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ABSTRACT

The solution obtained by the CMA agorithm depends on
both initial conditions and signal realizations. This paper
uses the LM S method to seek the global minimum of the
CM performance measure only. The resulting increase in
computation is not prohibitive.

1. INTRODUCTION

The Constant Modulus (CM) minimization is the estima-
tion of an unobservable sequence {s.}, given n samples of
acorrelated sequence {z, }. Theestimate {y, } ischosen as:

ye =W Xy (1

where W and X; arethe n x 1 parameter and sample vec-
tors, and * is the complex transpose. The vector W is se-
lected by minimizing the CM criterion 7 [1] given as:

T =75l w I* =) @

where | . | and E[.] are the modulus and the expectation
operators and -y is a known constant.

In practice, this problem is solved in rea time using the
Constant Modulus Adaptive (CMA) agorithm given by:

Wi=Wi 1 —pery-1 X1 (3

where p is a constant, TV, tends to a minimum of 7 ast¢
tends toward infinity, and e; =| y; |? —.

A large body of research existsin this topic as described
in[2]. This paper falls in a subcategory that uses the kro-
necker product to improve the performance of the CMA al-
gorithm. In particular, [3] demonstrates the benefits of this
notation in visualizing the topology of the CM function.
These results are used in [4] to cast the problem of blind
beamforming as a constrained matrix factorization. Sim-
ilarly, [5] observes that some of the minima of the CMA
algorithm in the context of equalization can be obtained by
solving a linear system of equations where the unknowns
are nonlinear functions of the equalizer parameters. Both
[4] and [5] are, however, application specific and provide
off-line solutions only. Thefirst of these limitationsis over-
come by [6], which, formulates the CM as a generic mini-
mization problem irrespective of the application whereit is
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used. The second limitation of [4] and [5] is overcome by
[7], which, solves the minimization of [6] using Newton's
method. However, the approach of [ 7] requirescalculating a
matrix inverse and higher order statistics. This contribution
proposes an LMS algorithm that avoids these limitations.
Section 2 presents the new a gorithm, its convergence prop-
ertiesand itsimplementation. Section 3 contraststhe behav-
ior of the new algorithm against that of the CMA through an
example and highlightsits limitations. Section 4 offerscon-
cluding remarks.

2. LMSBASED CMA

This section introduces an LM S search of the CM function.
Theorem 1. Given an initial value, W (—1), of an un-

known n x 1 vector, an n x 1 sample vector X (), and a

constant v, an LMS search of the CM function is given as:

o(-1) = W(-1)oW(-1)
For k=0 to k=N-1
pk) = X(k)@X(k) 4
k) = k-1 pk) -7 )
V(k) = e(k)p(k) (6)
o) = O(k—1)—pV(k) (D)
My(k) = matrix(@(k), n) ©)
[U,S,V](k) = svd(Mp) €)
We(k) = o (10)
W, (k)
We(k) = RG] (11)

where N is the number of iterations needed to converge,
n is the data length, ® is the kronecker product, (.) is the
complex conjugate, svd(.) isthe function that computes the
singular value decomposition of a given matrix, o is the
largest singular value of the matrix My, u, istheleft singu-
lar vector correspondingto o1, W, (k)[1] isthefirst compo-
nent of the vector W, (k), and matriz (0, n) isthe operator
that converts the entries of a vector 6, n at time, to corre-
sponding columns of a matrix M.
Proof: Equation (2) may be expressed as[6]:
2

L. Y e o
J = 19 RW9—§9 Pg,—i—z (12)
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with the different variables defined as:

P, = Elp]
Rop = Elppy]
0 = W ®W = [’IU()W* wmW* ... wn_lw*]’
Yr = Xt ®7t = [l'tXt* l'tle; . mt7n+1Xt*]/

wherethel x I matrix R, is positive definite, with [ = n?.
Now, consider a function K(¢) defined as in equation

(12), but where the vector 6 is not necessarily a kronecker

product. The gradient V¢ /C of 1C(#), with respect to 6, is:

VoJ = R0 — P, (13)
The global minimum 6, of 1C(0) is:
Okp = RopPo (14)

To proceed, notice that equation (6) and the term V (k)
in equation (7) are both instantaneous estimates of equation
(13). Hence, equations (4) through (7) combined form an
LMS search of the function ().

Equations (8) through (11) are output equations only
and do not affect the iterative process since they do not en-
ter into the feedback loop. Hence, the behavior of equations
(4) through (7) may be considered separately. In particular,
since K(0) is convex, the LMS agorithm of equations (4)
through (7), if it converges, leads to a solution 6, in the
vicinity of the absolute minimum 6, in equation (14).

