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ABSTRACT

In this work, we present an iterative Fourier-type algorithm which
is introduced for the DDS (Damped and Delayed Sinusoid) param-
eter estimation using a sub-band processing approach. This algo-
rithm is shown to improve the existing ones with respect to the
computational cost and the estimation accuracy. Moreover, we de-
rive the Cramer-Rao Bound (CRB) expression for the DDS model
and we perform a simulation-based performance analysis of noisy
fast time-varying synthetic signal and in the audio transient signal
modeling context.

1. INTRODUCTION

Parametric models, like the constant-amplitude sinusoidal or EDS
(Exponentially Damped Sinusoidal) models are popular and effi-
cient tools in many area of interest including spectral-line [1] or
pole estimation [2], source localization [3], biomedical signal pro-
cessing [4] and audio signal compression [5].
In this paper, we use a generalization of these models, named the
Damped & Delayed Sinusoidal (DDS) model. The latter adds a
time-delay parameter which allows time-shifting of each wave-
form. Note that this paper goes further into the work initiated in
[6]. Properties of this model are studied and we show that it al-
lows to obtain compact representations x̂(n) of fast time-varying
or ”transient” signals x(n) i.e. M � N and

∑

0≤n≤N−1 |x(n)−

x̂(n)|2 �
∑

0≤n≤N−1 |x(n)|2 where N is the analysis duration
and M is the number of sinusoids. Finally, we derive the Cramer-
Rao bound for the DDS process.

2. THE DDS MODEL

The real M -DDS model definition is given by [6] :

x̂(n)
4
=

M
∑

m=1

ame
dm(n−tm) . cos (ωm(n− tm) + φm) . ψ(n−tm)

4
=

M
∑

p=1

pm(n), n = 0, · · · , N − 1 (1)

where {am, φm, dm, ωm, tm}1≤m≤M are the 5M real amplitude,
phase, damping-factor, angular-frequency and time-delay parame-
ters and ψ(n) is the Heaviside function, i.e., ψ(n) = 1 for n ≤ 0
and zero otherwise. Note that if we choose tm = 0 for all m, we
obtain the M -EDS model [5]. The M -DDS model can be under-
stood as a generalization of this parametric model.

3. SKETCH OF THE SOLUTION

Given a (real-valued) signal x(n), the global non-linear criterion
to be solved is the 2-norm of the signal x(n) − x̂(n) where x̂(n)
is the M -DDS signal given by (2).
Let pm be the N -sample 1-DDS component, i.e., pm =
(pm(0), · · · , pm(N − 1))T . We can consider two cases. The
components are quasi-orthogonal. In other words, for tj 6= tm,
we have 〈pm,pj〉 ≈ 0 where 〈., .〉 defines the inner product. This
definition can be seen as a separation constraint on the component
time-supports. Indeed, if we fix tm < tj , the component pm has
a sharp decreasing part (large damping-factor) in such a way that
the component pj is practically not disrupted. This approach is
studied in [7] where we propose several high-resolution algorithms
well adapted to the audio signals. The second case is a more dif-
ficult situation since we have for tm 6= tj , |〈pm,pj〉| � 0. In
this case, the components are non-orthogonal and, thus, the j-th
component is not clearly separated from the m-th. Consequently,
a direct estimation of the time delay is a difficult task. However,
the angular-frequencies estimation by means of Fourier-type [8] or
subspace [2] methods, directly applied to the observed signal, re-
mains relatively robust while a direct damping-factor estimation,
on the 1-DDS signal, is systematically biased [6]. In this context,
we propose to solve this problem by performing a narrow band-
pass filtering around each component in conjunction with a com-
ponent deflation procedure in a view to decrease the influence of
the other components. Afterwards, in each sub-band, we estimate
the filtered 1-DDS model parameters.

In brief, the proposed parameter estimation approach proceeds
in the following steps :

• Angular-frequencies estimation using an iterative Fourier-
type method.

• Sub-band filtering and deflation to ‘separate’ the sinusoidal
components and mitigate the inter-components interferences.

• In each sub-band, estimate the damping factor, the phase and
amplitude (eventually refine the frequency estimation) of the
considered component.

4. DDS-D ALGORITHM : ”DEFLATION APPROACH”

In [6], we have presented a new algorithm named DDS-B (B stands
for Block) for the estimation of the M -DDS model parameters.
This algorithm is based on the use of subspace methods and ex-
ploit a filter-bank architecture. In this paper, we introduce an im-
proved estimation algorithm that uses a deflation approach (to en-
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force the 1-DDS separation) in conjunction with a tight band-pass
filter procedure. The latter, named DDS-D (where D stands for de-
flation), is shown to improve both the estimation accuracy and the
computational cost of the DDS-B as it uses essentially FFT-based
estimation procedures.

