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ABSTRACT

In this paper, we discuss the problem of instantaneous frequency
(IF) estimation of phase signals using their level-crossing (LC) in-
stant information. We cast the problem to that of interpolating the
instantaneous phase (1P), and hence finding the IF, from samples
obtained at the level-crossing instants of the phase signal. These
are inherently irregularly spaced and the problem essentialy re-
duces to reconstructing a signal from the samples taken at irreg-
ularly sampled points for which we propose a ‘line plus sum of
sines' model. In the presence of noise, the temporal structure
of the level-crossings can get distorted. To reduce the effects of
noise, we use a short-time Fourier transform (STFT) based en-
hancement scheme. The performance of the proposed method is
studied through Monte-Carlo simulations for a phase signal with
composite IF for various SNRs. Different level-crossing based es-
timates are combined to obtain anew IF estimate. Simulation stud-
ies show that the estimates obtained using zero-crossing (ZC) and
other very low level values perform better than those obtained with
higher level values.

1. INTRODUCTION

Most information-rich practical signals tend to be nonstationary
random processes with time-varying spectral characteristics. Short-
time Fourier transform (STFT) and such other joint time-frequency
(t-f) distributions (TFDs) attempt to describe the time-varying fre-
quency and energy content of a nonstationary signal, frequency
modulated (FM) signals being a typical example. Our present
work focuses on using LC information for IF estimation and is
motivated by severa reasons. LC based approaches have been
successfully employed in spectral estimation of stationary signals
[1, 2]. These approaches use either LC rate information or statis-
tics of intervals between successive LCs. Extensions to nonsta-
tionary signals are discussed in [3] where a specific case, namely,
ZC rate information was obtained on a short-time basis and was
an ad-hoc extension of the analysis technique to deal with nonsta-
tionary signals under the implicit assumption of quasi-stationarity
over the observation window. Hence, these are basically restricted
to tracking mild frequency variations over long durations of time.
If the assumption breaks down, we get unreliable frequency esti-
mates. |n this paper, we explore yet another source of information,
namely, the LC instants. In particular, for frequency modulated
signals, these can provide useful and aternate means of recon-
structing the underlying FM.
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Using the concept of time-warping, we find that the LCs es-
sentialy provide samples of the IP at irregularly spaced instants.
The problem of |F estimation then reduces to reconstructing the IP
using information obtained on an irregular geometry [4] followed
by differentiation. Assuming continuous, positive, bandlimited IF,
we propose a line plus sum of sines model for reconstructing the
IF at any point within the observation window.

2. PROBLEM FORMULATION

Phase signals are real-valued signals with a constant instantaneous
amplitude. Such signals contain al the information in the instanta-
neous phase or instantaneous frequency and are the basic elements
of angle modulation schemes. They can be expressed as

s(t) = Asin(9(1)). @

with z, (t) = Ae??® being the corresponding analytic signal. Itis
desired to estimate the IF variation from the knowledge of the LC
instants of the phase signa s(t). We assume that the | F is positive.
We also assume that the product of signal bandwidth (B) and du-
ration (T), often referred to asthe BT product, is sufficient enough
to observe any meaningful variation of the IF. The BT product of
asignal can be thought of as a measure of “information-richness’
inthe signal. It makes little sense to characterize asignal by itsIF
if its BT product is too small since there will not be enough data
to observe any meaningful variation.

For a sinusoid, the IF equals the Fourier frequency, and can
be easily extracted from the LC information. Consider the case
of a phase signal s(t) = sin(¢(t)) with arbitrary monotonic 1P
function, ¢(t). If we denote the level, ‘I’ crossing instants as
tj,j = 0,1,2,..., then ¢(t;) = jm + (=1)7sin"'(I). Thus,
partial information about the underlying IP and IF is contained in
the LCs.

When plotted against ¢(t), essentially war ped-time, the phase
signal appears as a constant frequency sine wave with the same
number of LCs as in the time domain. The transformation that
maps time to the warped-time is precisely the IP. Hence, if we
map the nonuniformly spaced level ‘I' crossing instants ¢;,j =
0,1,2, ... of thegiven phase signal to jm+ (—1Y sin (1) (taking
phase unwrapping into account), we get partial information about
the IP. Using thisinformation, we need to obtain the | P at any point
within the observation window. Finding the IFfrom the solution to
IP then merely reduces to simple differentiation. Thus, the LC in-
stants alone provide a novel means of estimating the IF. The total
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number of LC instants over the period of observation of the sig-
nal in both domains is the same. A monotone IP function (hence,
positive |F) preserves a one-one relationship between time ‘t” and
warped-time, ¢(t). It isthe invariance of number of LCsand their
relative position over the observation interval that the algorithm
makes use of, to estimate the |F.

