INSTANTANEOUS FREQUENCY ESTIMATION BY USING WIGNER DISTRIBUTION
AND VITERBI ALGORITHM

LJubisa Stankovié¢, Igor Djurovi¢,

University of Montenegro,
81000 Podgorica, Montenegro/Yu.
E-mail: [ljubisa,igordj]@cg.ac.yu.

ABSTRACT

Estimation of the instantaneous frequency (IF) in a high
noise environment, by using the Wigner distribution (WD)
and the Viterbi algorithm, is considered. The proposed al-
gorithm combines the nonparametric IF estimation based
on the WD maxima with minimization of the IF varia-
tions between consecutive points. Algorithm realization is
performed recursively by using the (modified) Viterbi algo-
rithm. Performances are compared with the IF estimation
based on the WD maxima.

1. INTRODUCTION

The instantaneous frequency (IF) estimation is an impor-
tant research field. For known signal model there are well
defined parametric methods [1, 2]. When the IF exhibits
abrupt changes or parametric model is unknown, time-fre-
quency (TF) representations can be useful analysis tools
[3, 4]. There are several methods for non-parametric IF es-
timations based on the TF representations. Almost all of
them use position of the TF representation maxima in the
initial stage of algorithms [3]-[6]. The non-parametric meth-
ods for the IF estimation are more sensitive to the noise
influence than their parametric counterparts. An analysis
of the high noise generated error to the IF estimation is
done in [7]. It causes that TF distributions have maxima
outside the signal auto-term. This kind of error, when it
appears, dominates over other sources of error. Therefore,
our goal is to create a non-parametric algorithm for the IF
estimation that can perform accurately for high noise envi-
ronments. Monocomponent FM signal with constant ampli-
tude, in an additive, white, Gaussian noise (AWGN) with
independent real and imaginary parts is considered. The
key criteria used in the algorithm are: the IF should pass
through as many as possible points of the WD with highest
magnitudes, while the IF variation between two consecu-
tive points should not be too fast. Algorithm can be real-
ized recursively as an instance of the (generalized) Viterbi
algorithm [8].

The paper is organized as follows. The WD based IF
estimator is described in Section II. The algorithm for the
IF estimation in a high noise environment with numerical
examples and statistical study is presented in Section III.
Conclusions are given in Section IV.
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2. WD AS AN IF ESTIMATOR

Consider a signal f(t) = Ae’*® corrupted by the AWGN
v(t) with variance 202 (variance of the real and imaginary
part is 0?). Noisy signal z(t) is of the form x(t) = f(t) +
v(t) = Ae’*® 4 u(t). The IF is defined as the first derivative
of the phase: w(t) = ¢'(¢t). The WD of a discrete-time signal
is given by

WD, (t,w) = Y wi(kT)a(t+kT)z" (t — kT)e 7, (1)
k

where the window function wp(kT) has the width h, and
T is the sampling interval. The WD is highly concentrated
around the signal’s IF. Therefore, the IF estimation can be
performed based on the position of the WD maxima [3, 4]:

w(t) = arg max WD, (t,w). (2)

In order to explain our motivation for development of the
new algorithm, consider a linear FM signal with the IF con-
centrated along the discrete frequency grid on w(t) = at+b.
Let the window wp,(nT'), with h = NT, be rectangular and
wide enough so that the auto-term for each instant is con-
centrated in a single point. The remaining error in the
system is due to the influence of high noise only. The WD
mean value is given by E{W D, (t,w)} = WD (t,w) + 202,
while the WD variance is 0% p = 4No?(A% 4+ o?) [9]. Since
there is a large number of terms in the sum (1), we can
assume that the central limit theorem may be applied to
the WD values. Thus, these values are Gaussian in nature,
with N(0,o0wp) outside the IF, and N(NAz, owp) at the
IF. The constant 202 in the mean value is omitted. The pdf
for the WD values along the IF is then:

p(&) =

1 e—(g—NA2)2/2cr‘2/VD. (3)
27T0‘WD

The WD, outside the IF position, assumes a value greater
than E with the probability:

1 / e_(gz/QG%/VD)df

27T0‘WD

QE) =
= 0.5erfc (2/(V2owDp)) . (4)

Probability that any of N — 1 WD values outside the IF is
greater than E is

GE) =1-1-E)" (5)
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o/A 1025 0.50 0.75
Pz | 1.90.107™® | 5.55.10722 | 1.98-10~"
o/A | 1.00 1.25 1.50
Pr | 4711073 1.37-10°1 | 4.49-107 ¢
o/A T 1.75 2.00 2.25
Pez | 6971071 8.33-10°1 | 9.02-107 1

Table 1: Error probability of the IF estimation.

