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ABSTRACT

This paper considers the problem of fusing two low-rate
sensors (e.g., microphones) for reconstructing one high-
resolution signal when time delay of arrival (TDOA) is
present as well. We show that under certain condi-
tions the phase of the cross-spectrum-density of low-
rate measurements becomes independent of the signal
in the high-rate front end of the system. We then uti-
lize this fact to demonstrate that it is possible to extend
a class of TDOA estimation techniques known as the
generalized cross correlation technique to linear-phase
multi-rate sensor systems. Finally, we illustrate how
the combination of the theory of linear-phase multi-
rate filter banks and TDOA estimation can result in a
practical, multi-sensor signal reconstruction system.

1. INTRODUCTION

Extensive research has been conducted on multi-rate
signal processing [1]. However, the classic theory of
multi-rate signal processing does not deal with delayed
multi-rate signals. In practical situations, multiple ob-
servations of a signal will inevitably have a delay asso-
ciated with them. For example, in the case of multiple
cell phones being fused to provide greater bandwidth,
their distance to the speaker may be different which
will result in TDOA differences for the different cell
phones. Furthermore, because the internal sampling of
the phones is unlikely to be synchronized, there will be
a further delay added to the system.

2. TDOA ESTIMATION

TDOA estimation arises in a variety of fields, including
speech localization and processing using microphone
arrays [2, 3, 4]. As a result, various algorithms have
been developed for the estimation of TDOAs between
two signals. The general discrete-time model can be

stated as follows:

u0(n) = x(n) + s0(n) (1)
u1(n) = x(n − D) + s1(n) (2)

where u0(n) and u1(n) are the two signals at the ob-
servation points (i.e. microphones), x(n) is the signal
of interest that is referenced (zero time-delay) accord-
ing to the first channel and will have a delay of D by
the time it arrives at the second channel, and s0(n)
and s1(n) are the (possibly dependent) noises of the
first and second channels, respectively. The goal is to
estimate D from a segment of observed data from the
microphones, without prior knowledge regarding the
source signal x(n) or the noises. The most common
solution to the above problem is the generalized cross
correlation technique [3, 4], defined below:

D̃ = arg max
D

∫
ω

W (ejω)U0(ejω)U∗
1 (ejω)e−jωDdω (3)

where U0(ejω) and U1(ejω) are the discrete-time Fourier
transforms of the signals u0(n) and u1(n) respectively
and W (ejω) is a cross-correlation weighting function.
Various weighting functions have been proposed in the
past [4], but the most common solution is a whiten-
ing filter which results in the following cross-correlation
form:

D̃ = arg max
D

∫
ω

cos
(
ωD − (∠U0(ejω) − ∠U1(ejω))

)
dω

(4)
This is known as the PHAse Transform (PHAT).

3. THE MULTIRATE SENSOR FUSION
PROBLEM

Consider the model shown in Fig. 1. Here, x(n) rep-
resents the reference (first microphone’s) signal which
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we model by a zero-mean wide-sense stationary (WSS)
random process. We depict by D the unknown time
delay (in number of samples) between the signals re-
ceived by the two microphones. In each transmitter,
the microphone signal is processed using a linear filter
and then down-sampled to generate a low-rate signal
vi(n), i = 0, 1. The signals vi(n) are transmitted to
a central receiver. Note that the sampling rate (band-
width) assumed for the input signal is twice the symbol
rate (bandwidth) that each transmitter is allowed to
transmit at.

The problem is to design the transmitter filters H0(z)
and H1(z) and the receiver such that the receiver may
reconstruct x(n) from the low-rate signals v0(n) and
v1(n) without a prior knowledge of D.

x(n)
H  (z)0

2 0v  (n)

1v  (n)

2H  (z)1

x(n-D)

x(n)Joint
Reciever

0v  (n)

1v  (n)

Mic 1

Mic 2

Figure 1: The multirate microphone array fusion prob-
lem.

We deal with the above stated problem in two steps.
First, we study the possibility of estimating D at the
receiver and then consider the problem of reconstruct-
ing x(n) when D is specified.

4. ESTIMATING D FROM LOW-RATE
RECEIVED SIGNALS

In this section we show that under certain conditions,
the unknown time delay D can be estimated by exam-
ining the phase of the cross spectral density (CSD) of
the low-rate signals v0(n) and v1(n). The main result
is summarized in the theorem below.

