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ABSTRACT

In this paper, a joint optimal design method for multirate
subband coding systems is presented. For a multirate sub-
band coding system with given analysis filters and average
bit number of data quantizers, the design is to simultane-
ously find the synthesis filters and bit number allocation of
the subband quantizers such that the variance of the recon-
struction error of the system is minimized. We propose an
iterative approach for obtaining the synthesis filters and the
bit number allocation that minimize the reconstruction error
of the system. Our simulation example demonstrate the fa-
vorable performance of the proposed method as compared
with existing methods.

1. INTRODUCTION

Multirate subband coding systems are essential in informa-
tion and signal coding. Two most essential components of a
multirate subband coding system are a multirate filter bank
system and a data quantization device. The multirate sub-
band coding system is a quite complicated system involving
periodic and nonlinear operations and signals at different
sampling rates and with different data formats. At this stage,
the available design methods are to design the multirate fil-
ter bank and the data quantization of the multirate subband
coding systems separately. For example, some research re-
sults have been on the orthogonal (paraunitary) filter banks
[4, 7] where orthogonal analysis/synthesis filters are first de-
signed to obtain perfect signal reconstruction without con-
sidering the quantization and channel noises. The quantiz-
ers are then optimized to achieve the maximal coding gain
based on the designed synthesis filter bank. Since the syn-
thesis filter bank and the bit number of each subband quan-
tizer jointly affect the system reconstruction error, this de-
sign approach may not be able to provide an overall optimal
signal reconstruction and coding gain performance in the
presence of quantization and channel noises. In fact, it has
been known that a better coding gain may be achieved by a
nonunitary filter bank [2].

In this paper, we consider an M -channel multirate sub-
band coding system with a sequential multiple sampling

scheme [9, 10]. The filters of the filter banks are FIR and
the data quantizers are in the pdf-optimized quantizer model
[3]. Assume that the FIR analysis filter bank is given which
can provide desirable subband signals. Then the proposed
joint optimal design is to design an FIR synthesis filter bank
and allocate bit numbers to the subband data quantizers to
minimize the variance of the overall reconstruction error
caused by the filtering and multirate sampling distortions
and subband data quantization errors. We will simplify this
complicated joint optimization problem by using an itera-
tive optimization approach, which can provide a better sig-
nal reconstruction and a higher coding gain as compared
to traditional design methods such as the paraunitary filter
bank.

2. STRUCTURE AND FORMULATION OF
SUBBAND CODING SYSTEMS

Sequentially sampled multirate filter bank has been studied
in [9, 10] where its computational and implementary advan-
tages have been analyzed and demonstrated. Its equivalent
periodic multirate system is shown in Figure 1, where dec-
imators and interpolators operate periodically and sequen-
tially with ↓i M and ↑i M , i = 1, 2 · · · , M , denoting, re-
spectively, their operating at n = kM + i, and h(n, m) and
f(n, m) are two SISO M -periodic filters. It has been shown
[9] that the above sequentially sampled multirate filter bank
is equivalent to a standard M-channel simultaneously sam-
pled multirate filter bank with analysis and synthesis filters
hi(n) and fi(n), n = 1, 2, · · · , M from an input and view
point of view. It is easy to verify that the output signal y(n)

s(n)
h(n, m)

y(n)

u1(k)

u2(k)

uM (k)
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Fig. 1. Sequentially operated LPTV filter structure
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of the periodic filter h(n, m) and the input signal ŷ(n) of
the periodic filter f(n, m) satisfy ŷ(n) = y(n).

In this paper, we use the pdf-optimized quantizer model
[5] to represent the quantizers Qi, i = 1, 2, · · · , M , of the
subband coding system. Assume that the input u i(k) to the
quantizer Qi is a wide sense stationary random process with
variance σ2

ui
. Let σ2

qi
be the variances of the quantization

error qi(k). It follows from the rate distortion theory [3]
that the quantization error variance satisfies

σ2
qi

= β(ri)2−2riσ2
ui

. (2.1)

For simplicity, the quantizer performance factor β(r i) can
be approximated by a constant c. Thus the quantization er-
ror can be rewritten as

σ2
qi

= c2−2riσ2
ui

. (2.2)

In this expression, the error variance σ2
qi

is dependent on
both the quantizer input signal and bits assigned to Q i. Fol-
lowing from the Figure 1, the sequentially sampled subband
coding system with quantizers is equivalent to the system in
Figure 2, where q(n) is the quantization error which is de-
fined as q(n) = qi(k) when n = kM + i, where qi(k) is the
quantization error of the i-th subband. Obviously, σ 2

q(n),
the variance of q(n), is M-periodic, i.e. σ2

q(n + M) =
σ2

q (n). It is clear from Figure 2 that

s(n)
h(n, m)

y(n)
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Fig. 2. An equivalent periodic filter structure of sequentially
sampled subband coding system.