When a WD value outside the IF surpasses its value at
the IF, then a large estimation error occurs. Probability of
this error occurrence is [7]:

Pp = [T G(&)p(&)de

=1- /00 (1 — 0.5erfc (S/ﬁUWD))Nilp(f)dg-

oo

Probabilities of the IF error, for various o/A, are given in
Table I. It can be seen that Pg is a rapidly increasing func-
tion with respect to o /A . For values 0 /A > 2 it approaches
100%. The probability of error is uniformly distributed over
N — 1 samples outside the IF. Thus, we can write the IF
estimation as:

() = w(t) with probability 1 — Pg
YT weQu,w#w(t)  with probability Pg.

(7)

3. ALGORITHM FOR THE IF ESTIMATION

The IF itself is usually a slow varying function. In the case
of a high noise the estimation errors are dominantly of im-
pulse nature. This kind of error can be reduced by applying
the median filter directly to the estimated IF [11]. From
filter theory it is known that the median filter can elim-
inate impulses whose occurrence frequency is up to 50%.
However, in our experiments we could not get the expected
results by using the median filter. Namely, the errors in
the IF estimation are not statistically independent. If a
large error occurs at the considered point, there is a high
probability that the error exists in the neighboring points.
This fact significantly reduces the median filter efficiency.
It clearly shows that for the IF estimation in the high noise
environment we need a more accurate tool. It can be seen
from Table I that, for 0/A > 1.7, the Pg is higher than
70% and the median filter cannot be successfully used. In
order to develop a more sophisticated algorithm for the IF
estimation in a high noise environment, we will assume the
following: (1) If the WD maximum at the considered in-
stant is not at the IF point, there is a high probability that
the IF is at a point having one of the largest WD wvalues;
(2) Assume that the IF variation between two consecutive
points is not large. According to these two assumptions, we
can define the algorithm. The basic idea for this algorithm
comes from the problem of edge-following in digital image
processing [10]. Roughly speaking, our algorithm is similar
to following one: connect points at the map such that the
path length and the altitude variations become as small as
possible.

Consider a time interval n € [ni,n2]. Let all paths
between n; and mn2 belong to a set K. Assume that all
paths from the set K can take only discrete frequency values
which belong to the set Q... We form the IF estimate as a
path that minimizes the expression:

k(n)eK

&(n) = arg min [Z g(k(n), k(n+ 1))+

n=ni

k(n)eK

ZﬂWD(n,k(n)))] = arg min_p(k(n);na,na), (8)

n=ni

where p(k(n); n1,n2) is a sum of the penalty functions along
the line k(n), from the instant ni to n2. The function
g(z,y) = g(|z — y|) is nonincreasing with respect to |z — y|
(between the IF values in the consecutive points z = k(n)
and y = k(n — 1)), and f(x) is nondecreasing in x =
WD(n,k(n)). In this way the larger values of the WD be-
come important candidates for the position of the IF at
the considered instant. For a considered n, the function
f(z) can be formed as follows. The WD values, WD (n,w),
w € Qu, are sorted into the nonincreasing sequence:

WD(n,wi) > WD(n,ws) > .... > WD(n,w;) >

> WD(n,wM), wj € Qu, JE [lvM]v (9)

where j = 1,2,..., M, is the position within this sequence.
Then, the function f(z) is formed as:

fWD(n,w;)) =37 —1. (10)

Thus, we have a function which realizes our idea that the
points with large WD values are important candidates for
the IF estimates. The function f(z) is not formed directly
by using values of the WD, since the signal and noise pa-
rameters can be time-varying. It means that a particu-
lar distribution value at the considered instant may highly
probably belong to the signal term, while in other points it
can be influenced by noise. For g(z,y) =const., the IF es-
timation (8) is reduced to the position of the WD maxima.
In this paper we will use the penalty function:

0 |:IZ - y‘ < Al
gz, y) = ¢ cllr—yl = A1) Ao >z —y[> A (11)
C(AQ—Al) |:It—y‘ > As.

The reasonable choice for A; would be the maximal ex-
pected value of the IF variation between consecutive points.
It means that there is no additional penalty due to this
function for small IF variation (within A; points, for two
consecutive instants). In order to track abrupt changes in
the IF function we limited penalty function g(z,y) to the
value c(Ay — Ayq).

3.1. Implementation

Let the TF plane contains M frequencies and () instants,
T = {(ni,w;)|i € [1,Q],j = [1,M]}. There are M paths
between the two end instants. This fact makes a direct
search for the optimal path impossible. Fortunately, the
algorithm can be realized recursively, as an instance of the
generalized Viterbi algorithm [8] with the following steps.
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(a) Let optimal paths, connecting the instant ni and
all points to the instant n;, are determined. Those paths,
denoted as m;i(n;w;), n € [n1,n;] for j € [1,M], can be
written as:

mi(n;wj) = arg k(m)eirll( p(k(n);ni, (ni,w;)), j € [1,M],
n ij
(12)

where the set K;; contains all paths between the instant n;
and the point (n;,w;), while p(k(n); n1, (ni,w;)) is a sum of
the path penalty functions for the line k(n). In the Viterbi
algorithm terminology, paths (12) are known as the partial
best paths. Current IF estimate, within the interval [n1, n;],
can be written as:

p(mi(n;wj);na, (N4, w;)),

(13)

wiy(n) = ar min
()( ) g”i(";“’j)vje[laM]

for the interval [n1,n;].

