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ABSTRACT

We present a novel formulation of nonstationary autoregressive (AR)
models in terms of time-frequency (TF) shifts. The parameters
of the proposed TFAR model are determined by “TF Yule-Walker
equations” that involve the expected ambiguity function and can be
solved efficiently due to their block-Toeplitz structure. For mod-
erate model orders, we also propose approximate TF Yule-Walker
equations that have Toeplitz/block-Toeplitz structure and thus allow
a further reduction of computational complexity. Simulation results
demonstrate that the TFAR model is parsimonious and accurate and
that the performance of our parameter estimation methods compares
favorably with that of Grenier’s method.

1. INTRODUCTION

A stationary autoregressive (AR) process x[n] is defined by [1, 2]

x[n] = −
M

∑
m=1

am x[n−m] + e[n] = −
M

∑
m=1

am (Sm x)[n] + e[n] , (1)

where S denotes the time shift operator acting as (Sx)[n] = x[n−1],
the am are the AR model parameters, M is the AR model order, and
e[n] is stationary white innovations noise. Because many real-world
processes are nonstationary, nonstationary AR models of the form

x[n] = −
M

∑
m=1

am[n]x[n−m] + e[n] (2)

have been introduced in [3, 4], along with basis expansion tech-
niques for modeling and estimating the parameters am[n]. Nonsta-
tionary AR (and ARMA) parameter estimation using basis expan-
sions was further developed by Grenier [5] and others [6–9].

In this paper, we present a different viewpoint of nonstationary
AR models that is based on time-frequency (TF) shifts. The pro-
posed TFAR model is described in Section 2. In Section 3, we derive
“TF Yule-Walker equations” for estimation of the model parame-
ters. A relation of TFAR modeling with nonstationary linear pre-
diction is discussed in Section 4. Section 5 presents fast algorithms
for the solution of the TF Yule-Walker equations. Finally, simula-
tion results provided in Section 6 demonstrate the good performance
of the TFAR model and our parameter estimation methods.

2. THE TFAR MODEL

In the following, all signals will be defined on the interval [0,N−1].
A basic difference between time-invariant and time-varying linear
systems is that the latter introduce frequency shifts in addition to
time shifts. Motivated by this observation, we propose the following
nonstationary extension of the stationary AR model (1):

x[n] = −
M

∑
m=1

L

∑
l=−L

am,l (M
l
S

m x)[n] + e[n] (3a)

= −
M

∑
m=1

L

∑
l=−L

am,l e j 2π
N ln x[n−m] + e[n] . (3b)
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Figure 1: Block diagram of the TFAR model of order (M,L).

Here, M is the frequency shift (modulation) operator that is defined
by (Mx)[n] = e j 2π

N n x[n], the am,l are model parameters, M is the
temporal (delay) model order, and L is the spectral (Doppler) model
order. Furthermore, the innovations noise e[n] now is nonstationary
white with time-dependent variance σ 2[n]. We will call (3) a TFAR
model of order (M,L). The generation of x[n] is illustrated in Fig. 1.

Evidently, (3b) is equivalent to (2) with

am[n] =
L

∑
l=−L

am,l e j 2π
N ln. (4)

Thus, the parameter functions am[n] are bandlimited with (normal-
ized) bandwidth L/N. For slowly time-varying am[n], a small spec-
tral model order L suffices, and thus the number of parameters in
(3), (2L+1)M, is much less than that in (2), NM. We note that (4)
is a special case of the basis expansion technique used in [3–5]. The
advantage of our novel formulation in terms of frequency shifts is
that it adds physical intuition and leads to new, improved TF tech-
niques for parameter estimation (see Section 3).

For modeling the time-varying driving noise variance σ 2[n], we
use a bandlimited Fourier basis expansion similar to (4):

σ2[n] =
2L

∑
l=−2L

σl e j 2π
N ln. (5)

(We use bandwidth 2L because σ 2[n] is a “squared” quantity.) Thus,
the parameters of the TFAR model are given by the (2L+1)M coef-
ficients am,l and the 2L+1 coefficients σl (note that σ−l = σ∗

l ).

3. TF YULE-WALKER EQUATIONS

In this section, we derive Yule-Walker type equations that allow to
calculate (estimate) the TFAR parameters am,l .

