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ABSTRACT

The solution obtained by the CMA algorithm depends on
both initial conditions and signal realizations. This paper
uses the LMS method to seek the global minimum of the
CM performance measure only. The resulting increase in
computation is not prohibitive.

1. INTRODUCTION

The Constant Modulus (CM) minimization is the estima-
tion of an unobservable sequence {st}, given n samples of
a correlated sequence {xt}. The estimate {yt} is chosen as:

yt = W ∗Xt (1)

where W and Xt are the n × 1 parameter and sample vec-
tors, and ∗ is the complex transpose. The vector W is se-
lected by minimizing the CM criterion J [1] given as:

J =
1
4
E[(| yt |2 −γ)2] (2)

where | . | and E[.] are the modulus and the expectation
operators and γ is a known constant.

In practice, this problem is solved in real time using the
Constant Modulus Adaptive (CMA) algorithm given by:

Wt = Wt−1 − µεt−1yt−1Xt−1 (3)

where µ is a constant, Wt tends to a minimum of J as t
tends toward infinity, and εt =| yt |2 −γ.

A large body of research exists in this topic as described
in [2]. This paper falls in a subcategory that uses the kro-
necker product to improve the performance of the CMA al-
gorithm. In particular, [3] demonstrates the benefits of this
notation in visualizing the topology of the CM function.
These results are used in [4] to cast the problem of blind
beamforming as a constrained matrix factorization. Sim-
ilarly, [5] observes that some of the minima of the CMA
algorithm in the context of equalization can be obtained by
solving a linear system of equations where the unknowns
are nonlinear functions of the equalizer parameters. Both
[4] and [5] are, however, application specific and provide
off-line solutions only. The first of these limitations is over-
come by [6], which, formulates the CM as a generic mini-
mization problem irrespective of the application where it is

used. The second limitation of [4] and [5] is overcome by
[7], which, solves the minimization of [6] using Newton’s
method. However, the approach of [7] requires calculating a
matrix inverse and higher order statistics. This contribution
proposes an LMS algorithm that avoids these limitations.
Section 2 presents the new algorithm, its convergence prop-
erties and its implementation. Section 3 contrasts the behav-
ior of the new algorithm against that of the CMA through an
example and highlights its limitations. Section 4 offers con-
cluding remarks.

2. LMS BASED CMA

This section introduces an LMS search of the CM function.
Theorem 1: Given an initial value, W (−1), of an un-

known n × 1 vector, an n × 1 sample vector X(k), and a
constant γ, an LMS search of the CM function is given as:

θ(−1) = W (−1) ⊗ W (−1)
For k = 0 to k = N − 1

ϕ(k) = X(k) ⊗ X(k) (4)

ε(k) = θ(k − 1)∗ϕ(k) − γ (5)

∇(k) = ε(k)ϕ(k) (6)

θ(k) = θ(k − 1) − µ∇(k) (7)

Mθ(k) = matrix(θ(k), n) (8)

[U, S, V ] (k) = svd(Mθ) (9)

W∗(k) = σ1u1 (10)

W⊗(k) =
W∗(k)

W∗(k)[1]
(11)

where N is the number of iterations needed to converge,
n is the data length, ⊗ is the kronecker product, (.) is the
complex conjugate, svd(.) is the function that computes the
singular value decomposition of a given matrix, σ1 is the
largest singular value of the matrix Mθ, u1 is the left singu-
lar vector corresponding to σ1, W∗(k)[1] is the first compo-
nent of the vector W∗(k), and matrix(θ, n) is the operator
that converts the entries of a vector θ, n at time, to corre-
sponding columns of a matrix Mθ.

