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ABSTRACT

The Kullback information criterion KIC is a recently developed
tool for statistical model selection [1]. KIC serves as an asymptot-
ically unbiased estimator of a variant of the Kullback symmetric
divergence, known also as J-divergence. In this paper a bias cor-
rection of the Kullback symmetric information criterion is derived
for linear models. The correction is of particular use when the
sample size is small or when the number of fitted parameters is of
moderate to large fraction of the sample size. For linear regres-
sion models, the corrected method called KICc is an exactly unbi-
ased estimator of a variant of the Kullback symmetric divergence
between the true unknown model and the candidate fitted model.
Furthermore KICc is found to provide better model order choice
than any other asymptotically efficient methods in an application
to autoregressive time series models.

1. INTRODUCTION

Model selection is an important area of statistical modeling, and
its results are applied to many problems in signal processing [2].
the first model selection criterion to gain widespread acceptance
was Akaike information criterion, AIC [3]. Many others criteria
have been introduced and studied, including the cross validation,
CV, by Stone [4], Bayesian information criterion, BIC, by Schwarz
[5], minimum description length, MDL, by Rissanen [6].

AIC serves as an asymptotically unbiased estimator of the Kull-
back’s directed divergence between the true model and the fitted
approximating model. The directed divergence, also known as the
Kullback-Leibler information, relative entropy or the I-divergence,
assesses the dissimilarity between two statistical models [7]. As
the dimension of the candidate model, increases compared to n,
the sample size, AIC becomes a strongly negatively biased esti-
mate of the information. A bias corrected version of AIC was
proposed by Sugiura for linear regression models [8]. Later it was
successfully applied by Hurvich to nonlinear regression and au-
toregressive time series [9].

The Kullback’s divergence is an asymmetric measure, it means that
an alternative directed divergence can be obtained by reversing the
roles of the two models in the definition of the measure. A new
measure of model’s dissimilarity can be obtained by the sum of
the two directed divergences, known as the Kullback’s symmetric
divergence, or J-divergence [10]. Since the symmetric divergence

measures, it functions as a gauge of model disparity, which is ar-
guably more sensitive than either of its individual component. Fol-
lowing the above reasoning, Cavanaugh [1] proposed the Kullback
information criterion KIC as an asymptotically unbiased estimate
of a variant (within a constant) of the J-divergence between the
true unknown model and the fitted approximating model.
Motivated by the above developments, we propose a bias corrected
version of the KIC for linear regression models. The new criterion
is shown to outperform classical criteria in a small sample autore-
gressive modeling.

The remainder of this paper is organized as follows. In section
2 we present a short overview of Kullback’s directed divergence,
AIC, its corrected version AICc and KIC. In section 3 we introduce
the bias corrected version of KIC. Section 4 presents simulation re-
sults for autoregressive model selection. We end up by concluding
remarks.

2. REVIEW OF AIC, AICC AND KIC

Suppose a collection of datay = (y1, ..., y2) has been generated
according to an unknown parametric model p(y|6o). We consider
to find a parametric model which provides a suitable approxima-
tion for p(y|6o).

let My, = {p(y|0x)|0r € O} denote a k-dimensional parametric
family and let 0, denote the vector of estimate obtained by max-
imizing the likelihood function p(y|0x) over ©y. For simplicity,
we will assume k& = 1,2, ..., kmaz, S0 the collection consists of
families of dimension 1 through ky,q. [11].

To determine which candidate model best approximates the true
unknown model p(y|fy), we require a measure which provide a
suitable reflection of the disparity between p(y|6o) and an approx-
imating model p(y|0%). The Kullback’s directed divergence is one
of such measure.

For the two parametric densities p(y|6x) and p(y|6o), the Kull-
back’s divergence between p(y|0) and p(y|6o) with respect to
p(y|0o) is defined as

2, (00,08) = Eg, 421
(6o, 05) { " o(y10)

= FEpy {—2Inp(y|0k)} — Ee, {—2Inp(y|0o)}
dn(00,01) — dn (60, 00).

p(Y\Go)}

combines information about models dissimilarity through distinct where
* Corresponding author dn(60,0r) = Eoo{—21Inp(y|6k)}. (1)
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Since d, (6o, o) does not depend on 6y, any ranking of the candi-
date models according to I, (6o, 0x) would be identical to ranking
them according to d., (6o, 6 ).

The above discussion suggests that

dn (00, 0k) = Eoo {—2Inp(y|6x)} |5, s,

would provide a suitable measure of a variant of the directed Kull-
back divergence between the generating model p(y|6o) and the
candidate model p(y|6x). Yet evaluating d,, (6o, fx.) is not possi-
ble, since doing so requires the knowledge of 0.

