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ABSTRACT 
 
This paper presents a wavelet-based linear minimum 
mean square-error estimation (LMMSE) scheme to exploit 
the strong wavelet interscale dependencies for image 
denoising. Using overcomplete wavelet expansion (OWE), 
we group the wavelet coefficients with the same spatial 
orientation at adjacent scales as a vector. The LMMSE 
algorithm is then applied to the vector variable. This 
scheme exploits the correlation information of wavelet 
scales to improve noise removal. To calculate the statistics 
of wavelet coefficients more adaptively, we classify them 
into different clusters by the context modeling technique, 
which yields a good local discrimination between edge 
structures and backgrounds. Experiments show that the 
proposed scheme outperforms some existing denoising 
methods. And a biorthogonal wavelet, which well 
characterizes the interscale dependencies, is found very 
suitable for the scheme. 

 
1. INTRODUCTION 

 
A wavelet transform (WT) [4] is a Karhunen-Loève like 
expansion and it can decorrelate random processes into 
nearly independent coefficients, which could be 
statistically modeled more effectively. Many wavelet 
based schemes for image denoising and coding have been 
proposed with good results [1, 2, 6, 7, 9, 11]. 
Although WT decorrelates images well, there still exist 
strong dependencies between wavelet coefficients in the 
intrascale or interscale manner. Exploiting the dependency 
information with proper statistical models will 
significantly improve the performance of coding and 
denoising algorithms. As noted by Liu and Moulin [8], the 
statistical wavelet models can be classified into intrascale 
models, interscale models and hybrid dependency models. 
Some intrascale models have been proposed in [1, 2, 10]. 
Chang et al [1] defined each wavelet coefficient as a 
mixture of GGD variables with unknown slowly spatially 
varying parameters. The estimation of these parameters is 

conditioned on a function of its neighboring coefficients. 
The morphological coder presented in [10] also exploits 
the spatial clustering of wavelet coefficients. Mıhçak et al 
[2] estimated the two-order local statistics of each 
coefficient with a centered square window and developed 
a linear minimum mean squared-error estimation 
(LMMSE) like method for noise removal. 
 
The image wavelet coefficients are highly correlated at 
adjacent scales. If a coefficient at a coarser scale has small 
magnitude, its descendant coefficients at finer scales are 
also likely to be small. Shapiro exploited this property to 
develop the now well-known embedded zerotree wavelet 
coder [3]. Conversely, if a wavelet coefficient produced 
by a true signal is of large magnitude at a finer scale, its 
parents at coarser scales will also be large. However for 
those coefficients produced by noise, the magnitudes will 
decay rapidly along the scales. Multiplying the adjacent 
wavelet scales would sharpen the important structures 
while reducing noise. Such a property has been exploited 
in denoising [6, 7] and edge detection [12]. The wavelet 
inter-scale dependencies have also been represented by 
hidden Markov models [5].  
 
Wavelet intrascale and interscale dependencies can be 
combined to improve noise removal results. Liu and 
Moulin [9] employed a composite model in denoising and 
they analyzed the dependency between wavelet 
coefficients with a measurement of mutual information 
[8]. They also compared various wavelet filters with 
respect to the dependency information capturing ability. 
 
In this paper, an LMMSE-base denoising scheme with an 
interscale wavelet model is firstly developed. The 
overcomplete wavelet expansion (OWE), which 
noticeably outperforms the orthogonal wavelet transform 
(OWT) in image denoising [11], is employed. We group 
the wavelet coefficients with the same spatial location 
across adjacent scales as a vector, and apply the LMMSE 
to the vector variable to smooth noise. Secondly, to 
exploit the intrascale dependencies to model the wavelet 
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coefficients adaptively in spatial domain, we cluster the 
wavelet coefficients using context modeling technique, 
which gives a local discrimination of image 
characteristics, such as edge structures and backgrounds. 
Experiments show that the proposed scheme yields very 
satisfying denoising results, especially with a biorthogonal 
wavelet. 