Equations (8) through (10) compute avector W, (k) that
is the best rank 1 approximation to the vector 6(k). To see
this, recall that the problem of approximatingagivenm x n
matrix My by anearest rank 1 matrix [8] is stated as:

min || My — bc* || (15)

whereb and c arem x 1 and n x 1 vectors, respectively.
The solution of this problem is given by:

bopt = O1uU1 (16)
Copt = U1 (1n

Thevectorsu; and v; arethefirst columnsof the orthogonal
matrices U and V' in the decomposition:

My =UXV* (18)

Letting My bethen x n matrix defined in equation (8),
we see that equation (10) is just the expression of b,y in
equation (16). Also, using the properties of the kronecker
product, equation (13) can be written as:

where the matrices R, and R» are related as:

Ryp = R1 ® Ry (20)

That is, the matrix My is aso positive semidefinite. Hence,
the singular value decomposition of equation (18) becomes:

My =UXU" (21)
Inthis case, the vector ¢,y is:
Copt = T (22)

Consequently, equation (10) is simply the solution of the
particular nearest rank 1 matrix approximation defined as:

min || My — Wa W5 | 23

Thenormalization of equation (11) is used to ensure unique-
ness of the vector W, only, since any vector W, = alWWg
is also solution to the problem of equation (23).

Finally, since IC(0) is convex, the vector W, extracted
from 6, is close to the absolute minimum vector W, of
the CM function 7. To quantify, the difference between
these two solutions, noticethat if 6, isakronecker product
form, then 6, isequal to 8,. Hence, Wy, = We,y,. How-
ever, if 0y, is not a kronecker product form, then the vector
Oopt SOlVes the system of equations:

R<p<p90pt = fYPopt (24)

Pyt existssince R, isnonsingular. On the other hand, the
vector 0., = Wem @ W, verifiesthe system:

Rtptpecnz = ’VPC'rn (25)

Again, P, existssince R, is nonsingular.
Using perturbationtheory [8], the norm of the difference
between the two solutions is bounded as;

||90pt*95m|| ||Pcm7P0pt||

< ew(Ree)
1| Gopt || S Pope ||

(26)

wheree isarbitrarily small and w (R, ) = %}% with

Amaz (Rypp) and Apin(R,) being the maximum and the
minimum eigenvalues of the matrix R, respectively. This
difference is small when the signal model is adequate and
the noiseis not excessive. This endsthe proof of theorem 1.

Theorem 1 seeks the CM absolute minimum only re-
gardless of initial conditions. Unlike the case of the CMA
agorithm, the null vector can be used as an initia value
since the update term of the new algorithm is not equal to
zero for anull vector. Equations (8) through (11) may be
computed using the explicit singular value decomposition if
small matrices are involved. However, if the matrix My is
large, it may be more economical to use the Lanczos method
instead. The method of [7] may also be used.

We should emphasize that theorem 1 searches K(6) and
not the CM function. In general, these two functions are not
equal except in the special case when the augmented vector
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0 can be decomposed into akronecker product form. Infact,
there is a gap between the minimum values of these two
expressions. This gap goesto zero only when the estimated
signal {y:} matches perfectly the unknown signal {s;}.

The new agorithm differs from the conventional LMS
method in three ways. First, it performstheiterations on an
augmented vector 6 instead of the parameter vector /. Sec-
ond, it usese(k) and ¢(k) instead of e(k) and X (k) needed
for Wiener filter. Finally, the new a gorithm features an out-
put block C(.) for computing the values of the parameter
vector W (k) from those of the augmented parameter vector
6(k). This output block may be viewed as a nonlinear mea-
surement block anal ogousto that used in Kalman filtering.

The agorithm of theorem 1 may aso be implemented
as a block optimization procedure. In this case, thereis a
preamble period of duration N; needed for the iterations of
equations (4) through (7) to convergeto 6 ,,: with the time
t < Nj. Once6,,; is reached, we proceed with equations
(8) through (11) to estimate W, and y, with¢ > N;. Note
that no estimation of W, or of y, is performed prior to time
Ni. Thisblock optimization is most effective when imple-
mented in two separate chips. Thefirst chip hosts equations
(4) through (7) and runs at a faster rate than the commu-
nications link. The second chip performs the operations in
equations (8) through (11) and runs at the same rate as the
communicationslink. The rate of the first chip is such that
Bopt isreached before the next cycle of the communications
link comes around.

Performing its update on an I = n? vector, the com-
putational complexity of the algorithm of theorem 1 is of
order O(n?), if W is computed asin [7]. If W is computed
by the standard explicit singular value decomposition algo-
rithm, the order of complexity increases to O(n?). Since
only the largest singular value and the corresponding left
singular vector are needed, more efficient algorithmsrequir-
ing an order O(n?) only, are however, available [8]. Thisis
still more expensive than the standard LM S method. But,
it isin the same order as that of the commonly used L east
Squares (LS) approach. As such, it is not too prohibitive.
This complexity may be reduced further by using the prop-
erties of the kronecker product or parallel architectures.

