regression. Here we advo-
cate a negative log-likelihood criterion which enables us
to devise near-optimal estimators for Gaussian and non-
Gaussian data types. The theoretical findings described
in this paper are also supported by empirical evidence in
a number of different non-Gaussian regression problems,
including applications in astronomical data analysis, den-
sity estimation, and medical imaging [8, 9]. These re-
sults demonstrate that the theoretical and practical benefits
associated with wavelet analysis in Gaussian noise prob-
lems can be obtained in a much broader class of problems,
through the use of dyadic partitions and piecewise polyno-
mial data fitting.

In addition to the desirable flexibility and theoretical perfor-
mance characteristics of our tree-based methods, these classifiers
and estimators can be constructed very efficiently [4, 8, 9]. The
criterion in (1) or (2) can be evaluated for every possible prun-
ing of a initialN leaf tree inO(N log N) operations. In practice,
it is unnecessary to consider initial trees with more leaves than
available datan, and thusN ≤ n. Moreover, our penalties are
set according to theoretical bounds, and no tuning or adjustment
is required. CART usually employs computationally demanding
cross-validation procedures to select a good pruning. Therefore,
the overall computational cost of our methods isO(n), which may
be much less than that required by traditional CART.
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