4.1. Primary angular-frequency estimation by a Fourier-type
iterative algorithm

Consider the m-th residual signal defined by the recurrent equa-

tion : xm(n)
4
= xm−1(n) − pm(n) = x(n) −

∑m

j=1 pj(n)

with x0(n) = x(n). Contrary to the DDS-B algorithm, we de-
termine a primary angular-frequency ω(1)

m estimation by simply
maximizing the modulus of the Fourier Transform (FT) of the m-
th residual signal xm(n). We denote the m-th synthetic signal

by x̂m(n)
4
=

∑m

j=1 pj(n) and from the previous expression, we
have :

εm
4
=

N−1
∑

n=0

|xm(n)|2 =

N−1
∑

n=0

|x(n) − x̂m(n)|2. (2)

This process can be stopped when the 2-norm of the residual
is lower than a threshold, according to εm ≤ ε.

∑N−1
n=0 |x(n)|2

where ε > 0 is a chosen threshold.

4.2. Filtering stage and sub-band processing

In order to process a tight band-pass filtering of the signal centered
on the sinusoidal frequency ω(1)

m , we use the modulated raised co-
sine filter {hm(n)} [3]. In the context of DDS-D algorithm, the
m-th residual signal is filtered such as ym(n) = hm(n) ∗ xm(n).
This approach enforces the extraction of the m-th component and
the mitigation on the inter-components interferences.
After that, we perform the angular-frequency back-estimation and
damping-factor estimation within the sub-band as described in the
following section.

4.3. Sub-band parameters estimation

In each sub-band indexed by m, we find the filtered 1-DDS com-
ponent which best matches the m-th N -sample sub-band signal
ym, i.e., we resolve the following criterion :

arg min
αm,zm,tm

||ym − ŷm||22 where ŷm = Hmpm (3)

where Hm is the Filtering matrix computed from the fil-
ter {hm(n)}0≤n≤P−1 (P being the filter length) and pm =
G(zm, tm)αm where αm = (ame

iφm/2 ame
−iφm/2)T is the

complex amplitude vector, zm = (zm z∗m)T is the pole vector
where zm = edm+iωm and G(zm, tm) = [ξm ξ∗

m] is the N × 2
Vandermonde matrix where ξm = (0T

tm
1 zm . . . zN−tm−1

m )T .

4.3.1. Models Equivalence and filtering effects

By supposing that the sub-band signal is well isolated by the
filtering process, we introduce the following time offset ρm =
arg max0≤n≤N−1 |ym(n)|. After that, we define the truncated
sub-band signal ȳm(n) = ym(n+ρm) for n = 0, . . . , N−ρm−1
and Jm which is a selection matrix such as ȳm = Jmym. The
truncated sub-band signal is efficiently approximated by the real 1-
EDS model. This assumption is based on the Model Equivalence

(ME) property between the 1-EDS model and the 1-DDS with a
reduced time support and modified complex amplitudes. Indeed,

due to the filtering properties, we have Pm
4
= ρm−tm ≈ P where

P is the time-delay introduced by the filter and using the fact that
pm(n) is causal1, the estimated truncated sub-band signal admits
the following expression :

ˆ̄ym(n+ ρm) =
∑Pm−1

k=0 hm(k)pm(n− k + ρm)

= αmH(zm)zn
m + α∗

mH(z∗m)z∗n
m

(4)

with H(z) = zPm

∑

k hm(k)z−k. Consequently, we can see that
only, the complex amplitudes are modified by the filter hm(n).

Let Sm
4
= diag{H(zm), H(z∗m)} then, knowing an estimate of

the time-delay, criterion (3) reduces to the following one :

arg min
αm,zm

||ȳm − JmG(zm, ρm)Smαm||22 (5)

4.3.2. Angular-frequency and damping-factor estimation

We perform the angular-frequency ω(2)
m estimation by maximizing

the modulus of the FT of the truncated sub-band signal. This is a
refining of the first estimate ω(1)

m of the angular frequency. After
that, we estimate the damping-factor dm by the shifted-FT method
[6] where we add a windowing step to improve the performances
of this approach [8]. We choose here a Blackman’s window.

4.3.3. Time delay estimation

The delay parameter is estimated via a ’model-data’ matching cri-
terion. Therefore, in each sub-band m, we resolve criterion (3)
with respect to the time-delay. Optimizing first over the complex
amplitude then over t leads to :

tm = arg min
t∈V(ρm)

f(d(1)
m , t) where f(d, t) = ||Π⊥

G (d, t)ym||22

(6)
with Π

⊥
G (d, t) = IN − GG

† (G† being the pseudo-inverse of G)
the orthogonal projector where we have omitted the arguments for
the simplicity of the notation and G(zm, tm) = HmG(zm, tm)
is the filtered matrix of the m-th signal pole ξm and its conjugate.
V(ρm) is a given time interval centered at ρm −Pm. We solve (6)
by a simple enumeration of the possible values in V(ρm), so as to
reduce the search cost.