Theorem 2: A necessary and sufficient condition for the
LMStype algorithm of theorem 1 to converge to an approx-
imate solution of the CM absolute minimumis:

O<up< (27)

Amaw

Proof: Some of the details of this proof are omitted
due to space limitations. Subtracting 6, from both sides
of equation (7), using equation (6), replacing (k) in terms
of 0(k — 1) and ¢(k), and rearranging, we get:

V(k) = (I = pp(k)e" (K))V (k = 1) — peo(k)p(k) (28)

where V (k) = (k) — 0, and eo(k) = 05, 0(k) — 7.
Taking the expectation of both sides of equation (28) and
invoking the independence assumption, we obtain:

BV (K] = (I~ uRo)EV(k—1)]  (29)

Converting R, to adiagonal form, equation (29) leadsto a
set of n homogeneous difference equations of thefirst order
whose solution is stable if and only if:

—1<1—pX(Rep) <1, Vi (30)
In this case, we have:
klim E[W (k)] = Wopt (3D

Since the eigenvalues of R, are all real and positive, it
thereforefollows that condition (30) implies condition (27).

To prove convergence in the mean square, observe that
computing the sguare of the norm of eguation (28), taking
the expectation of the result and rearranging, we obtain:

E[|V(K) )] = ElV*(k = 1) A(k)V (k — 1)]
+E[Ui(k)] + E[Ua(k)] + E[Us(k)]

wheretheexpressionsfor A(k), Z ., Ui (k), Uz(k) and Us (k)
are easily obtained by expanding E[| V (k) |?].
Thesum E[U, (k)] + E[Uz(k)] + E[Us(k)] is bounded as:

E[Uy (k)] + E[Us(Ek)] + E[U3(k)] < ap®, a>0 (32)
Asaresult, we have:
E[|V(k) P] < 1=p(Ryp, Zop)|E[V (k—1)]+ap® (33)
where p(Ryy, Zyy) 1S
2uAmzn (Rtptp) - MQ/\max<Zgaga) (34)
Equation (33) is stableif and only if:
11— QM)‘min<R%a) + MQ/\maa:(Zvv) <1 (35)
or equivalently,
QAmin(wa)
)‘maw<Z¥w)
Since Z,,, is positive semidefinite, we deduce:

AZ (RSDW) S Afnax(R‘/’Lﬂ) S Afnal'(ZQDgD) (37)

min

O<pu< (36)

Hence, condition (36) implies condition (27). Consequently,
Jim B W (k) = Wop I’1=0 (38)

This ends the proof of theorem 2.

Theorem 2 providesa necessary and sufficient condition
for both convergence of the mean and in the mean square as
the number of iterations approaches infinity. This condition
is remarkably similar to that needed for the conventional
LMS algorithm to converge. However, keep in mind here
that A\, 1S the largest eigenvalue of the fourth order mo-
ment matrix R, and not that of the correlation matrix R .,
asisthe casein the standard LM S setting.
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3. EXPERIMENTAL RESULTS

To illustrate the performance of the new algorithm, consider
two real valued sequences {z;} and {s; } related as:

st = hoxt + hixi—1 (39)

where hg and h; are unknown scalars.

The sequence {z.;} is used to drive a filter with two
real valued taps wo and wy. The output {y;} of the filter
is the desired estimate of the unknown sequence {s;}. At
the same time, the parameters wg and w; are the estimates
of the unknown parameters iy and h1, respectively.

In our simulations, weused hy = 1, hy = 0.6, v = 1,
© = 0.005, N = 2500 and a number of initial conditions.
The new algorithm converges to a unique solution for all
initial conditions as shown in figure 1 (). In contrast, the
CMA algorithm exhibits multiple minima depending on the
initial conditions as seen in figure 1 (b). More elaborate
examples are givenin [6] and show similar behavior.

[N
A

(b) CMA Algorithm

(a) New Algorithm

Fig. 1. Example showing the new algorithm with a single
solution when the CMA exhibits multiple minima.

In addition to its computational complexity discussed
earlier, the new algorithm also requires a large number of
samples to converge. As expected, our simulations showed
that the eigenvalue spread of the matrix R, plays a mgjor
role in the speed of convergence of the new agorithm. For
low eigenvalue spread, the number of samples required by
the new algorithm isthe same as that needed by the original
CMA. This number is however, larger than that used by the
conventional LM S method since both the CMA and the new
algorithm are implicitly based on the fourth order statistical
moments.

However, we observed also that for the same value of
1, the new algorithm needed as much as 4 times the num-
ber of samples used by the original CMA agorithm when
the eigenvalue spread is high. Moreover, our simulations
revedled also that the type of digital signals typically en-
countered in the CM minimization setting often lead to large
eigenvalue spreads. This observation highlights the impor-
tance of data conditioning in practice and may explain, in
part, why several researchers have experienced slow con-
vergence when using the CMA algorithm.

4. CONCLUDING REMARKS

This paper has introduced a new LMS algorithm for min-
imizing the CM performance measure. Unlike the origi-
na CMA agorithm, the new agorithm has the advantage
of converging to a desired solution only regardless of ini-
tial conditions. In addition, the resulting increase in com-
putational complexity is not too excessive. However, data
conditioning practices need to be incorporated with the new
algorithm in order to improve its speed of convergence.
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