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ABSTRACT

This paper considers the problem of fusing two low-rate
sensors (e.g., microphones) for reconstructing one high-
resolution signal when time delay of arrival (TDOA) is
present as well. We show that under certain condi-
tions the phase of the cross-spectrum-density of low-
rate measurements becomes independent of the signal
in the high-rate front end of the system. We then uti-
lize this fact to demonstrate that it is possible to extend
a class of TDOA estimation techniques known as the
generalized cross correlation technique to linear-phase
multi-rate sensor systems. Finally, we illustrate how
the combination of the theory of linear-phase multi-
rate filter banks and TDOA estimation can result in a
practical, multi-sensor signal reconstruction system.

1. INTRODUCTION

Extensive research has been conducted on multi-rate
signal processing [1]. However, the classic theory of
multi-rate signal processing does not deal with delayed
multi-rate signals. In practical situations, multiple ob-
servations of a signal will inevitably have a delay asso-
ciated with them. For example, in the case of multiple
cell phones being fused to provide greater bandwidth,
their distance to the speaker may be different which
will result in TDOA differences for the different cell
phones. Furthermore, because the internal sampling of
the phones is unlikely to be synchronized, there will be
a further delay added to the system.

2. TDOA ESTIMATION

TDOA estimation arises in a variety of fields, including
speech localization and processing using microphone
arrays [2, 3, 4]. As a result, various algorithms have
been developed for the estimation of TDOAs between
two signals. The general discrete-time model can be
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stated as follows:

uo(n) = (n) + so(n) (1)
ui(n) = z(n — D) + s1(n) (2)

where ug(n) and ui(n) are the two signals at the ob-
servation points (i.e. microphones), z(n) is the signal
of interest that is referenced (zero time-delay) accord-
ing to the first channel and will have a delay of D by
the time it arrives at the second channel, and so(n)
and si(n) are the (possibly dependent) noises of the
first and second channels, respectively. The goal is to
estimate D from a segment of observed data from the
microphones, without prior knowledge regarding the
source signal z(n) or the noises. The most common
solution to the above problem is the generalized cross
correlation technique [3, 4], defined below:

f?:argmgx/W(ej“)Uo(ej“)Ul*(ej”)e_j“de (3)
w

where Up(e7%) and Uy (/%) are the discrete-time Fourier
transforms of the signals ug(n) and u;(n) respectively
and W (e/*) is a cross-correlation weighting function.
Various weighting functions have been proposed in the
past [4], but the most common solution is a whiten-
ing filter which results in the following cross-correlation
form:

D= arngax/cos (wD — (LUo(e?¥) — 4U1(€jw))) dw

(4)
This is known as the PHAse Transform (PHAT).

3. THE MULTIRATE SENSOR FUSION
PROBLEM

Consider the model shown in Fig. 1. Here, x(n) rep-
resents the reference (first microphone’s) signal which
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we model by a zero-mean wide-sense stationary (WSS)
random process. We depict by D the unknown time
delay (in number of samples) between the signals re-
ceived by the two microphones. In each transmitter,
the microphone signal is processed using a linear filter
and then down-sampled to generate a low-rate signal
vi(n), ¢ = 0,1. The signals v;(n) are transmitted to
a central receiver. Note that the sampling rate (band-
width) assumed for the input signal is twice the symbol
rate (bandwidth) that each transmitter is allowed to
transmit at.

The problem is to design the transmitter filters Hy(2)
and H;(z) and the receiver such that the receiver may
reconstruct z(n) from the low-rate signals vg(n) and
v1(n) without a prior knowledge of D.
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Figure 1: The multirate microphone array fusion prob-
lem.

We deal with the above stated problem in two steps.
First, we study the possibility of estimating D at the
receiver and then consider the problem of reconstruct-
ing x(n) when D is specified.

4. ESTIMATING D FROM LOW-RATE
RECEIVED SIGNALS

In this section we show that under certain conditions,
the unknown time delay D can be estimated by exam-
ining the phase of the cross spectral density (CSD) of
the low-rate signals vg(n) and v;(n). The main result
is summarized in the theorem below.