ŝ(n) = f(n, m) ∗ h(n, m) ∗ s(n) + f(n, m) ∗ q(n). (2.3)

3. JOINT OPTIMIZATION PROBLEM

In this paper, we assume that the M -channel multirate anal-
ysis filter bank has been designed to meet some subband
decomposition specifications. Further assume that the avail-
able average bit number for the data quantizers of the M -
channels is fixed, which is

R =
1
M

M∑
i=1

ri. (3.1)

Let the reconstruction error be the difference between the
reconstructed signal ŝ(n) and the system input signal shifted
by d steps, i.e.

e(n) = ŝ(n) − s(n − d). (3.2)

It follows from (2.3) that the reconstruction error can be
expressed as

e(n) = (f(n, m)∗h(n, m)−δ(n−d))∗s(n)+f(n, m)∗q(n),
(3.3)

where δ(n − d) is the impulse response of the d-shift op-
erator. We make an assumption that the input signal s(n)
is a WSS process and there exists a stable whitening filter
w(n) in terms of impulse response and a white noise pro-
cess sw(n) with unit variance such that s(n) = w(n) ∗
sw(n). Since w(n), the whitening filter, and hi(n), i =
1, 2, · · · , M , of the analysis filter bank are known, the quan-
tization noise variance σ2

q (n) = σ2
q (kM + i) = σ2

qi can be
easily calculated from (2.2). It follows from (3.3) that the
error system E : (sw, qw) → e is given by

e(n) = (f(n, m) ∗ h(n, m) − δ(n − d)) ∗ w(n) ∗ sw(n)
+f(n, m) ∗ (σq(n)qw(n))

= Ewsw(n) + Eqqw(n), (3.4)

whose inputs are the uncorrelated white noises sw(n) and
qw(n) both with unit variance and the output is the recon-
struction error e(n).

We aim to formulate the reconstruction error variance
and optimize it using the linear matrix inequality (LMI) ap-
proach. This requires that the error equation (3.4) be written
into a state equation form.

Lemma 3.1: A state space representation for the sub-
band coding error system (3.4) is

(E) :
x̃(n + 1) = Ãnx(n) + B̃ns̃(n),

e(n) = C̃nx(n) + D̃ns̃(n),
(3.5)

where

Ãn =




Â B̂Cn 0 B̂Dn
¯̄C

0 A 0 B ¯̄C
0 0 Ā B̄ ¯̄C
0 0 0 ¯̄A


 ∈ RÑ×Ñ ,

B̃n =




B̂Dn
¯̄D B̂b̂n

B ¯̄D 0
B̄ ¯̄D 0
¯̄B 0


 ∈ RÑ×2,

C̃n =
[

Ĉn D̂nCn −C̄ D̂nDn
¯̄C

] ∈ R1×Ñ ,

D̃n =
[

D̂nDn
¯̄D D̂nb̂n

] ∈ R1×2.
(3.6)

while (A, B, Cn, Dn), (Â, B̂, Ĉn, D̂n), (Ā, B̄, C̄, D̄) and
( ¯̄A, ¯̄B, ¯̄C, ¯̄D) are respectively the state-space representations
of analysis filter h(n, m) with order N , the synthesis filter
f(n, m) with order N̂ , the d-shift system and the whiten-
ing filter w(n) with order Nw. Note that since the synthesis
filters are FIR, Â and B̂ can be known matrices [10].
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Since the reconstruction error signal e(n) is the output
of the periodic system (3.5)-(3.6) with wide sense station-
ary white noise inputs sw(n) and qw(n), it is a wide sense
cyclostationary process. Then, σ2

e,n, the variance of the re-
construction signal e(n), satisfies σ2

e(n) = σ2
e(n + M).

Let σ̄2
e be the average variance of e(n) defined as σ̄2

e =
1
M

∑M
i=1 σ2

e(i). Then, it is known [10] that σ̄2
e = ‖E‖2

2.
It follows from the analysis of the preceding subsections

that the H2 norm of the reconstruction error system is de-
pendent on both the synthesis filter bank system and the
quantizer bit numbers of each subband channel. Thus we
propose the joint optimization problem for the design of the
subband coding system.

4. JOINT OPTIMAL DESIGN

4.1. Optimization of synthesis filter bank system with
fixed bit numbers

Theorem 4.1 [10] Given the analysis filter bank and the bit
number allocation ri, i = 1, 2 · · · , M , the optimal synthe-
sis FIR filter bank can be designed by the following convex
optimization:

min
Sn,Qn,Ĉn,D̂n

‖E‖2
2 =

1
M

min
Sn,Qn,Ĉn,D̂n

M∑
n=1

trace(Sn+1),

(4.1)
subject to

L1 =




−Sn+1 B̃T
n Qn+1 D̃T

n

Qn+1B̃n −Qn+1 0
D̃n 0 −I


 < 0, (4.2)

L2 =




−Qn ÃT
n Qn+1 C̃T

n

Qn+1Ãn −Qn+1 0
C̃n 0 −I


 < 0, (4.3)

for n = 1, 2, · · · , M , simultaneously, where Sn and Qn are
symmetric positive definite matrices with S1 = SM+1, Q1 =
QM+1, and Ãn, B̃n, C̃n and D̃n are periodic matrices as
defined in (3.6).