Yule-Walker Type Equations. The conventional Yule-Walker
equations [1, 2] relate the parameters am of a stationary AR process
to the autocorrelation function of the process. Similar equations can
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be derived for a TFAR process by multiplying (3b) by x∗[n−m] and
taking expectation. This yields

rx[n,m] = −
M

∑
m′=1

L

∑
l′=−L

am′,l′ e
j 2π

N l′n rx[n−m′, m−m′] + re,x[n,m] ,

(6)
with the autocorrelation function rx[n,m] , E{x[n]x∗[n−m]} and
the crosscorrelation function re,x[n,m] , E{e[n]x∗[n−m]}. It can
be shown that re,x[n,m] = h∗[n−m,−m], where h[n,m] denotes the
impulse response of the TFAR system H that maps e[n] to x[n] =
(He)[n]. Because H is causal, h[n,m] = 0 for m < 0 and thus
re,x[n,m] = h∗[n−m,−m] = 0 for m > 0. Hence, we obtain

rx[n,m] = −
M

∑
m′=1

L

∑
l′=−L

am′,l′ e
j 2π

N l′n rx[n−m′, m−m′] , m > 0. (7)

The parameters am,l could be calculated from these equations. How-
ever, we have (N−1)M equations for the (2L+1)M parameters, i.e.,
certain equations are linearly dependent and a subset of (2L+1)M
linearly independent equations is not easily determined. In practice,
this was observed to result in poor parameter estimates when the
autocorrelation function rx[n,m] is replaced by an estimate.

TF Yule-Walker Equations. We now propose a method that
avoids this problem. Taking the length-N discrete Fourier transform
(n → l) of both sides of (7) yields

Āx[m, l] = −
M

∑
m′=1

L

∑
l′=−L

am′,l′ Āx[m−m′, l−l′]e− j 2π
N m′(l−l′), m > 0 ,

(8)
where

Āx[m, l] ,
N−1

∑
n=0

rx[n,m]e− j 2π
N ln (9)

is the expected ambiguity function (EAF) of x[n] (cf. [10, 11]). The
EAF has a physically meaningful interpretation as a TF correlation
function of x[n], i.e., it characterizes statistical correlations between
process components that are separated in time by m and in frequency
by l. Estimation of the EAF will be discussed presently.

It can be shown that for m ∈ [1,M] and l ∈ [−L,L], (8) indeed
yields a system of (2L+1)M linearly independent equations in the
(2L+1)M parameters am,l . This system of equations will be termed
TF Yule-Walker equations. (Related equations were obtained in [5]
via a different approach, without noticing the connection to the EAF.
Simulation results provided in Section 6 indicate that the perfor-
mance of our method is superior to that in [5].) An efficient algo-
rithm for solving the TF Yule-Walker equations will be considered
in Section 5.

Approximate TF Yule-Walker Equations. Within the relevant
index range m ∈ [1,M] and l ∈ [−L,L], the deviation of the phase

factor e− j 2π
N m′(l−l′) in (8) from 1 is bounded as

max
m′∈[1,M]

l,l′∈[−L,L]

∣

∣1− e− j 2π
N m′(l−l′)

∣

∣ = 2
∣

∣

∣
sin

(πML
N

)∣

∣

∣
≤ 2π

ML
N

.

Therefore, if ML � N, we have e− j 2π
N m′(l−l′) ≈ 1 and thus (8) can

be approximated for m ∈ [1,M], l ∈ [−L,L] as

Āx[m, l] ≈ −
M

∑
m′=1

L

∑
l′=−L

am′,l′ Āx[m−m′, l−l′] . (10)

These approximate TF Yule-Walker equations involve a two-dimen-
sional (2-D) convolution that is perfectly analogous to the 1-D con-
volution of the stationary case [1,2]. They can be solved even more
efficiently than the exact equations (see Section 5).

Calculation of Noise Variance Parameters. It remains to cal-
culate the parameters σl in (5). With re,x[n,0] = σ 2[n], (6) implies

σ2[n] = rx[n,0] +
M

∑
m′=1

L

∑
l′=−L

am′,l′ e
j 2π

N l′n rx[n−m′,−m′] . (11)

Inserting (5) and taking the length-N DFT of (11), we obtain

σl = Āx[0, l] +
M

∑
m′=1

L

∑
l′=−L

am′,l′ Āx[−m′, l−l′]e− j 2π
N m′(l−l′) . (12)

This expression allows to calculate the noise variance parameters σl
after the TFAR coefficients am,l have been obtained.

