Interscale Image Denoising With Wavelet Context Modeling
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ABSTRACT

This paper presents a wavelet-based linear minimum
mean square-error estimation (LMMSE) scheme to exploit
the strong wavelet interscale dependencies for image
denoising. Using overcomplete wavelet expansion (OWE),
we group the wavelet coefficients with the same spatial
orientation at adjacent scales as a vector. The LMMSE
algorithm is then applied to the vector variable. This
scheme exploits the correlation information of wavelet
scales to improve noise removal. To calculate the statistics
of wavelet coefficients more adaptively, we classify them
into different clusters by the context modeling technique,
which yields a good local discrimination between edge
structures and backgrounds. Experiments show that the
proposed scheme outperforms some existing denoising
methods. And a biorthogonal wavelet, which well
characterizes the interscale dependencies, is found very
suitable for the scheme.

1. INTRODUCTION

A wavelet transform (WT) [4] is a Karhunen-Lo¢ve like
expansion and it can decorrelate random processes into
nearly independent coefficients, which could be
statistically modeled more effectively. Many wavelet
based schemes for image denoising and coding have been
proposed with good results [1, 2, 6,7, 9, 11].

Although WT decorrelates images well, there still exist
strong dependencies between wavelet coefficients in the
intrascale or interscale manner. Exploiting the dependency
information with proper statistical models will
significantly improve the performance of coding and
denoising algorithms. As noted by Liu and Moulin [8], the
statistical wavelet models can be classified into intrascale
models, interscale models and hybrid dependency models.
Some intrascale models have been proposed in [1, 2, 10].
Chang et al [1] defined each wavelet coefficient as a
mixture of GGD variables with unknown slowly spatially
varying parameters. The estimation of these parameters is
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conditioned on a function of its neighboring coefficients.
The morphological coder presented in [10] also exploits
the spatial clustering of wavelet coefficients. Mihgak et al
[2] estimated the two-order local statistics of each
coefficient with a centered square window and developed
a linear minimum mean squared-error estimation
(LMMSE) like method for noise removal.

The image wavelet coefficients are highly correlated at
adjacent scales. If a coefficient at a coarser scale has small
magnitude, its descendant coefficients at finer scales are
also likely to be small. Shapiro exploited this property to
develop the now well-known embedded zerotree wavelet
coder [3]. Conversely, if a wavelet coefficient produced
by a true signal is of large magnitude at a finer scale, its
parents at coarser scales will also be large. However for
those coefficients produced by noise, the magnitudes will
decay rapidly along the scales. Multiplying the adjacent
wavelet scales would sharpen the important structures
while reducing noise. Such a property has been exploited
in denoising [6, 7] and edge detection [12]. The wavelet
inter-scale dependencies have also been represented by
hidden Markov models [5].

Wavelet intrascale and interscale dependencies can be
combined to improve noise removal results. Liu and
Moulin [9] employed a composite model in denoising and
they analyzed the dependency between wavelet
coefficients with a measurement of mutual information
[8]. They also compared various wavelet filters with
respect to the dependency information capturing ability.

In this paper, an LMMSE-base denoising scheme with an
interscale wavelet model is firstly developed. The
overcomplete wavelet expansion (OWE), which
noticeably outperforms the orthogonal wavelet transform
(OWT) in image denoising [11], is employed. We group
the wavelet coefficients with the same spatial location
across adjacent scales as a vector, and apply the LMMSE
to the vector variable to smooth noise. Secondly, to
exploit the intrascale dependencies to model the wavelet
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coefficients adaptively in spatial domain, we cluster the
wavelet coefficients using context modeling technique,
which gives a local discrimination of image
characteristics, such as edge structures and backgrounds.
Experiments show that the proposed scheme yields very
satisfying denoising results, especially with a biorthogonal
wavelet.

(b)

Fig. 1. The illustrations of overcomplete wavelet expansion
(OWE). (a) Decomposition and reconstruction of 1-D signals;
(b) One-stage decomposition of 2-D images.

2. OVERCOMPLETE WAVELET EXPANSION

A wavelet transform (WT) represents a signal f as a

linear combination of elementary atoms or building
blocks. A detail description of wavelet theory can be
found in [4]. Besides Haar wavelet, there is no other
compactly supported orthogonal wavelet that is (anti-
)symmetrical, which is an important property in signal
processing. Compactly supported biorthogonal wavelets
discard the orthogonality to preserve the symmetric

property.