Theorem 1 If the difference between the phase response
of the filters H0(z) and H1(z) used in the transmit-
ters in Fig. 1 is a constant, then ∠Pv0v1(e

jω) is in-
dependent of the input signal statistics. Furthermore,
∠Pv0v1(e

jω) = −ω D
2 +c where c

�
= ∠H0(ejω)−∠H1(ejω).

x(n)
H  (z)0

2 0v  (n)

1v  (n)

x  (n)0

x  (n)1 2H  (z)1
z-D

x  (n - D)1

Figure 2: Representing the transmitters in Fig. 1 as
a two-channel analysis filter bank with a delay in the
lower branch.

Proof: Consider the equivalent block diagram shown
in Fig. 2. It is straightforward to verify that the out-
put signals v0(n) and v1(n) are jointly wide-sense sta-
tionary. Thus, the cross-correlation function Rv0v1(k)
defined by

Rv0v1(k)
�
= E{v0(n)v1(n + k)} (5)

exists. The signals v0(n) and v1(n) are down-sampled
versions of x0(n) and x1(n − D). That is, v0(n) =
x0(2n) and v1(n) = x1(2n − D). Thus we have

Rv0v1(k) = E{x0(2n)x1(2n + 2k − D)}
= Rx0x1(2k − D). (6)

The above equation allows us to express the CSD Pv0v1(e
jω)

of the low-rate signals in terms of the CSD Px0x1(e
jω)

associated with x0(n) and x1(n):

Pv0v1(e
jω)

�
=

∑∞
k=−∞ Rv0v1(k)e−jωk

=
∑∞

k=−∞ Rx0x1(2k − D)e−jωk = 1
2e−jω D

2 ×
{

Px0x1(e
j ω

2 ) + Px0x1(e
j ω−2π

2 ) D even

Px0x1(e
j ω

2 ) − Px0x1(e
j ω−2π

2 ) D odd

(7)

In the last step of the above derivations we used the
following properties of the discrete-time Fourier trans-
form:

x(n)
F� X(ejω) ⇒


 x(2n)

F� X(ej ω
2 )+X(ej ω−2π

2 )
2

x(n − D)
F� e−jωDX(e−jω)

It is straightforward to show that, for the setup in
Fig. 2,

Px0x1(e
jω) = H0(ejω)H∗

1 (ejω)Pxx(ejω), (8)

where Pxx(ejω) is the power spectral density (PSD) of
the input signal.

Recall that the PSD of a real-valued WSS process is
real. Thus, if ∠H0(ejω)−∠H1(ejω) = c, it follows from
(8) that ∠Px0x1(e

jω) will be equal to c. Then, (7) shows
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that ∠Pv0v1(e
jω) = −ω D

2 + c which is independent of
Pxx(ejω). Q.E.D.

An interesting observation is that if H0(z) and H1(z)
are linear phase and FIR (with the same length N),
then the condition of the above theorem is satisfied.

Remark 1 The results of the above theorem remain
valid when independent noise components s0(n) and
s1(n) are added to the signals x(n) and x(n − D), re-
spectively. However, if the noise sources are correlated,
an extra term (which depends on the cross-correlation
between the two noise signals) will be added to the right
hand side of (6). This will introduce additional terms
in the phase of Pv0v1(e

jω) and, hence, bias in the esti-
mation of D.

Linear phase FIR filters prove to be very viable from
a signal synthesis point of view as well. In fact, it is
possible to design FIR and linear-phase filters H0(z)
and H1(z) such that x(n) is recovered from v0(n) and
v1(n). We will explore this issue in the next section.

5. RECONSTRUCTING THE REFERENCE
SIGNAL FROM LOW-RATE RECEIVED

SIGNALS

5.1. Case A: Assuming D is even

When D is even, the diagram shown in Fig. 2 can be
treated as a standard two-channel analysis filter bank.
Analysis filter banks for which it is possible to recon-
struct the input signal using the down-sampled outputs
are known as perfect reconstruction (PR) filter banks
[1]. Two-channel PR filter banks whose analysis fil-
ters are both linear-phase and FIR have been studied
by Nguyen and Vaidyanathan [5]. In the following, we
briefly review some of the results in [5] and define the
class PN of filters that we suggest for use in the trans-
mitters in Fig. 1.

Define h(z)
�
= [H0(z) H1(z)]T . Now, h(z) can be

factored as
h(z) = E(zM )e(z) (9)

where e(z) � [1 z−1]T and E(z) is the polyphase matrix
associated with the analysis filter bank h(z) [1].