3. LINEPLUSSUM OF SINESMODEL

In this section, we propose a novel model known as the line plus
sum of sines model for reconstructing the IF from LC data.

Consider afinite window of the signal s(¢) which has afinite
number of measured LC instants, {t;,j = 0,1,..N} witht, <
t1.... < ty < T within the analysis window, corresponding to a
level, say ‘I'. For the purpose of estimation, let us assume that the
IP, ¢(t) and the IF, f;(¢) can be modeled as follows:

o(t) = a+pBt+ Yy ysin(kwot) )
k=1
filt) = % [,3 + wo Z k'ykcos(kwot)] ©)
k=1

wherewo = Z. It may be noted that this is a very natural model
for phase signals with continuous, positive, bandlimited IF. While
the sum of sines models the bandlimited part of IF, the line reflects
the positive biasin IF.

L et us specify acost-function C asameasure of approximation
of the IP at the level ‘I’ - crossing instants by the approximating
functions chosen as above.

N

Coe) = ¢ (t;) — eyl @)

Jj=0

wheree; = a + 8t; + > 5, wrsin(kwot;) andec=[a f 1
Yo oo ) @) = jm + (=1)?sin 1 (1). Taking the gradient
of Cp(c) with respect to ¢ and setting it equal to zero will yield
the optimum coefficient vector for the p‘* order case, denoted by
c°P*, Thus, we can obtain,

N N
[Desef Jer =D ' t)es (5)
j=0 J=0

In matrix form, the same is expressed as

Rc®* =& (6)

where R = [zjvzo ejejT], & = XN @' (tj)e;. coPt can be
solved through matrix inversion. Efficient numerical procedures
exist to implement the same.

Let the estimate of IP obtained using level ‘I’ crossing infor-
mation be denoted by ¢'(t). We get different estimates based
on different LC information. These can be combined to yield a
weighted-average

o 1 L-1 o
o(t) = ST Zj wi' () ©

where L isthe total number of levels used and the weights w; are
positive and normalized to add to unity.

4. ENHANCEMENT OF NOISY SIGNAL

In apractica situation, we work with sampled data and the dataiis
often noisy. Noise can cause perturbation of signal LCs and/or in-
troduce additional ones depending upon the SNR. At any instant,
the spectral content of the signal occupies a specific region in fre-
guency and ‘out-of-band noise’ may introduce additional LCs that
can yield biased estimates. Since the signals under consideration
are nonstationary, they have atime-varying spectral content. This
implies that out-of-band noise occupies different portions of the
spectrum at different instants of time and a stationary filter can-
not separate the desired signal and noise. We describe a procedure
that helps separate the two signals in a joint time-frequency do-
main which are otherwise inseparable in time or frequency alone.
Thisisachieved by frequency selection in the STFT domain.

Consider the discrete-time phase signal s[n] corrupted with
additive white Gaussian noise w[n]. Let the noisy signal be de-
noted by z[n] i.e,, z[n] = s[n] + w[n]. Denote its STFT by
Z[n, e™) 1. We define 5[n], an enhanced version of z[n] as

1
27h(0)

3[n] = /_7T Zln, e“)YH(w — &[n))e“"dw  (8)

where h[n] is the window function used in obtaining the STFT,
@[n] is the estimate of IF at the time instant »n obtained by peak-
picking in the spectrogram t-f domain. #H(w — @[n]) is a filter
centered at w = &[n] and defined as follows:

1 fordn] — £ <w<n]+2£

Hlw —Bln]) = { 0 otherwise ) ©)
where B is chosen as the bandwidth between the first nulls and is
determined by the STFT window shape and size. This is essen-
tially atime-varying frequency domain selection applied to STFT.
Such frequency domain windowing operations are frequently used
in extracting robust features for speech recognition.

To illustrate the utility of the above procedure with an exam-

ple, consider a phase signal with a composite IF, fi(n) = 0.2 +
0.05(sin(0.12n) + sin(0.07n)),0 < n < N — 1, corrupted
with additive white Gaussian noise. N was chosen equal to 256.
A Hamming window of 17 samples width was used in computing
the STFT. It may be noted that in-band (bandpass) noise cannot
be eliminated by the above procedure. To quantify the signal en-
hancement, we consider 100 realizations of the noisy signal, ob-
tain their enhanced versions and compute theresulting SNR. Fig. 1
shows that there is an improvement in SNR because of the en-
hancement procedure (the dash-dot line shows the 45° linefor ref-
erence). The standard deviation in the output SNR is superposed
on the plot as an error bar.