Remark 4.1 The above optimization is a convex optimiza-
tion and can be solved by employing the Matlab LMI Tool-
box [1].

4.2. Optimization of bits allocation with fixed synthesis
filter bank

Assume that the synthesis filter bank is known. The bit
number allocation problem can be stated as: with the known
analysis and synthesis filter bank parameters (Cn, Dn, Ĉn, D̂n),
find integer M -periodic bits allocation rn, n = 1, 2 · · · , M ,
satisfying the bit constraints (3.1) and rn ∈ Z+, such that
the H2 norm of the error system (3.5), ‖E‖2, is minimized.

Observe from (3.4) that Ew is independent of the bit
rates rn. Further, since sw(n) and qw(n) are assumed to
be independent, the optimization of ‖E‖2 is then equivalent
to that of minimizing

J = ‖Eq‖2
2 =

1
M

M∑
n=1

trace(D̂T
n D̂n + B̂T Q̄nB̂)σ2

q (n)

(4.4)
subject to bit constraint (3.1) and r̄ ⊂ Z+, where Q̄n is the
solution of the periodic Lyapunov equation:

ÂT
n Q̄nÂn − Q̄n + ĈT

n Ĉn = 0. (4.5)

If we relax the integer constraint first, the problem can
be solved by applying the Lagrange multiplier method. In-
troduce Lagrangian function L(r̄, λ) as

L(r̄, λ) = J − λ(
M∑

n=1

rn − MR), (4.6)

which is a function of r1, r2, · · · , rM and λ. Then an opti-
mal solution is obtained only if the following M equations
hold:

∂L(r̄, λ)
∂rn

= 0, n = 1, 2 · · · , M (4.7)

together with constraint (3.1).

4.3. Iterative approach to the joint design of the synthe-
sis filter bank and bit numbers

In the previous section, we have shown that for the given
quantizer bit numbers, the optimal synthesis filter bank can
be designed using the LMI approach. Conversely, for the
given synthesis filter bank, a relaxed bit number solution can
be derived by using Lagrange multiplier method. We are
now in the position to present an iterative design procedure
as follows:

• Step 1. Given an initial set of bit numbers satisfying
the constraint (3.1), design a synthesis filter bank by
applying Theorem 4.1 to minimize the H2 norm of
the reconstruction error system, i.e. min

Ĉn,D̂n

‖E‖2.

• Step 2. Fix the synthesis filter bank as derived in the
last step. Find a relaxed optimal bit number solution
by minimizing the cost J using the Lagrange multi-
plier approach. Note that the optimal solution r̄ may
not necessarily be an integer solution at this stage.

• Step 3. Fix the derived bit numbers obtained in the
last step. Redesign the synthesis filter bank to mini-
mize the H2 norm of the reconstruction error system.
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• Step 4. Repeat Steps 2 and 3 until the difference
of the H2 norm of the reconstruction error system be-
tween the two consecutive iterations is less than a pre-
specified tolerance ζ. Denote the derived optimal bit
allocation by r̄opt.

Now the derived r̄opt may not be integers. To obtain a set
of optimal integer bit numbers, we apply the Branch and
bound method [6] in integer programming.

5. EXAMPLE AND PERFORMANCE ANALYSIS

We adopt a 2-channel analysis filter bank given in [8] to
make a comparison between the proposed approach and the
paraunitary filter bank (PUFB) design approach. The fre-
quency response of the analysis filter bank is shown in Fig-
ure 3. By the PUFB approach, bits allocation is calculated
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Fig. 3. Magnitude responses of a 2-band paraunitary filter
bank with filter length 19 each

by [7]

ri = R + 0.5log2

σ2
ui

(ΠM
i=1σ

2
ui

)1/M

together with the Branch and bound method for obtaining
an integer solution. The comparison between the PUFB
and the filter bank designed by the proposed approach is
tabulated in Tables 1 and 2, where the input is a Gaussian-
Markov 1 process with auto-correlation coefficient of 0.9
and SNR stands for the signal (input signal)-to-noise (re-
construction error) ratio. The results show that the proposed

Table 1. Reconstruction results comparison between PUFB
and the proposed FB, for different bit budgets

R PUFB design proposed approach
int. bits SNRPUFB joint bits SNRjoint

2 [3 1] 14.7852 [3 1] 19.0265
3 [4 2] 20.8058 [4 2] 24.0851
4 [5 3] 26.8264 [5 3] 29.7126

approach not only has a better reconstruction performance
in terms of SNR, but also gives higher coding gains. These
also testify that nonunitary filter bank can have a larger cod-
ing gain than a unitary one [2].

Table 2. Coding gain comparison
R GPUFB Gjoint

2 5.0789 19.3798
3 5.0789 12.7891
4 5.0789 11.0273
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