4.3.4. Back-estimation of the damping-factor

Once we estimate the delay tm we can sharpen the damping-factor
estimation using a non-linear optimization algorithm such as New-
ton’s [10]. The back-estimation (using Newton method) of the
damping-factor corresponds to2

d(2)
m = d(1)

m −

(

∂2f

∂d2
(d(1)

m , tm)

)−1
∂f

∂d
(d(1)

m , tm) (7)

1i.e., ψ(n+ a) = ψ(n) for n ≥ 0.
2Obviously, we can iterate equation (9) to further improve the estima-

tion of the damping parameter.
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We give the expressions of the first and the second order derivative
with respect to the damping-factor as

∂f

∂d
(d, tm) = 2<e{yT

mΠ
⊥
G G

′
G

†ym}

∂2f

∂d2 (d, tm) = 2<e{yT
m(Π⊥

G (G′′
G

† + G
′
G

†′)

−(G′
G

† + GG
†′)G′

G
†)ym}

(8)

where G
†′ = (GH

G)−1(GH′ − (GH′
G + G

H
G

′)(GH
G)−1). G

′

and G
′′ denote the first and second order derivative of G, respec-

tively.
In order to simplify the above re-estimation procedure, we did

use in our simulation a Newton implementation based on the real-
valued (instead of complex) vectors which lead to vector instead
of matrix manipulations according to:

d(2)
m = d(1)

m −
f̃ ′(d

(1)
m )

f̃ ′′(d
(1)
m )

(9)

where f̃(d)
4
= (g̃T

d ym)2 with g̃d = (g̃d(0), · · · , g̃d(N − 1))T

and g̃d(n)
4
= ed(n−tm) cos (ω

(2)
m (n− tm) + φ̂m)ψ(n− tm).

φ̂m represents an estimate of the phase parameter given by φ̂m =
(∠(αm(1)) − ∠(αm(2))) /2 where αm = (αm(1) αm(2))T is

estimated as in (10) using ẑm = ed
(1)
m

+iω
(2)
m .

4.3.5. Complex amplitude estimation in the sub-band

We have to estimate the complex amplitude (amplitude and phase
parameter) of the sub-band signal by minimizing the least squares
fitting criterion (5). Given the frequency and damping factor esti-
mates, i.e., ω(2)

m and d(2)
m , the solution of (5) is expressed as :

αm = S
−1
m (JmG(ẑm, ρm))†ȳm (10)

where ẑm = ed
(2)
m

+iω
(2)
m .

5. CRAMER-RAO BOUND FOR THE DDS MODEL

The CRB for the parameter estimations of a DDS process is de-
rived in this section. The CRB is useful as a touchstone against
which the efficiency of the considered estimators cab be tested.
The CRB has been investigated in [9] for a damped sinusoidal pro-
cess. We derive, here, the conditional CRB for the more general
DDS case. More precisely, the CRB is computed conditionally to
the exact knowledge of the discrete-valued delay parameters. Let
consider a real-valued M -DDS process corrupted by zero-mean,
unit-variance, white gaussian noise x(n) = x̂(n) + σw(n) where
x̂(n) is given by (2). Let γ = [dT ,ωT ,φT ,aT ]T be the vector of
desired damping-factor, angular-frequency, phase and amplitude
parameters where d = (d1, . . . , dM )T (ω,φ and a are defined in
the same way3). We have the following results (proofs are omitted
due to space limitation):

Lemma : Under the above assumptions, the elements of the
Fisher Information matrix F t(γ, σ

2) corresponding to the cross
terms of γk and σ2 are zero.
This lemma allows to ”ignore” the noise parameter and compute
the ”sub-matrix” of the Fisher Information matrix corresponding
to the desired parameters γ.

3The time-delay parameter vector t = (t1, . . . , tM )T is omitted here
as it is assumed perfectly known.

Corollary : The CRB on the variance of any unbiased es-
timate of γ (conditionally to the perfect knowledge of the time-
delay parameter vector t) is given by :

[CRBt(γ)]i,j = σ2

[

∂x̂T

∂γi

.
∂x̂

∂γj

)

]−1

(11)

Remarks : 1) We choose here to compute a bound con-
ditionally to the exact knowledge of delay parameters because the
latter are discrete-valued and consequently the computation of a
(non-conditional) bound leads to inextricable derivations.
On the other hand, choosing time-delay parameters with contin-
uous real-valued lead to the following model indeterminacy : for
n = 0, . . . , N − 1, we have

aed(n−t) cos(ω(n− t) + φ)ψ(n− t) =

aed(n−(t+τ)) cos(ω(n− (t+ τ)) + φ+ τω)ψ(n− (t+ τ))
(12)

for any τ such that dt+ τe = dte where d.e is the integer part.