 
2. OVERCOMPLETE WAVELET EXPANSION 

 
A wavelet transform (WT) represents a signal  as a 
linear combination of elementary atoms or building 
blocks. A detail description of wavelet theory can be 
found in [4]. Besides Haar wavelet, there is no other 
compactly supported orthogonal wavelet that is (anti-
)symmetrical, which is an important property in signal 
processing. Compactly supported biorthogonal wavelets 
discard the orthogonality to preserve the symmetric 
property.  

f

 
(Bi-)orthogonal wavelet transform (OWT) is translation 
variant due to downsampling in decomposition. This 
causes some visual artifacts (such as Gibbs phenomena) in 
denoising applications [11]. The denoising scheme 
presented in this paper is based on overcomplete wavelet 
expansion (OWE), whose structure is shown in Fig. 1. 

 is obtained by put (  zeros between each of 

the coefficients of H , similarly for G , F  and . 2-D 

OWE can be extended form 1-D by separable filtering. 
The coefficients are in three directions: horizontal, 
vertical and diagonal. Fig. 1 (b) is the one-stage 
decomposition structure of 2-D OWE. Filter 
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image. 
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3. THE DENOISING ALGORITHM 

 
3.1. The LMMSE of wavelet coefficients 
Suppose  is corrupted with signal independent white 
noise: 

f
ε= fg  with . The OWE of ),0( 2σε N∈ g  at 

scale j  is written as jjj VX +Z = , where X  and V  are 

the OWE of  and 
j j

ε  respectively. Denote by  and 

 the variances of X  and , the linear minimum 

mean squared-error estimation (LMMSE) of  is 
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The noise standard deviation at scale j  is computed as  

σψσ jj =
jj −−

                                (2) 

where  is the dilation of 2-D 

mother wavelet 

)2,2(2( yxx j
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ψ  and ∫∫= dxdyyx ),(ψψ .  

jXσ can be estimated as 
(b) 
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Fig. 1. The illustrations of overcomplete wavelet expansion
(OWE). (a) Decomposition and reconstruction of 1-D signals; 
(b) One-stage decomposition of 2-D images. 
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being the variance of  whose size is . jZ NM ×

 
3.2. The interscale model-based LMMSE 
By OWE each of wavelet subbands has the same number 
of samples. We assemble the same oriented points at J  
scales as a vector  

v
[ ]TJ nmZnmZn ),(),() 1 K=Z            (5) 

vvv vThen there is Z VX += . Obviously v  is Gaussian 
vector noise independent of . Applying the LMMSE to 
vector variable 

xv

zv , we obtain the estimation of xv : 
v zx v1)(ˆ −+= RPP                             (6) 

vvwhere ]TEP =  and [ ]TvvE=R . 
 
The diagonal element [ ]2

jvE  of  equals to , which 

can be computed by (2). Noise variables v  and v , i

R 2
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are jointly Gaussian. Their correlation coefficient is 
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Thus we have 
[ ] jijijiji vvER σσρ ,, ==                       (8) 

The components of matrix P  can be estimated by 
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[ ] [ ] jijijiji RzzExxEP ,, −≈=                   (9) 
where E  is calculated as  [ ji zz ]

[ ] ∑∑
= =

⋅
⋅

=
M

m

N

n
jiji nmZnmZ

NM
zzE

1 1

),(),(1        (10) 

 
Suppose the input image is transformed into J  wavelet 
scales, and it is found by our experiments that setting zv  
as a -D vector won’t yield satisfying results. This could 
be explained in two ways. Firstly, scale 

J
j  is strongly 

correlated with scale  but its correlation with scale 
 decreases rapidly. These coarser scales 

won’t convey much information to improve the estimation 
of scale 

1+j
Jj ,...,3++ j,2

j . Secondly a significant structure has larger 
spatial supports at coarser scales than finer scales. One 
point at a coarse scale may appear as an edge, but at finer 
scales the points with the same spatial orientation may be 
noise predominated. Thus fine scales may impose 
negative effects on coarse scales.  
 
Based on these considerations, we recover  only by the 
measurements at scales 

jX
j  and , i.e., we set 

. After getting X

1+j
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only the component X  is preserved. Similarly  is 

obtained when 
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 is estimated.  

 
In threshold-based denoising schemes [1, 7, 11], wavelet 
coefficients below a threshold will be set to 0. Those 
insignificant data are predominantly noise and should be 
discarded. To merge the merits of thresholding into the 
LMMSE scheme, we apply LMMSE only to the 
coefficients above a threshold while shrinking those 
coefficients below the threshold to 0. In this paper the 
threshold is set as t jj cσ=  with . ]5.3,5.2[∈c
 
3.3. Context modeling of the wavelet coefficients  
To statistically model the wavelet coefficients adaptively, 
we classify them into several clusters. The context 
modeling technique, which is widely used in coding to 
differentiate and gather pixels which are similar but not 
necessarily spatially adjacent, is very appropriate for such 
clustering. Chang et al [1] has proposed the similar 
clustering in their threshold-based denoising scheme. By 
computing the context of each wavelet coefficient, they 
estimated its standard deviation with a collection of pixels 
whose context values fall into a specified field.    
 