Akaike suggests that —2 In p(y|ék) serves as a biased estimator of
dn (00, 01, and proposes an asymptotic bias correction [3] leading
to

AIC = —21np(y|0x) + 2k )
if we denote
An(k,00) = Ea, {dn(60,01)} .
One can establish that [3]
Ayn(k,00) = Eg, {AIC} + 0o(1).
Hurvich proposes a corrected version [9]

kE+1)n

_ 5 (
AlICc = 21np(y\9k)+2n_k_2. 3)

that is an exactly unbiased estimator of d,, (Ao, fx) for linear re-
gression, i.e

An(k,00) = Eg, {AICCc}.
Recall that the symmetric divergence is defined as

2Jn(00,6r) = In(6o,0k)+ In(6k,60)
dn(oo, ek) - dn(90790) + dn(elm 90)
_dn(ekyek)

dropping d,, (6o, 6o) since it does not depend on k, the quantity
Kn(00,0k) = dn(00,0) + dn(0k, 00) — dn(Ok, Or) “

is a substitute measure for J, (6o, 0k). Kn(6o,0r) would lead
to an appealing measure of separation between the true unknown
model and the fitted candidate model because it includes an addi-
tional information about the model’s dissimilarity .

Since K, (6o, ék) is inaccessible, Cavanaugh proposes an asymp-
totically unbiased estimator [1]

KIC = —2Inp(y|k) + 3k (5)
such that
(K, o) Ee, {Kn(eo,ék)}
Ego {KIC} + o(1).

KIC is shown to outperform AIC in large sample autoregressive
model selection and produces less overfitting selection than AIC

(1].

3. DERIVATION OF KICC

Consider the case of linear regression models. Suppose that the
generating model for the data is given by

y=XBo+e,  e~N(0,00l,) (6)
and that of the candidate model
y=XB+e, e~ N(0,0°L,) @)

The vector of parameters for the model is = [3 ¢?]’. In what
follows, we propose an exactly unbiased estimator of K, (6o, 0%)
for linear regression

Proposition. Let

p (k+1)n
KI = =21 2
Ce np(ylde) + 2%
n—k n
fm/J( 5 >+nln§. (8)

then KICc is an exactly unbiased estimator of K, (6o, ék),
that is : Qn(k,60) = Eo, {KICc}
where 1 is digamma or psi function defined as [12]:

_d{lnT(2)} _T'(2)

v(z) dx T T(x)
Proof.
We consider the candidate model of Equation (7) then
dn(01,62) = FEo {-2Inp(yl|62)}

2 ot
nln2r +nlnos + n—
o

2

2

L (B - B2) XX (61— o).
o5

Replacing the above in what it corresponds in Equation (4)

.2

Kn(00,0r) = nln&i —|—nln27r—nln0—§ —n
9o

1

o,

+—(2) <Bk - 5o)tXtX (Bk - ﬁo)

4z (B o) XX (B - )

% . Gk

tn—5 +n—
G

k 0

We have the following results:

~A2
o the term n;‘z’“ has a x? distribution with n — k degree of
g9
freedom [13]
né;
E, {—2’“} =n—k,
0o
1 A t t A 2 qioter
e the term —; (ﬁk — ﬁo) X'X (ﬂk — ,6’o> has a x“ distri-
o
bution with k degree of freedom [9]

Eo, {aig (ﬁk —ﬁo)tXtX (Bk —ﬁo)} =k,
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. ¢ R
e Gj and (ﬁk — ﬁo> XtX <ﬁk — 50) are independent ran-
dom variables [9],
1 /4 t - nk
o g (- ) 0 (- ) - 0y
90{‘71%» Br — Bo Br — Bo P
e if 41 is a x? random variable with f degree of freedom, then

. 1. . 1
the expectation of — is given by ——,
Iz f-2

2 2
ag n
E - =—FT-=-
%o {n&i } n—=k—2
Using the above results, it is straightforward to show
2
Qu(k,00) = o {nnof +nin2mw} + —— +k
n—k—

nk &2
- " _E InZk\ _
n k+n—k—2 90{nn02} n

0
~2 (k‘+ 1)n
= E90 {nlnak+nln2ﬂ+n}+2m
ot
—Ey, nlna—g
_ - (k+1)n
= Ey, { 21np(y\9k)} +2n7 g
~2
—nEy, {lnna—g} +nlnn
)
after Koltz [14] we have
63 n—=k
Ey, {lnng—g} :1/)( 5 ) +1n2
then
B _ A (k+1)n
Qu(k,00) = EQO{ 2lnp(y|0k)} +2- 0
n—k n
—m/)( 5 >+nln§
= FEy, {KIC¢c}

For ease of computation, it is possible to approximate the digamma
function using the following [12]

w(w)’:lnw—%+o(l>

x2

w<n5k> 21“(n5k>’nik+"<<n—lk)2>

A second order Taylor expansion of In(n — k) leads to

w(n;k> Zln(g)_g_nik+o((n5k)2)

an approximate KICc is given by
A (k+1)Bn—k—-2)
KICe ~ —2lnp(yl|bs)+ P R
k
n—=k
It is worth to mention that asymptotically KICc will converge to
KIC. This motivate the use of KICc for small sample applications.

+

®

4. SIMULATION RESULTS

A univariate autoregressive process of order k, AR(k), can be rep-
resented as

Yt = P1Ye—1 + P2Yt—2 + ... + GrYi—k + €+
ee ~ N(0,0°).