Theorem 1 If the difference between the phase response
of the filters Ho(z) and Hy(z) used in the transmit-
ters in Fig. 1 is a constant, then ZPy,, (e’*) is in-
dependent of the input signal statistics. Furthermore,

LPyyu, (67%) = —wZ+c where c = ZHy(e?*)— 2/ Hy(ed%).
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Figure 2: Representing the transmitters in Fig. 1 as
a two-channel analysis filter bank with a delay in the
lower branch.

Proof: Consider the equivalent block diagram shown
in Fig. 2. Tt is straightforward to verify that the out-
put signals vg(n) and vy (n) are jointly wide-sense sta-
tionary. Thus, the cross-correlation function Ry, (k)
defined by

Rugo, (k) 2 E{vo(n)or(n + k)} (5)

exists. The signals vp(n) and v1(n) are down-sampled
versions of xg(n) and z1(n — D). That is, vg(n) =
x0(2n) and v1(n) = x1(2n — D). Thus we have

Ry, (k) = E{x0(2n)x1(2n + 2k — D)}
= RIOJH (2k - D) (6)

The above equation allows us to express the CSD P, ,, (¢7“)
of the low-rate signals in terms of the CSD P, ., (¢/%)
associated with z¢(n) and x1(n):

. N .
P’L)O'Ul (6Jw) = Z;oz_oo Rvov1 (k)67JWk
=30 Ruge, 2k — D)e 79k = Lemiws «

Pz, (ej
Pﬂﬁozl (61
In the last step of the above derivations we used the

following properties of the discrete-time Fourier trans-
form:

(7)

—27

)+ Pryu, (6752 7) D even
) D odd

) - Pﬂﬁoﬂﬁl (ej“’; )

[S[SNIS

w—2

i Xej% +X I 27r
z(2n) = (e’2) 2( )

F .
z(n) = X(¥) = = ‘ ‘
z(n—D) = e~ IwP X (eIw)
It is straightforward to show that, for the setup in
Fig. 2,

Prow, (€79) = Ho(e?)Hi (1) Pyw(e7?),  (8)

where P, (e’*) is the power spectral density (PSD) of
the input signal.

Recall that the PSD of a real-valued WSS process is
real. Thus, if ZHy(e?%) —2ZHy(e?*) = ¢, it follows from
(8) that £ Py, ., (e/*) will be equal to c. Then, (7) shows
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that ZP,., (e9*) = —wZ + ¢ which is independent of
Ppy(ed). Q.E.D.

An interesting observation is that if Hy(z) and H;(2)
are linear phase and FIR (with the same length N),
then the condition of the above theorem is satisfied.

Remark 1 The results of the above theorem remain
valid when independent noise components so(n) and
s1(n) are added to the signals x(n) and x(n — D), re-
spectively. However, if the noise sources are correlated,
an extra term (which depends on the cross-correlation
between the two noise signals) will be added to the right
hand side of (6). This will introduce additional terms
in the phase of Py, (¢7¥) and, hence, bias in the esti-
mation of D.

Linear phase FIR filters prove to be very viable from
a signal synthesis point of view as well. In fact, it is
possible to design FIR and linear-phase filters Hy(z)
and Hi(z) such that x(n) is recovered from wvg(n) and
v1(n). We will explore this issue in the next section.

5. RECONSTRUCTING THE REFERENCE
SIGNAL FROM LOW-RATE RECEIVED
SIGNALS

5.1. Case A: Assuming D is even

When D is even, the diagram shown in Fig. 2 can be
treated as a standard two-channel analysis filter bank.
Analysis filter banks for which it is possible to recon-
struct the input signal using the down-sampled outputs
are known as perfect reconstruction (PR) filter banks
[1]. Two-channel PR filter banks whose analysis fil-
ters are both linear-phase and FIR have been studied
by Nguyen and Vaidyanathan [5]. In the following, we
briefly review some of the results in [5] and define the
class Py of filters that we suggest for use in the trans-
mitters in Fig. 1.
Define h(z) 2 [Ho(z) Hi(2)]T. Now, h(z) can be
factored as
h(z) = E(2")e(2) (9)

where e(z) £ [1 2717 and E(z) is the polyphase matriz
associated with the analysis filter bank h(z) [1].