Estimation of the EAF. The equations (8), (10), and (12) involve
the EAF Āx[m, l] in (9), which has to be estimated from the observed
signal x[n]. The EAF can be expressed as Āx[m, l] = E{Ax[m, l]},
with the ambiguity function

Ax[m, l] =
N−1

∑
n=0

x[n]x∗[n−m]e− j 2π
N ln .

Thus, a trivial unbiased estimator of the EAF is Âx[m, l] = Ax[m, l].
However, it can be shown that the relative variance of this estima-
tor increases with growing m and l. This problem can be allevi-
ated (at the expense of a nonzero bias) by multiplying Ax[m, l] by a
2-D weight function Ψ[m, l] that is 1 at (m, l) = (0,0) and gradually
decays for growing m, l. More generally, if I realizations xi[n] are
available, we propose to use the EAF estimator

Âx[m, l] = Ψ[m, l]
I

∑
i=1

Axi
[m, l]. (13)

This estimator is related to previously proposed estimators of the
Wigner-Ville spectrum [12] via a 2-D Fourier transform. For sim-
plicity, we can use Ψ[m, l] = w1[m]w2[l] where w1[m] and w2[l]
should be adapted to the temporal and spectral correlation widths
of x[n]. For example, for a quasi-stationary process w2[l] should be
narrow, and for a quasi-white process w1[m] should be narrow.

We note that Âx[m, l] is required only for (m, l)∈ [1,M]× [−L,L],
i.e., typically close to the origin. This is advantageous because these
EAF estimates have the smallest bias and variance; furthermore,
significant computational savings can be obtained [13].

4. RELATION TO NONSTATIONARY PREDICTION

There exists a relation between the TFAR model and nonstationary
linear prediction which extends that of the stationary case [1, 2, 14].
Consider the prediction of a nonstationary process x[n] using a lin-
ear, time-varying filter with maximum delay M and maximum nor-
malized Doppler frequency shift L/N, i.e.,

x̂[n] = −
M

∑
m=1

L

∑
l=−L

am,l (M
l
S

m x)[n] = −
M

∑
m=1

L

∑
l=−L

am,l e j 2π
N ln x[n−m].

(14)
By definition, the optimum predictor coefficients am,l minimize the

mean energy Ēe , E
{

‖e‖2
}

of the prediction error e[n], x[n]− x̂[n].
Due to the orthogonality principle [1], there must be E

{

〈e,M l
S

m x〉
}

= E
{

∑N−1
n=0 e[n](M l

S
m x)∗[n]

}

= 0 for m ∈ [1,M], l ∈ [−L,L]. This
is a system of equations in the predictor coefficients am,l that is eas-
ily shown to be identical to the TF Yule-Walker equations. Thus,
the optimum predictor coefficients am,l are equal to the TFAR pa-
rameters.

With (14), the predicion error e[n] = x[n]− x̂[n] is obtained as

e[n] =
M

∑
m=0

L

∑
l=−L

am,l (M
l
S

m x)[n] =
M

∑
m=0

L

∑
l=−L

am,l e j 2π
N ln x[n−m] ,

(15)
with a0,l , δ [l]. This relation is equivalent to (3). Thus, the above
time-varying, “TFMA-type” prediction error filter that maps x[n] to
e[n] is inverse to the TFAR filter that maps e[n] to x[n] in (3). There-
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fore, the prediction error e[n] in (15) equals the innovations noise
process e[n] in (3). If estimated coefficients are used in (15) instead
of the true coefficients am,l , the prediction error is an estimate of the
innovations process. Hence, similarly to the stationary case [1, 2],
the model order (M,L) can be estimated by choosing (M,L) such
that the energy ‖e‖2 of the prediction error e[n] in (15)—using the
am,l calculated from the TF Yule-Walker equations—is minimized.

5. FAST SOLUTION OF TF YULE-WALKER EQUATIONS

In the stationary case, the convolution structure of the Yule-Walker
equations results in a matrix equation with Toeplitz structure, which
can be solved efficiently using e.g. the Levinson algorithm [1,2]. We
now consider efficient algorithms for solving the TF Yule-Walker
equations (both exact and approximate versions).

Exact TF Yule-Walker Equations. The coefficients of the TF
Yule-Walker equations (8) are of the form Āx[m−m′, l]e− j 2π

N m′l where
m,m′ ∈ [1,M] and l ∈ [−2L,2L]. For fixed l, there are M2 such
coefficients. They can be arranged in an M ×M matrix given by
Ãl = AlVl , where Al is an M×M Toeplitz matrix defined as

Al =







Āx[0, l] · · · Āx[−M+1, l]
...