To show the utility of the enhancement scheme for ZC based

IF estimation, let us consider the same phase signal. Fig. 2 shows
the bias, variance and mean square error (all in dB, obtained from
100 statistical realizations) for the proposed estimator using only
ZC information (for the sake of illustration only) with and with-
out enhancement (ENH). The improvement in performance due
to the enhancement scheme is evident. For the same M SE, with-
out enhancement, we require a high input SNR compared to the
enhanced one. For high SNRs, roughly beyond 10dB, the perfor-
mance of both approaches is the same. For the performance evalu-
ation of the L C based | F estimation, we consider only the enhanced

1The notation means that n is discrete and w is continuous
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Fig. 2. Effect of enhancement on LPS based |F estimation - [a]Bias,[b] Variance,[c]MSE, al in dB, as a function of SNR(dB) at the center
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Fig. 1. Input-output SNR characteristics of the enhancement
scheme (solid line) in comparison with the 45° line for reference
(dash-dot)

signal. For the sake of brevity, we omit ENH while mentioning the
L C approaches with the understanding that it is always present. In
the absence of any apriori knowledge about the rate of change of
IF, we found that a wide-band STFT is suitable for enhancement;
hence a 17-point Hamming window isused in all smulations.

5. SSIMULATION STUDIES

In this section, we study the performance analysis of the proposed
technique for a general composite IF, same as the one considered
in Sec. 4.

10 levels, equispaced from O to 0.9 were used. Additive white
Gaussian noise was added at different SNRs and for each SNR,
100 Monte-Carlo trials were run to obtain the statistics of the esti-
mator. The variance of the estimate at the center of the window is

shown against the level value with SNR as the parameter in Fig. 3.
It can be clearly seen that asthe level value increases, the variance
of the estimator increases. This holds for all SNRs. It isalso clear
that for levels close to zero, the variance is more or less that given
by the ZC based |F estimator.

The performance of different level-crossing based IF estima-
torsasafunction of SNR can also be studied from the samefigure.
It can be clearly seen that the ZC based | F estimator yields the |east
bias, variance and mean square error for arange of SNRs.

Different combinations of the level-crossing based | F estimates
were tried and only three are reported here, namely mean, median
and weighted mean. The statistics of the resulting estimator are
shown in Fig. 4. The results are compared with those of a ZC
based estimator. It is clear that the ZC estimator yields the best
performance, followed by the median. Median of different level-
crossing estimates at any point outperforms their average because
of the outlier rejection property of the median. Estimates obtained
from high-level values often have large errors and are effectively
suppressed by the median. A weighted average (weights=[11111
110.80.6 0.4]) yields an estimate that has a performance charac-
teristic that lies between the ZC estimator and the simple average
based estimator. As the weightage to higher-level crossing based
estimates was increased, the error was found to increase. Thisis
also intuitively satisfying.

Fig. 4 shows that the ZC based |F estimator lies close to the
Cramer-Rao (CR) bound (discussed in next section) and is sub-
optimal in the sense that it does not exactly reach the bound. How-
ever, the bias, variance and mean square error are small enough
to make the estimator relevant and useful in many practical ap-
plications. A comparative study with other methods proposed in
literature will be reported separately [5].

6. CRAMER-RAO BOUND

We briefly outline the derivation for obtaining the CRB [6] for the
proposed |IF estimator. Consider a unity amplitude phase signal
s(t) = ’*® in additive white Gaussian noise of energy density
No. We assume that there is no modeling bias. The entriesin the
Fisher information matrix J are Jo.o = X¢, 5.5 = %, Jop =
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7. CONCLUSION

In this paper, we introduced the concept of time-warping in the
context of IF estimation. A multi-level crossing based approach
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alized IF. IF estimation in the presence of noise has been consid- [5] S.Chandra Sekhar and T.V.Sreenivas, “Instantaneous Fre-
ered. To reduce the error in the resulting estimate, an enhancement quency Estimation Using Level-Crossing Information”,
procedure is suggested. It has been demonstrated through exten- manuscript under preparation

sive simulations, that a zero-crossing instant based IF estimator [6] S.M.Kay, Fundamentals of Statistical Sgnal Processing: Es-
exhibits least error compared to higher level-crossing based esti- timation Theory, Prentice Hall Englewood Cliffs, New Jer-
mates. sey, 1993.
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