(b) The partial best paths at the next instant n;+1 can
be represented as concatenation of (12) with the points at
the new instant mi+1(n;w;) = [mi(n;wi),(nit1,w;)], j €
[1,M], for I € [1, M], that produce the minimal value of
p(mi(nywi)ina, (ni,wr)) + g(wi,wy) + f(WD(nit1,w;)), for
each wj, j € [1, M]. Note that f(WD(ni4+1,w;)) is constant
for the considered partial best path. For the considered
point it is necessary to search over M paths, M? for the
entire instant, and QM? for the entire plane. However, in
order to eliminate some of non-optimal paths we used the
fact that g(wi,w;) is an increasing function of the distance
|wj —wy|. We started from the points with the smallest dis-
tance, and proceed toward the larger ones. The search is
stopped when minimal penalty function in the scanned part
is smaller than the minimal function in the remaining part.
In this way, we got significant calculation savings. They
can be even greater than 50%. The current estimate is the
partial best path producing the smallest penalty function.
Step (b) should be repeated for each point.

3.2. Examples

We will consider two signals that can be relatively difficult
for other non-parametric methods as well as for parametric
methods where the signal model is not known. They are:
sinusoidally modulated IF, fi1(t) = exp(j32sin(nt)), and
signal with abrupt change in the IF, fo(t) = exp(j64r|t|).
Both signals are sampled with N = 256 samples within
t € [-0.5,0.5]. They are corrupted by the AWGN with
SNR=0dB. The IF estimates using the WD with Hanning
window of the width 128 samples are shown in Figs. 1la
and 1b. In both cases thin lines represent true value, dot-
ted lines show the estimates performed with maxima of the
WD, and thick lines are the IF estimates performed by the
proposed algorithm. It can be seen that the proposed algo-
rithm is accurate in both cases. The parameters were set
to ¢ = 2.5, A1 = 3 and Ay = 30. Statistical study is per-
formed, as well. Considered range of SNR was [—10, 10] dB.
For all values from this range 50 trials is considered. The
MSE, obtained with the WD maxima and the proposed al-
gorithm are presented in Fig. 2. The proposed algorithm
behaves significantly better than the estimation based on
the WD maxima.
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Figure 1: IF estimation: (a) Signal fi(n); (b) Signal fa(n).
Dotted line - WD maxima; Solid line - Exact value; Thick
line - Proposed algorithm.

3.3. Multicomponent Signals

The WD has emphatic cross-terms in the case of multicom-
ponent signals. They can make the IF estimation impos-
sible. This is the reason why distributions with reduced
interferences should be used [12, 13]. Here, the weighted
pseudo-WD, known as the S-method [13]-[15], will be used.
It can produce the auto-terms close to those in the WD, but
with significantly reduced cross-terms. Algorithm for the
IF estimation of the multicomponent signals can be sum-
marized as follows: (a) Estimate the IF ,&(®)(n), by using
the proposed algorithm and set ¢ = 0. This IF corresponds
to the highest signal component; (b) Form a new TF rep-
resentation by taking zero-values in the region around IF
estimate [&(n) — 6, (n) + 8]; (c) Repeat the algorithm
for this TF representation, and obtain the next IF estimate
i=1i41, % (n). Steps (b) and (c) should be repeated for
each component.

The algorithm will be demonstrated on a two-component
signal with well separated IF's:

f(t) = exp(j167|t| —j567t)+exp(j32 sin(nt)+556mt). (14)

Signal is sampled with the rate A¢ = 1/128. The IF estima-
tion performed by the proposed algorithm, with parameters
c=5, A1 =2, A2 =40 and 6§ = 2 for noise-free signal and
the AWGN with SNR=-3dB, is shown in Figs. 3a and 3b,
respectively.

4. CONCLUSION

We have presented an approach for the IF estimation based
on the WD and the Viterbi algorithm in a high noise en-
vironment. It uses two assumptions: the IF is placed at
the position of the TF representation with high magnitude;
and the IF is a slow-varying function. The algorithm can
be applied not only on the WD, but also on any other TF
distribution. It can also be used for the IF estimation of
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Figure 2: MSE as a function of the SNR: (a) Signal f1(n);
(b) Signal fa(n). Thick line - Proposed algorithm; Dotted
line - WD maxima.

signal components in multicomponent signals. An alterna-
tive penalty function with more detailed algorithm analysis
is presented in [16].
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