Proof: Equation (2) may be expressed as [6]:

J =
1
4
θ∗Rϕϕθ − γ

2
θ∗Pϕ +

γ2

4
(12)
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with the different variables defined as:

Pϕ = E[ϕt]
Rϕϕ = E[ϕtϕ

∗
t ]

θ = W ⊗ W = [w0W
∗ w1W

∗ . . . wn−1W
∗]′

ϕt = Xt ⊗ Xt = [xtX
∗
t xt−1X

∗
t . . . xt−n+1X

∗
t ]′

where the l× l matrix Rϕϕ is positive definite, with l = n2.
Now, consider a function K(θ) defined as in equation

(12), but where the vector θ is not necessarily a kronecker
product. The gradient ∇θK of K(θ), with respect to θ, is:

∇θJ = Rϕϕθ − Pϕ (13)

The global minimum θkp of K(θ) is:

θkp = R−1
ϕϕPϕ (14)

To proceed, notice that equation (6) and the term ∇(k)
in equation (7) are both instantaneous estimates of equation
(13). Hence, equations (4) through (7) combined form an
LMS search of the function K(θ).

Equations (8) through (11) are output equations only
and do not affect the iterative process since they do not en-
ter into the feedback loop. Hence, the behavior of equations
(4) through (7) may be considered separately. In particular,
since K(θ) is convex, the LMS algorithm of equations (4)
through (7), if it converges, leads to a solution θopt in the
vicinity of the absolute minimum θkp in equation (14).

Equations (8) through (10) compute a vector W ∗(k) that
is the best rank 1 approximation to the vector θ(k). To see
this, recall that the problem of approximating a given m×n
matrix Mθ by a nearest rank 1 matrix [8] is stated as:

min || Mθ − bc∗ || (15)

where b and c are m × 1 and n × 1 vectors, respectively.
The solution of this problem is given by:

bopt = σ1u1 (16)

copt = v1 (17)

The vectors u1 and v1 are the first columns of the orthogonal
matrices U and V in the decomposition:

Mθ = UΣV ∗ (18)

Letting Mθ be the n× n matrix defined in equation (8),
we see that equation (10) is just the expression of bopt in
equation (16). Also, using the properties of the kronecker
product, equation (13) can be written as:

R2MθR
′
1 = Rxx (19)

where the matrices R1 and R2 are related as:

Rϕϕ = R1 ⊗ R2 (20)

That is, the matrix Mθ is also positive semidefinite. Hence,
the singular value decomposition of equation (18) becomes:

Mθ = UΣU∗ (21)

In this case, the vector copt is:

copt = u1 (22)

Consequently, equation (10) is simply the solution of the
particular nearest rank 1 matrix approximation defined as:

min || Mθ − W⊗W ∗
⊗ || (23)

The normalization of equation (11) is used to ensure unique-
ness of the vector W⊗ only, since any vector Wα = αW⊗
is also solution to the problem of equation (23).

Finally, since K(θ) is convex, the vector Wopt extracted
from θopt is close to the absolute minimum vector Wcm of
the CM function J . To quantify, the difference between
these two solutions, notice that if θkp is a kronecker product
form, then θopt is equal to θkp. Hence, Wopt = Wcm. How-
ever, if θkp is not a kronecker product form, then the vector
θopt solves the system of equations:

Rϕϕθopt = γPopt (24)

Popt exists since Rϕϕ is nonsingular. On the other hand, the
vector θcm = Wcm ⊗ W cm, verifies the system:

Rϕϕθcm = γPcm (25)

Again, Pcm exists since Rϕϕ is nonsingular.
Using perturbation theory [8], the norm of the difference

between the two solutions is bounded as:

|| θopt − θcm ||
|| θopt || ≤ ε�(Rξξ)

|| Pcm − Popt ||
|| Popt || (26)

where ε is arbitrarily small and �(Rϕϕ) = λmax(Rϕϕ)
λmin(Rϕϕ) , with

λmax(Rϕϕ) and λmin(Rϕϕ) being the maximum and the
minimum eigenvalues of the matrix Rϕϕ, respectively. This
difference is small when the signal model is adequate and
the noise is not excessive. This ends the proof of theorem 1.