2) We observed in our simulation a relatively small distance
(especially when the damping factor is low) between our estima-
tion methods performances and the CRB for low and moderate
values of the SNR. However, the gap becomes significant for high
SNRs. The reason is due to the fact that the delay parameters are
assumed perfectly known in the derivation of the CRB. Indeed,
based on this a priori knowledge, we can obtain much better fre-
quency and damping factor estimates than those given by the DDS-
D algorithm (for example, in the noiseless case, we can perform an
exact estimation of these parameters from a finite-length observa-
tion). An exact CRB (that takes into account the estimation of
delay parameters) can be easily obtained for a Soft DDS model
where the Heaviside function used in the signal modeling is re-
placed by an appropriate continuous function. This point is still
under investigation and will be the focus of future works.

6. SIMULATIONS

6.1. Synthetic signal

We choose a 2-DDS non-orthogonal components, i.e., |t2 − t1| is
small. In this case, a time-delay estimation/detection based on the
variation of the signal envelope is inefficient (see [7]).
The algorithms (DDS-D and DDS-B) are compared, in terms
of parameter estimation accuracy through the normalized Mean
Square Error (MSE), evaluated for several Signal to Noise Ratios
(SNR) using 100 Monte-Carlo trials. The MSE is defined by the
ratio of the square difference between the true parameter value and
its estimated value over the square value of the true parameter. In
relation to figures 1 and 2, we can say that the DDS-D algorithm,
outperforms the DDS-B algorithm in this simulation context. This
conclusion can be explained by the fact that the deflation charac-
ter of the DDS-D algorithm enforces the separation of the com-
ponents. Finally, we can note that the performances of these two
algorithms are quite far from the ideal performances of the CRB.
We can improve the efficiency of these algorithms by considering a
joint Newton algorithm in ω, d, φ. However, this improvement has
a price : the computational complexity. Moreover, we obtain ap-
proximatively, the same performances on the real percussive audio
signals of the next section. Consequently, we have kept a ”sim-
ple” (and cheaper) Newton on the parameter d since this approach
represents a good trade-off between computational complexity and
performance.
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Fig. 1. Angular-frequency estimation performance, (a) first com-
ponent, (b) second component, CRB (solid line).

(a) (b)

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45

50

55

SNR [dB]

M
S

E
 [

d
B

]

DDS−D
DDS−B

0 5 10 15 20 25 30 35
10

15

20

25

30

35

40

45

50

55

SNR [dB]

M
S

E
 [

d
B

]

DDS−D
DDS−B

Fig. 2. Damping-factors estimation performance, (a) first compo-
nent, (b) second component, CRB (solid line).

6.2. Typical audio transient signal

In the context of percussive audio modeling, we choose to apply
the proposed algorithms on a castanet onset which is a typical au-
dio transient signal (see the top of figure 3-a). On the same figure,
we have represented on the middle (respectively bottom), the 20-
order modeling by the DDS-B (respectively DDS-D) algorithm.
The chosen criterion is the SMNR (Signal to Modeling Noise Ra-
tio) which is a time matching criterion between the synthesized
waveform and the original signal. Then, we obtain 11.2 dB for
the DDS-B algorithm and 12.7 dB for the DDS-D algorithm. This
result is confirmed by the observation of figure 3-b. Indeed, we
can see that the DDS-B algorithm estimates several time-delay pa-
rameters lower than 223 samples. Consequently, we observe on
figure 3-a (middle), a small pre-echo (distortion before the sound
onset). Inversely, the DDS-D modeling presents a total absence of
pre-echo and a good reproduction of the onset dynamic.

7. CONCLUSION

In this article, we have presented a Fourier-type iterative model
parameter estimation algorithm for DDS signals. We compare this
approach with the subspace-type method DDS-B, introduced in [6]
and we show through simulations on synthetic and real transient
signals that the DDS-D algorithm is more efficient than the DDS-B
approach since its deflation scheme enforces the separation of the
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Fig. 3. (a), (top) original castanet onset (normalized amplitude),
(middle) 20-order modeling by the DDS-B algorithm, (bottom)
20-order modeling by the DDS-D algorithm, (b) time-delay es-
timation with respect to the index component.

components, for a lower computational cost. Finally, we derive the
expression of the Cramer-Rao Bound for the DDS process.
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