(Bi-)orthogonal wavelet transform (OWT) is translation
variant due to downsampling in decomposition. This
causes some visual artifacts (such as Gibbs phenomena) in
denoising applications [11]. The denoising scheme
presented in this paper is based on overcomplete wavelet
expansion (OWE), whose structure is shown in Fig. 1.
H, is obtained by put (277" —1) zeros between each of

the coefficients of H,, similarly for G, F, and K. 2-D

OWE can be extended form 1-D by separable filtering.
The coefficients are in three directions: horizontal,
vertical and diagonal. Fig. 1 (b) is the one-stage
decomposition structure of 2-D OWE. Filter F is the

transpose of F . At each scale the wavelet coefficients of
OWE have the same number of samples as the input
image.

3. THE DENOISING ALGORITHM

3.1. The LMMSE of wavelet coefficients
Suppose f is corrupted with signal independent white

noise: g = f+¢ with ¢ e N(0,6*). The OWE of g at
scale j is written as Z, = X, +V,, where X and y, are
the OWE of f and ¢ respectively. Denote by &3 and
sz_ the variances of X, and v, the linear minimum

mean squared-error estimation (LMMSE) of X; is

A

szaf(/-zj/(a§]+af-) (1

The noise standard deviation at scale j is computed as
0;= H‘/’./‘HO' )

where v (x,y) =27y (27 x,27 y) is the dilation of 2-D

mother wavelet y and |y = “ w(x, y)dxdy -

o, can be estimated as

J

61 ~ol —o? (3)
with
) 1 M N ) (4)
o, =—— Z:(m,n
Z; MNWZ:;nZ:I: j( )

being the variance of Z/, whose sizeis M x N .

3.2. The interscale model-based LMMSE

By OWE each of wavelet subbands has the same number
of samples. We assemble the same oriented points at J
scales as a vector

Zmn) =[Z,(mn) ... Z,mm] )
Then there is Z=X+F . Obviously v is Gaussian
vector noise independent of x. Applying the LMMSE to
vector variable 7, we obtain the estimation of x:

Xx=P(P+R)'Z (6)
where P = E[xx” | and R = E[pv"].

The diagonal element E[V/Z] of R equals to O_]z_ , which
can be computed by (2). Noise variables v, and v, i# j,
are jointly Gaussian. Their correlation coefficient is

([ e, (x, y)dxdy o

Pij =
v ey | [[w} (v y)dvay
Thus we have

R,; = E[v,.v‘,-] = Pi,jOi0; ®)

The components of matrix P can be estimated by
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P :E[xixj]zE[ZiZj]_Ri,j )

where E[z, z»/.] is calculated as

E[Zizj]:]v[l_NiZN;Zf (m,n)-Z ;(m,n) (10)

Suppose the input image is transformed into J wavelet
scales, and it is found by our experiments that setting z
as a J -D vector won’t yield satisfying results. This could
be explained in two ways. Firstly, scale j is strongly

correlated with scale j+1 but its correlation with scale
j+2,j+3,..,J decreases rapidly. These coarser scales

won’t convey much information to improve the estimation
of scale j. Secondly a significant structure has larger

spatial supports at coarser scales than finer scales. One
point at a coarse scale may appear as an edge, but at finer
scales the points with the same spatial orientation may be
noise predominated. Thus fine scales may impose
negative effects on coarse scales.

Based on these considerations, we recover X, only by the

measurements at scales j; and j+1, ie, we set
Z (m,n)=[Z,(m,n) Z,,(mn)] . After getting X,

only the component )A(b/. is preserved. Similarly )A(j+1 is

obtained when X ;1 18 estimated.

In threshold-based denoising schemes [1, 7, 11], wavelet
coefficients below a threshold will be set to 0. Those
insignificant data are predominantly noise and should be
discarded. To merge the merits of thresholding into the
LMMSE scheme, we apply LMMSE only to the
coefficients above a threshold while shrinking those
coefficients below the threshold to 0. In this paper the
threshold is set as ¢, = co, with ¢ €[2.5,3.5].

3.3. Context modeling of the wavelet coefficients

To statistically model the wavelet coefficients adaptively,
we classify them into several clusters. The context
modeling technique, which is widely used in coding to
differentiate and gather pixels which are similar but not
necessarily spatially adjacent, is very appropriate for such
clustering. Chang ef al/ [1] has proposed the similar
clustering in their threshold-based denoising scheme. By
computing the context of each wavelet coefficient, they
estimated its standard deviation with a collection of pixels
whose context values fall into a specified field.