. . .
...

Āx[M−1, l] · · · Āx[0, l]






(16)

and Vl = diag
{

e− j 2π
N l ,e− j 2π

N 2l , . . . ,e− j 2π
N Ml

}

. We next define

Ã =







Ã0 · · · Ã−2L...
. . .

...
Ã2L · · · Ã0






, a =





a−L...
aL



, θ =





θ−L...
θL



,

with the length-M vectors al =
[

Āx[1, l] · · · Āx[M, l]
]T and θl =

[a1,l · · · aM,l ]
T. Ã is a (2L+1)M× (2L+1)M block-Toeplitz matrix

and a and θ have length (2L+1)M. We can now rewrite (8) as

Ãθ = −a,

so that θ =−Ã−1a. The block-Toeplitz matrix Ã can be inverted by
means of the fast algorithm described in [15], whose computational
complexity is proportional to (2L+1)2 M3. Alternatively, if a dif-
ferent stacking (first with respect to l and then with respect to m) is
used to construct Ã, the complexity is proportional to (2L+1)3 M2.

Approximate TF Yule-Walker Equations. The approximate TF
Yule-Walker equations (10) can also be written as Aθ = −a, with a
and θ as before and with the (2L+1)M× (2L+1)M matrix

A =





A0 · · · A−2L...
. . .

...
A2L · · · A0



,

where the Al were defined in (16). Since A is a Toeplitz/block-
Toeplitz matrix, this equation can be solved using the efficient al-
gorithm described in [16] (we note that a multichannel Levinson
algorithm cannot be used since Al 6= AH

l in general).
We will now formulate a version of this algorithm that is order-

recursive with respect to the spectral model order L, using a fixed
temporal model order M. The complexity of this algorithm is again
proportional to (2L+1)2 M3, but the proportionality factor is only
half that of the previously mentioned algorithm for the exact TF
Yule-Walker equations. (Again, using a different stacking to con-
struct A yields a fast algorithm that is order-recursive with respect
to M, with a fixed L. The complexity then is proportional to (2L+
1)3 M2, again with half the proportionality factor of the exact case.)

Assume that we have solved the kth-order equation A(k)
θ

(k) =

−a(k), i.e., we know θ
(k). Here, k ∈ {1, · · ·,2L + 1}, and A(k) and

a(k) consist of the first k blocks of A and a, respectively:

A(k) =







A0 · · · A−k+1...
. . .

...
Ak−1 · · · A0






, a(k) =





a−L...
a−L+k−1



.

(Note, however, that θ
(k) is not equal to the first k blocks of θ). Ex-

ploiting the block-Toeplitz structure of A, we can write the system
of order k+1 (and dimension (k+1)M× (k+1)M) as

[

A(k) Tk
ST

k A0

]

θ
(k+1) = −

[

a(k)

a−L+k

]

, (17)

with ST
k = [Ak · · · A1] and Tk = [AT

−k · · · AT
−1]

T. Using the matrix
inversion lemma [1], the solution of (17) can be written as an update
of the solution θ

(k) computed previously:

θ
(k+1) =

[

θ
(k)

0

]

−

[

Wk
I

]

D−1
k

(

VT
k a(k) + a−L+k

)

. (18)

Here, the matrices Vk and Wk are obtained using the recursions

Vk+1 =

[

0
Vk

]

−

[

E
EkWk

]

D−1
k Ck , (19a)

Wk+1 =

[

0
Wk

]

−

[

E
EkVk

]

D−T
k Bk , (19b)

with the “exchange” matrices

E =

[0 1
. .

.
1 0

]

, Ek =

[ 0 E
. .

.
E 0

]

of size M ×M and kM × kM, respectively. Furthermore, (18) and
(19) involve M×M matrices Dk, Ck, and Bk that are given by

Dk+1 = Dk −CT
k D−T

k Bk ,

Ck+1 = VT
k EkSk +EAT

k+1,

Bk+1 = WT
k EkTk +EA−k−1.

This recursion is initialized by D0 = A0, C0 = EAT
1 , B0 = EA−1,

V0 =−ED−1
0 C0, and W0 =−ED−T

0 B0. The recursion stops at k =

2L+1, and the solution of Aθ =−a is then obtained as θ = θ
(2L+1).