Given a set of observations y = (y1,¥2,- . ., Yn), from such pro-
cess, suppose our objective is to determine an appropriate order k
of the autoregressive model.

In order to investigate the small sample performance of KICc, two
sample size are used: n = 23 and n = 30 and 1000 realizations
were generated from two models [9]:

Model 1 Yt = 0~95yt71 + et
Model 2 Yt = 0~99yt—1 — O.Syt—Q + &t
t=1,...,n.

with ¢, independent and identically distributed standard normal.
For each realization, Levinson-Durbin method was used to fit can-
didate autoregressive model of orders 1 to 20 and various criteria
are used to select from among the candidate model.

The other criteria considered in our simulation sets are AIC, AICc
, KIC, FPE [15] and BIC.

Table 1 gives the frequency of model orders selected by the dif-
ferent criteria for two sample sizes. It is clear that KICc performs
best, closely followed by BIC, while other criteria perform less
effectively. This improved selection property of KICc is due to
two factors. The first is due to the additional information (about

model’s dissimilarity) in the J-divergence compared with /-divergence.

The other is its finite sample bias correction.

Table 1. Frequency of the model order selected by each criterion
for 1000 realizations.

Set [ M [ n [ Order | AIC | AICc | FPE | BIC | KIC | KICc ]

1 1 23 | < ko 0 0 0 0 0 0
1 1 23 | =ko | 863 932 867 | 949 | 944 970
1 1 23 | > ko 137 68 133 51 56 30
2 1 30 | < ko 0 0 0 0 0 0
2 1 30 | =ko | 835 895 837 | 952 | 925 962
2 1 30 | > ko 165 105 163 48 75 38
3 2 23 | < ko 25 36 25 50 45 71
3 2 23 | =ko | 820 899 824 | 897 | 890 903
3 2 23 | > ko 155 65 151 53 65 26
4 2 30 | < ko 4 4 4 6 6 7
4 2 30 | =ko | 827 908 829 | 950 | 926 961
4 2 30 | > ko 169 88 167 44 68 32

Figure 1 provides some insight as why KICc tends to outper-
form KIC as a selection criterion. Consider the fourth set of sim-
ulation based on generating Model 2 with sample size n = 30.
Simulated values of Fg, { KICc}, as given by Equation (9) and
Ey, {KIC?} are obtained by averaging KICc, and KIC, respec-
tively over the 1000 replications. Q2(k, 6) is obtained by averag-
ing the exact expression of KICc given in Equation (8) using the
digamma function. The average values for each of Q(k, 6p), KICc
and KIC are also plotted versus k. Since Q(k, 6), KICc and KIC
are obtained by adding a non-stochastic penalty term to the log
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likelihood, the three criteria have the same variance. This is why
in comparison we emphasize only on mean values !.

We note that KIC is a negatively biased estimator of Q(k, 6o) spe-
cially when k increases. This negative bias is the major factor for
the bad performance of KIC compared with KICc. The approxima-
tion made to derive KICc are quite reasonable and lead to results
which are not far from that obtained with Q(k, 6o) as presented in
Table 2.

135

— ke,
E, (K0)

0 7z
__EyKCo)

6
Order

Fig. 1. Averages of KIC, KICc and Q(k, 6o) for AR(2), n = 30

Table 2. Frequency of the model order selected by each criterion
for 1000 realizations.

Set [ M | n [ Order [ KICc [ Q(k,6o) |

1 1 23 | < ko 0 0

1 1 23 | =ko 970 972
1 1 23 | > ko 30 28
2 1 30 | < ko 0 0

2 1 30 | =ko 962 965
2 1 30 | > ko 38 35
3 2 23 | < ko 71 72
3 2 23 | =ko 903 901
3 2 23 | > ko 26 25
4 2 30 | <ko 7 7

4 2 30 | = ko 961 964
4 2 30 | > ko 32 29

5. CONCLUSION

The results in section 4 suggest that KICc should function as an
effective model selection criterion in small sample applications.
KICc has two major strength: firstly, it is based on 2.J, (0o, 0%),
which provides an additional information about model’s dissimi-
larity compared with 21, (0o, 0%), originally used to derive AIC-

based criteria. Secondly KICc is an unbiased estimator of 2.J,, (6o, ék)

rather than an asymptotically unbiased as for KIC. This makes

! An unbiased estimator of the information with large variance may be
a poor criterion for model selection.

KICc outperforming KIC in small sample cases.

The approximations made to get KICc of Equation (9) is very rea-
sonable as tested by simulation. Even though it produces a slight
bias, computational savings and performance relative to exact cri-
terion justifies the use of such an approximation.

The type of bias adjustment proposed in this article is based on
assuming a particular modeling framework of the candidate fam-
ily My, and using the characteristics of the framework to derive
either an exact expression or a more precise approximation for the
bias refinement. In future work, we aim to use an other alternative
type of refinement based on using the bootstrap to approximate the
bias correction.
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