Theorem 1 seeks the CM absolute minimum only re-
gardless of initial conditions. Unlike the case of the CMA
algorithm, the null vector can be used as an initial value
since the update term of the new algorithm is not equal to
zero for a null vector. Equations (8) through (11) may be
computed using the explicit singular value decomposition if
small matrices are involved. However, if the matrix Mθ is
large, it may be more economical to use the Lanczos method
instead. The method of [7] may also be used.

We should emphasize that theorem 1 searches K(θ) and
not the CM function. In general, these two functions are not
equal except in the special case when the augmented vector
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θ can be decomposed into a kronecker product form. In fact,
there is a gap between the minimum values of these two
expressions. This gap goes to zero only when the estimated
signal {yt} matches perfectly the unknown signal {st}.

The new algorithm differs from the conventional LMS
method in three ways. First, it performs the iterations on an
augmented vector θ instead of the parameter vector W . Sec-
ond, it uses ε(k) and ϕ(k) instead of e(k) and X(k) needed
for Wiener filter. Finally, the new algorithm features an out-
put block C(.) for computing the values of the parameter
vector W (k) from those of the augmented parameter vector
θ(k). This output block may be viewed as a nonlinear mea-
surement block analogous to that used in Kalman filtering.

The algorithm of theorem 1 may also be implemented
as a block optimization procedure. In this case, there is a
preamble period of duration N1 needed for the iterations of
equations (4) through (7) to converge to θ opt with the time
t ≤ N1. Once θopt is reached, we proceed with equations
(8) through (11) to estimate Wopt and yt with t ≥ N1. Note
that no estimation of Wopt or of yt is performed prior to time
N1. This block optimization is most effective when imple-
mented in two separate chips. The first chip hosts equations
(4) through (7) and runs at a faster rate than the commu-
nications link. The second chip performs the operations in
equations (8) through (11) and runs at the same rate as the
communications link. The rate of the first chip is such that
θopt is reached before the next cycle of the communications
link comes around.

Performing its update on an l = n2 vector, the com-
putational complexity of the algorithm of theorem 1 is of
order O(n2), if W is computed as in [7]. If W is computed
by the standard explicit singular value decomposition algo-
rithm, the order of complexity increases to O(n3). Since
only the largest singular value and the corresponding left
singular vector are needed, more efficient algorithms requir-
ing an order O(n2) only, are however, available [8]. This is
still more expensive than the standard LMS method. But,
it is in the same order as that of the commonly used Least
Squares (LS) approach. As such, it is not too prohibitive.
This complexity may be reduced further by using the prop-
erties of the kronecker product or parallel architectures.

Theorem 2: A necessary and sufficient condition for the
LMS type algorithm of theorem 1 to converge to an approx-
imate solution of the CM absolute minimum is:

0 < µ <
2

λmax
(27)

Proof: Some of the details of this proof are omitted
due to space limitations. Subtracting θkp from both sides
of equation (7), using equation (6), replacing ε(k) in terms
of θ(k − 1) and ϕ(k), and rearranging, we get:

V (k) = (I − µϕ(k)ϕ∗(k))V (k − 1) − µε0(k)ϕ(k) (28)

where V (k) = θ(k) − θkp and ε0(k) = θ∗kpϕ(k) − γ.
Taking the expectation of both sides of equation (28) and
invoking the independence assumption, we obtain:

E[V (k)] = (I − µRϕϕ)E[V (k − 1)] (29)

Converting Rϕϕ to a diagonal form, equation (29) leads to a
set of n homogeneous difference equations of the first order
whose solution is stable if and only if:

−1 < 1 − µλi(Rϕϕ) < 1, ∀i (30)

In this case, we have:

lim
k→∞

E[W (k)] = Wopt (31)

Since the eigenvalues of Rϕϕ are all real and positive, it
therefore follows that condition (30) implies condition (27).