We define the context value of vector coefficient 

 as a function of its neighbors. The weighted 
average of its adjacent pixels is employed. Denote by 
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The context value of ,(mj  is defined as 

nm,                          (12) 
 is a 16×  weighted matrix and it can be calculated 

by the least square estimate: v
YU
v

(=                     (13) 

 is a ⋅M  matrix with each row being u nm
j

,v  and 

 is a ⋅ N  matrix with each row being Z )n,(mT
j

v
. 

The absolute values rather than the original values are 
used in the context calculating because the absolute values 
of neighboring coefficients are much more correlated [3]. 
Thus the average of absolute values would yield more 
useful information than the original values. 
 
With context modeling, the coefficients with similar 
natures can be well clustered. Context value C ),( nmj

v
 is a 

 vector. We group (jZ
v

 according to ),( nmjC
v

’s 
localization in the 2-D Euclidean space. The coordinate 
plane is divided into several portions and each portion 
contains the same number  of context value L ),( nmjC

v
. 

 
Suppose (jZ

v
 belongs to the ith group , the 

covariance matrix of corresponding vector X

i
jΘ
,(mj )n

v
 is 

estimated from all the data in . 
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∈
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The LMMSE scheme in section 3.2 is then applied to each 
of the data in  with the calculated P . 1, +jj

 
4. EXPERIMENT RESULTS 

 
Four compactly supported wavelets constructed by 
Daubechies et al [4] were used in the experiments here. 
The orthogonal wavelet is denoted by , where  
is the number of vanishing moments of the wavelet whose 
filter length will be 2 . The biorthogonal wavelet is 
denoted by CDF , where N  is the vanishing 
moment number of analytic wavelet filter and 'N  is that 
of synthetic wavelet filter. The four wavelets employed 
are: , Dau , and CDF , .  

)(NDau

,2(CDF

N

N
)'

)2 )4
 
The denoising schemes employed for comparison are the 
spatially adaptive thresholding of Chang et al [1] and the 
intrascale dependencies exploited LMMSE-like scheme of 
Mıhçak et al [2]. For convenience, we denote the two 
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methods as M1 and M2. The proposed scheme without 
context modeling is denoted as M3 and the version with 
context modeling is denoted as M4. 

   
(a)                                               (b) 

Fig. 2. Images used in the experiments. (a) Lena. (b) Peppers. 
 

Table I. SNR (dB) results of the four methods for Lena 

Lena Dau(4) Dau(2) CDF(1,3) CDF(2,4) 

M1 25.28 25.61 -- -- 
M2 25.69 25.75 25.38 25.66 
M3 25.69 25.71 25.54 25.32 

20=σ  

M4 25.86 25.98 26.12 25.67 
M1 24.55 24.59 -- -- 
M2 24.46 24.55 24.27 24.44 
M3 24.54 24.52 24.59 24.22 

25=σ  

M4 24.81 24.95 25.07 24.65 
M1 23.79 23.83 -- -- 
M2 23.40 23.55 23.30 23.36 
M3 23.64 23.37 23.81 23.29 

30=σ  

M4 24.03 24.15 24.29 23.84 
 

Table II. SNR (dB) results of the four methods for Peppers. 

Peppers Dau(4) Dau(2) CDF(1,3) CDF(2,4) 

M1 24.15 24.33 -- -- 
M2 24.33 24.49 24.20 24.39 
M3 24.52 24.71 24.76 24.27 

20=σ  

M4 24.63 24.94 25.21 24.52 
M1 23.22 23.40 -- -- 
M2 23.24 23.42 23.17 23.31 
M3 23.53 23.70 23.69 23.24 

25=σ  

M4 23.76 24.09 24.32 23.62 
M1 22.47 22.65 -- -- 
M2 22.21 22.44 22.20 22.27 
M3 22.63 22.96 22.99 22.31 

30=σ  

M4 22.98 23.31 23.56 22.82 
 
Several benchmark images were used for the experiments, 
and only the results on 512  images Lena and 
Peppers shown in Fig. 2 were reported here. Three levels 
of Gaussian white noise with 

512×

,20= 30,25σ  are added to 
Lena and Peppers respectively. The denoising results by 
the four methods are listed in Table I and Table II. 
 

It can be seen that context modeling significantly 
improves the denoising performance. Algorithm M4 by 
wavelet CDF  achieves the best results. The highpass 
analytic filter of CDF  has only 1 order vanishing 
moment and two taps. It is good at characterizing the 
wavelet interscale dependencies. The vanishing moment 
of ’s synthetic filter is also high enough (3 
orders) to smooth noise. As a good wavelet to exploit 
wavelet interscale dependencies, CDF  is very 
suitable for the proposed LMMSE-based denoising 
schemes M3 and M4. 

)3,1(

)3,1(

)3,1(

CDF
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