Definition 1 We denote by Py the class of 2-channel
analysis filter banks for which the following conditions
are satisfied:

1. The filters Ho(z) and Hi(z) are of length N 2
2(K +1), where K € Z* is fived. In other words,
E(z) is FIR of order K.

2. The matriz E(z) has the factorization
E(z) = AxkD(2)Ax_1D(2)---D(2)Ag (10)

where
Al 0
e 2[5 0

and

Al 6 .

(11)
Al 1
A, = [1 _1] i=K.

One can verify that the construction introduced in the
above definition generates linear phase Hy(z) and Hi(z).
The filters in Py allow perfect reconstruction. To achieve
this, one has to design a synthesis system using the (ad-
joint) polyphase matrix

R(z) = AIC(2)ATC(2)---C(2)AL (12)

C(z) 2 {201 ﬂ .

Then, two synthesis filters Fy(z) and Fj(z) are calcu-
lated from

where

[fo(z)  fi(2)] =" (2)R(z"). (13)

The block diagram of the receiver using the filters Fy(z)
and Fi(z) calculated as above is shown in Fig. 3.
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Figure 3: Block diagram of the suggested receiver.

5.2. Case B: Assuming D is odd

When D is odd, the low-rate signal v;(n) is not a de-
layed version of x1(2n). As a result, it is not possible,
in general, to achieve perfect reconstruction by adjust-
ing the delay in the upper branch of the receiver shown
in Fig. 3. Nevertheless, the reconstruction error may
be minimized by optimizing the parameters 6y to 0k _1
that specify the analysis and synthesis filters'.

1Length limitations preclude a thorough discussion of optimal
synthesis methods in this paper.
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6. AN ILLUSTRATIVE EXAMPLE

Here, we present a simple simulation example to illus-
trate the results in sections 4 and 5. For simplicity, we
choose the analysis filters to be in the class P4. This
means N = 4 and K = 1 so we have only one param-
eter 0y to select. Choosing 0y = 4.012 leads to the
analysis filters whose frequency response is shown in
Fig. 4(a). The filters Hy(z) and H;(z) designed above

04 05 06 07 08 09 01 02 03 o4 05 06 07 08 09 1

Figure 4: (a) Frequency response of the analysis and
synthesis filters used in the example. (b) The reference
signal 2(n) and its power spectral density.

have symmetric and anti-symmetric impulse responses,
respectively. This means ZHy(e/*) — ZHy(e7¥) = 5.

The reference microphone’s signal z:(n) and its power
spectral density P, (e’“) are shown in Fig. 4(b). The
delayed signal at the second microphone is assumed to
be x(n — 12). Fig. 5(a) shows the estimated phase of
Py,v, (€7%) plotted along with the reference line 5= %w
for D = 12, i.e., the correct delay. As can be seen from
this plot, ZP,,., (e’*) closely follows the linear path
predicted by Theorem 1 within an additive 2km ambi-
guity. Once an estimation of ZP,,,, (¢/) is calculated
by the receiver, it can infer the TDOA by finding the
value of D that maximizes the PHAse Transform inte-
gral

/ cos (4PW1 (7 — (—wg + g)> do.  (14)

w

The value of this integral for various values of D is
plotted in Fig. 5(b). It is clearly seen that the PHAse
Transform integral reaches its peak when D = 12.
Thus, the time delay is estimated correctly.

Since the time delay in this example is even, the
receiver can reconstruct the signal x(n) perfectly using
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Figure 5: (a) Phase of P,,,, (¢/“) estimated using 1000
samples of vg(n) and v1(n). (b) The PHAse Transform
plotted as a function of D.

the synthesis filters Fy(z) and F(z) obtained from (12)
and (13) by setting K = 1 and 6y = 4.012. Frequency
response of the synthesis filters is shown in Fig. 4(a).

7. CONCLUDING REMARK

The synthesis system in Fig. 3 is not, in general, opti-
mal for approximating x(n) when the filters Hy(z) and
H,(z) are not perfect reconstruction. Specifying an op-
timal set of analysis and synthesis systems for this case
is an open problem.
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