To prove convergence in the mean square, observe that
computing the square of the norm of equation (28), taking
the expectation of the result and rearranging, we obtain:

E[| V (k) |2] = E[V ∗(k − 1)A(k)V (k − 1)]
+E[U1(k)] + E[U2(k)] + E[U3(k)]

where the expressions for A(k), Zϕϕ,U1(k), U2(k) and U3(k)
are easily obtained by expanding E[| V (k) |2].
The sum E[U1(k)] + E[U2(k)] + E[U3(k)] is bounded as:

E[U1(k)] + E[U2(k)] + E[U3(k)] ≤ aµ2, a > 0 (32)

As a result, we have:

E[| V (k) |2] ≤ [1−ρ(Rϕϕ, Zϕϕ)]E[V (k−1)]+aµ2 (33)

where ρ(Rϕϕ, Zϕϕ) is:

2µλmin(Rϕϕ) − µ2λmax(Zϕϕ) (34)

Equation (33) is stable if and only if:

| 1 − 2µλmin(Rϕϕ) + µ2λmax(Zϕϕ) |< 1 (35)

or equivalently,

0 < µ <
2λmin(Rϕϕ)
λmax(Zϕϕ)

(36)

Since Zϕϕ is positive semidefinite, we deduce:

λ2
min(Rϕϕ) ≤ λ2

max(Rϕϕ) ≤ λ2
max(Zϕϕ) (37)

Hence, condition (36) implies condition (27). Consequently,

lim
k→∞

E[| W (k) − Wopt |2] = 0 (38)

This ends the proof of theorem 2.
Theorem 2 provides a necessary and sufficient condition

for both convergence of the mean and in the mean square as
the number of iterations approaches infinity. This condition
is remarkably similar to that needed for the conventional
LMS algorithm to converge. However, keep in mind here
that λmax is the largest eigenvalue of the fourth order mo-
ment matrix Rϕϕ and not that of the correlation matrix Rxx

as is the case in the standard LMS setting.
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3. EXPERIMENTAL RESULTS

To illustrate the performance of the new algorithm, consider
two real valued sequences {xt} and {st} related as:

st = h0xt + h1xt−1 (39)

where h0 and h1 are unknown scalars.
The sequence {xt} is used to drive a filter with two

real valued taps w0 and w1. The output {yt} of the filter
is the desired estimate of the unknown sequence {s t}. At
the same time, the parameters w0 and w1 are the estimates
of the unknown parameters h0 and h1, respectively.

In our simulations, we used h0 = 1, h1 = 0.6, γ = 1,
µ = 0.005, N = 2500 and a number of initial conditions.
The new algorithm converges to a unique solution for all
initial conditions as shown in figure 1 (a). In contrast, the
CMA algorithm exhibits multiple minima depending on the
initial conditions as seen in figure 1 (b). More elaborate
examples are given in [6] and show similar behavior.
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(b) CMA Algorithm

Fig. 1. Example showing the new algorithm with a single
solution when the CMA exhibits multiple minima.

In addition to its computational complexity discussed
earlier, the new algorithm also requires a large number of
samples to converge. As expected, our simulations showed
that the eigenvalue spread of the matrix Rϕϕ plays a major
role in the speed of convergence of the new algorithm. For
low eigenvalue spread, the number of samples required by
the new algorithm is the same as that needed by the original
CMA. This number is however, larger than that used by the
conventional LMS method since both the CMA and the new
algorithm are implicitly based on the fourth order statistical
moments.

However, we observed also that for the same value of
µ, the new algorithm needed as much as 4 times the num-
ber of samples used by the original CMA algorithm when
the eigenvalue spread is high. Moreover, our simulations
revealed also that the type of digital signals typically en-
countered in the CM minimization setting often lead to large
eigenvalue spreads. This observation highlights the impor-
tance of data conditioning in practice and may explain, in
part, why several researchers have experienced slow con-
vergence when using the CMA algorithm.

4. CONCLUDING REMARKS

This paper has introduced a new LMS algorithm for min-
imizing the CM performance measure. Unlike the origi-
nal CMA algorithm, the new algorithm has the advantage
of converging to a desired solution only regardless of ini-
tial conditions. In addition, the resulting increase in com-
putational complexity is not too excessive. However, data
conditioning practices need to be incorporated with the new
algorithm in order to improve its speed of convergence.
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