Definition 1 We denote by PN the class of 2-channel
analysis filter banks for which the following conditions
are satisfied:

1. The filters H0(z) and H1(z) are of length N
�
=

2(K +1), where K ∈ Z
+ is fixed. In other words,

E(z) is FIR of order K.

2. The matrix E(z) has the factorization

E(z) = AKD(z)AK−1D(z) · · ·D(z)A0 (10)

where

D(z)
�
=

[
1 0
0 z−1

]
and

Ai
�
=

[
1 θi

θi 1

]
0 ≤ i ≤ K − 1,

Ai
�
=

[
1 1
1 −1

]
i = K.

(11)

One can verify that the construction introduced in the
above definition generates linear phase H0(z) and H1(z).
The filters in PN allow perfect reconstruction. To achieve
this, one has to design a synthesis system using the (ad-
joint) polyphase matrix

R(z) = AT
0 C(z)AT

1 C(z) · · ·C(z)AT
K (12)

where

C(z)
�
=

[
z−1 0
0 1

]
.

Then, two synthesis filters F0(z) and F1(z) are calcu-
lated from [

f0(z) f1(z)
]

= eT (z)R(zM ). (13)

The block diagram of the receiver using the filters F0(z)
and F1(z) calculated as above is shown in Fig. 3.

F  (z)0
20v  (n)

1v  (n)

y  (n)0

y  (n)1
2 F  (z)1

z-D
y  (n - D)1

y(n)

TDOA
Estimator

Figure 3: Block diagram of the suggested receiver.

5.2. Case B: Assuming D is odd

When D is odd, the low-rate signal v1(n) is not a de-
layed version of x1(2n). As a result, it is not possible,
in general, to achieve perfect reconstruction by adjust-
ing the delay in the upper branch of the receiver shown
in Fig. 3. Nevertheless, the reconstruction error may
be minimized by optimizing the parameters θ0 to θK−1

that specify the analysis and synthesis filters1.
1Length limitations preclude a thorough discussion of optimal

synthesis methods in this paper.
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6. AN ILLUSTRATIVE EXAMPLE

Here, we present a simple simulation example to illus-
trate the results in sections 4 and 5. For simplicity, we
choose the analysis filters to be in the class P4. This
means N = 4 and K = 1 so we have only one param-
eter θ0 to select. Choosing θ0 = 4.012 leads to the
analysis filters whose frequency response is shown in
Fig. 4(a). The filters H0(z) and H1(z) designed above
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Figure 4: (a) Frequency response of the analysis and
synthesis filters used in the example. (b) The reference
signal x(n) and its power spectral density.

have symmetric and anti-symmetric impulse responses,
respectively. This means ∠H0(ejω) − ∠H1(ejω) = π

2 .
The reference microphone’s signal x(n) and its power

spectral density Pxx(ejω) are shown in Fig. 4(b). The
delayed signal at the second microphone is assumed to
be x(n − 12). Fig. 5(a) shows the estimated phase of
Pv0v1(e

jω) plotted along with the reference line π
2 − D

2 ω
for D = 12, i.e., the correct delay. As can be seen from
this plot, ∠Pv0v1(e

jω) closely follows the linear path
predicted by Theorem 1 within an additive 2kπ ambi-
guity. Once an estimation of ∠Pv0v1(e

jω) is calculated
by the receiver, it can infer the TDOA by finding the
value of D that maximizes the PHAse Transform inte-
gral ∫

ω

cos
(

∠Pv0v1(e
jω) − (−ω

D

2
+

π

2
)
)

dω. (14)

The value of this integral for various values of D is
plotted in Fig. 5(b). It is clearly seen that the PHAse
Transform integral reaches its peak when D = 12.
Thus, the time delay is estimated correctly.

Since the time delay in this example is even, the
receiver can reconstruct the signal x(n) perfectly using
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Figure 5: (a) Phase of Pv0v1(e
jω) estimated using 1000

samples of v0(n) and v1(n). (b) The PHAse Transform
plotted as a function of D.

the synthesis filters F0(z) and F1(z) obtained from (12)
and (13) by setting K = 1 and θ0 = 4.012. Frequency
response of the synthesis filters is shown in Fig. 4(a).

7. CONCLUDING REMARK

The synthesis system in Fig. 3 is not, in general, opti-
mal for approximating x(n) when the filters H0(z) and
H1(z) are not perfect reconstruction. Specifying an op-
timal set of analysis and synthesis systems for this case
is an open problem.
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