We define the context value of vector coefficient
Z (m,n) as a function of its neighbors. The weighted

average of its adjacent pixels is employed. Denote by

Zymm (@) > i=1..8 the absolute value of the

neighborhood 8 elements of Z,(m,n) . And define
ﬁ;’ls” = [Z;(m,n) (1) zj:(m,l1) (8)] (1 1)

The context value of Z/.(m, n) is defined as
C,(m,n)=u"w, (12)
w, isa 16 x 2 weighted matrix and it can be calculated
by the least square estimate:
wj:(ﬁj?(jj)*lﬁﬂﬂ (13)
(7‘,. is a M - N x16 matrix with each row being ﬁj’.”’” and
Y is a M - N x2 matrix with each row being Z7 (m,n).

The absolute values rather than the original values are
used in the context calculating because the absolute values
of neighboring coefficients are much more correlated [3].
Thus the average of absolute values would yield more
useful information than the original values.

With context modeling, the coefficients with similar
natures can be well clustered. Context value 6‘/. (m,n) is a

1x 2 vector. We group Zj. (m,n) according to C"j. (m,n)’s
localization in the 2-D Euclidean space. The coordinate
plane is divided into several portions and each portion
contains the same number L of context value C;(m,n).

Suppose Z ;(m,n) belongs to the ith group @j’ﬁ , the
covariance matrix of corresponding vector X (m,n) is
estimated from all the data in @;.

A 1
P o sz(man)'Zj+1(man)_Rj,j+1 (14)
Z;(m,n)e0;

The LMMSE scheme in section 3.2 is then applied to each
of the data in @} with the calculated P, .

4. EXPERIMENT RESULTS

Four compactly supported wavelets constructed by
Daubechies et al [4] were used in the experiments here.
The orthogonal wavelet is denoted by Dau(N), where N

is the number of vanishing moments of the wavelet whose
filter length will be 2N . The biorthogonal wavelet is
denoted by CDF(N,N') , where N is the vanishing

moment number of analytic wavelet filter and N is that
of synthetic wavelet filter. The four wavelets employed
are: Dau(2), Dau(4),and CDF(1,3), CDF(2,4).

The denoising schemes employed for comparison are the
spatially adaptive thresholding of Chang et al [1] and the
intrascale dependencies exploited LMMSE-like scheme of
Mihgak et al [2]. For convenience, we denote the two
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methods as M1 and M2. The proposed scheme without
context modeling is denoted as M3 and the version with
context modeling is denoted as M4.

(b)

Fig. 2. Images used in the experiments. (a) Lena. (b) Peppers.

Table I. SNR (dB) results of the four methods for Lena

Lena Dau(4) | Dau(2) | CDF(1,3) | CDF(2.4)

M1 | 2528 [ 25.61 — —

oo M2 ] 2569 | 2575 25.38 25.66
M3 | 25.69 | 2571 25.54 25.32
MA | 25.86 | 25.98 26.12 25.67
M1 | 2455 | 24.59 — —

o_os | M2 | 2446 | 2455 24.27 24.44
M3 | 2454 | 24.52 24.59 24.22
M4 | 2481 | 2495 25.07 24.65
M| 2379 | 23.83 — -

030 M2 ] 2340 | 2355 23.30 23.36
M3 | 23.64 | 2337 2381 23.29
M4 | 2403 | 24.15 24.29 23.84

Table II. SNR (dB) results of the four methods for Peppers.

Peppers | Dau(4) | Dau(2) | CDF(1,3) | CDF(2.4)
M1 | 2415 | 2433 - -
ooso [ M2 ] 2433 | 2449 24.20 24.39
M3 | 2452 | 2471 24.76 24.27
M4 | 2463 | 24.94 2521 24.52
M1 | 2322 | 23.40 — -
ooos | M2 ] 2324 | 2342 23.17 23.31
M3 | 2353 | 23.70 23.69 23.24
Ma | 2376 | 24.09 24.32 23.62
M1 | 2247 | 22.65 - -
ooso M2 | 2221 | 2244 22.20 2227
M3 | 2263 | 22.96 22.99 2231
M4 | 2298 | 2331 23.56 22.82

Several benchmark images were used for the experiments,
and only the results on 512x512 images Lena and
Peppers shown in Fig. 2 were reported here. Three levels
of Gaussian white noise with ¢ =20,25,30 are added to
Lena and Peppers respectively. The denoising results by
the four methods are listed in Table I and Table II.

It can be seen that context modeling significantly
improves the denoising performance. Algorithm M4 by
wavelet CDF'(1,3) achieves the best results. The highpass

analytic filter of CDF(1,3) has only 1 order vanishing

moment and two taps. It is good at characterizing the
wavelet interscale dependencies. The vanishing moment
of CDF(1,3) ’s synthetic filter is also high enough (3

orders) to smooth noise. As a good wavelet to exploit
wavelet interscale dependencies, CDF(1,3) is very

suitable for the proposed LMMSE-based denoising
schemes M3 and M4.
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