Note that only the M×M matrices Dk have to be inverted.

6. SIMULATION RESULTS

TFAR Process. We defined a TFAR process of length N = 256 and
order (M,L) = (4,2) with specified coefficients am,l and σl . We
generated a single realization x[n] via (3) and estimated the EAF
from this realization according to (13) with I = 1, using Ψ[m, l] =
w1[m]w2[l] with w1[m] and W2[n] (the Fourier transform of w2[l])
chosen as Hanning windows of length 49. We then calculated esti-
mates of am[n] and σ [n] by solving the exact and approximate TF
Yule-Walker equations using the true model order (M,L) = (4,2)
and subsequently inserting the resulting estimates âm,l , σ̂l into (4),
(5). For comparison, we also estimated am[n] and σ [n] using Gre-
nier’s method [5]. By way of example, Fig. 2 shows the true param-
eter function a1[n] and the corresponding estimates. It is seen that
all three methods yield reasonable estimation results.

For a better assessment of performance, we repeated this experi-
ment 100 times to obtain estimates of the overall normalized mean-
square parameter estimation error ε . The performance was best for
the exact TF Yule-Walker equations (ε = 0.107), second best for the
approximate TF Yule-Walker equations (ε = 0.119), and poorest for
Grenier’s method (ε = 0.136, i.e., about 30% larger than for the ex-
act TF Yule-Walker equations). In fact, the estimation variance ex-
hibited by Grenier’s method was observed to be significantly larger
than that of our methods.
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Figure 2: True parameter function a1[n] (solid line) and estimates
obtained from the exact TF Yule-Walker equations (dashed line), the
approximate TF Yule-Walker equations (dotted line), and Grenier’s
method (dash-dotted line).

θ
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Figure 3: Comparison of (a) the specified (non-TFAR) time-varying
spectrum and (b) the TFAR spectrum estimated from a single real-
ization x[n].

Non-TFAR Process. Next, we used the method described in [17]
to synthesize a single realization x[n] of a non-TFAR process of
length N = 4096 from the specified time-varying spectrum shown
in Fig. 3(a). The EAF was estimated from this realization according
to (13), using Ψ[m, l] = w1[m]w2[l] with w1[m] and W2[n] chosen as
Hanning windows of length 41 and 81, respectively. We then calcu-
lated sets of TFAR parameters am[n] by solving the approximate TF
Yule-Walker equations for model orders M ∈ [21,27] and L ∈ [1,3].
As final estimates âm[n] and σ̂ [n], we retained the results obtained
for the M and L for which the energy of e[n]/σ̂ [n] was minimum.
(The error signal e[n] was calculated by means of the inverse filter
(15).) A time-varying spectrum estimate was then determined as

Ŝ(n,θ) =
σ̂2[n]

∣

∣

∣

∣

M̂
∑

m=1
âm[n]e− j2πθm

∣

∣

∣

∣

2

(see Fig. 3(b)). The normalized energy of the difference between
the specified spectrum in Fig. 3(a) and the estimated spectrum in
Fig. 3(b) was 17%.

We then repeated the above experiment for 50 different realiza-
tions. In all cases, the estimated spectral model order was L̂ = 2.
A histogram of the estimated temporal model order M̂ is shown in
Fig. 4(a). Furthermore, Fig. 4(b) shows a histogram of the normal-
ized energy of the difference between the specified spectrum and the
estimated spectra obtained from the individual realizations.

7. CONCLUSIONS

We presented a new formulation of nonstationary autoregressive
(AR) modeling in terms of time-frequency (TF) shifts. The pro-
posed TFAR model is physically intuitive and highly parsimonious.
Its parameters are determined by TF Yule-Walker equations that can
be solved efficiently due to their block-Toeplitz structure. For mod-
erate model orders, an approximate version of the TF Yule-Walker
equations allows the use of an even faster algorithm. Numerical sim-
ulations demonstrated the good performance of the proposed tech-
niques for nonstationary modeling and spectrum estimation. Our

23 24 25 2621 22

20

30
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27

20

10

0.14 0.20 0.26 0.32

(a) (b)

Figure 4: (a) Histogram of the estimated temporal model order,
M̂; (b) histogram of the normalized difference energy between the
prescribed spectrum and the estimated spectra.

future work will address the estimation of the TFAR model orders
M, L and the definition and estimation of TFARMA models.
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