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ABSTRACT 2. MULTI-SPLIT LMSALGORITHM

This paper presents an analysis that justifies the improved per_Considerthe classical scheme of an adaptive transversal filter whose
formance of the multi-split LMS algorithm. It is shown that in-  coefficients are represented by the x 1 vector W (n), where

stead of reducing the eigenvalue ratio, the multi-split operation N = 2*'. Without loss of generality, all the parameters are as-
increases the diagonalization factor of the transformed input sig-Sumed to be real. Applying the multi-split operation as defined
nal autocorrelation matrix, which assists the power normalized andin [1], we arrive, after M steps witl2™~" splitting operations
time-varying step-size LMS algorithm used for updating the sin- (m =1,2,..., M), at the multi-split scheme shown in Figure 1,

gle parameters independently. Case studies and simulation result&hereC.,, andC.,, are2™ ="+ x 24" matrices, andv ;,

enable us to evaluate the improved performance of the multi-splitfor # = 0,1,..., N — 1, represent the single parameters of the
LMS algorithm. resulting zero-order filters.

1. INTRODUCTION
Ca

Owing to its simplicity and robustness, the standard LMS algo-
rithm is one of the most widely used algorithms for adaptive sig-
nal processing. Unfortunately, its performance in terms of con-
vergence rate and tracking capability depends on the eigenvalue N
spread of the input signal autocorrelation matrix [3]. Transform
domain LMS algorithms, like DCT and DFT, which reduce such

a spread, have been used to solve this problem at the expense of a Ca
high computational complexity [2].

A low computational burden multi-split preprocessing of the |
input data vector has also been proposed for improving the perfor- step 1
mance of the LMS algorithm [1, 4]. After preprocessing, the adap-
tive FIR filter is realized as a set of zero-order filters connected in
parallel, and with each single parameter independently updated. Fig. 1. Multi-split adaptive filtering.

Our contribution in this paper is to show that, instead of re-
ducing the eigenvalue spread, the multi-split operation increases  The above multi-split scheme can be viewed as a linear trans-
the diagonalization factor of the transformed input signal autocor- formation of the input dat& (n) denoted by:
relation matrix. This fact leads us to assert that the improved per-

X(n)

formance of the multi-split LMS algorithm is due to its individ- Xi(n) =T'X(n), 1)
ual and independent updating characteristic by means of a powery,hare-
normalized and time-varying step-size LMS algorithm. CtyClayy...CL ¢

In Section 2 we briefly present the multi-split LMS prepro- ¢

CSMC’aMfl e Cél

cessing using the linearly-constrained approach proposed in [1], T — CLyClpyy1...CLy @)

and investigate its effect on the eigenvalue spread of the input data
autocorrelation matrix. In Section 3, we consider a diagonalization -
factor measure and show that the multi-split operation allows us to CiyClyey...ChH
pe_rfor_m an eigenvalue estlma_non and a subsequent ste_p—3|ze_ optl-S a non-singular matrix, an@i* x T = 2™ . I. The columns of
mization. We also show that, in the particular case of a filter with . .

- S . T can be permuted in order to re-arrange the single parameters of
only two coefficients, the multi-split LMS algorithm corresponds Figure 1. One of these permutations is obtained by making:
to the Newton LMS algorithm. In Section 4 we present simulation 9 ' P y 9-
results that validate our analysis. Finally, in Section 5 we draw [ JM—m

NXN

IM—m
some final remarks. } and CamZ[ ] 3)
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form = 1,2,..., M, whereJ is the reflection matrix. Applying 3. DIAGONALIZATION ANALYSIS

(3) to (2), we get a linear transformation &f(n) with a butterfly

structure that is very suitable for VLSI implementation [1]. Consider a filted¥ (n) with only 2 coefficients. To perform the
The autocorrelation matrix ok |, Rx, x, , regardless ofthe ~ multi-split operation in this case, we can apply the transformation:

transformatiori” in use, can be written as a function of the auto-

. . . t
correlation matrix ofX, Rx x, as: T = [ } _} } (15)
E[X. -X!] =ET"-X-X"-T] @)
_ oM -1 t
=207 -EX-X7-T. to the input vectorX (n), whose autocorrelation matrix is
Thus,
Rx, x, =2 .T™' Rxx-T. (5) Rxx = [ Too  To1 ] , (16)
The matrixR = T~' - Rxx - T is said to be similar t®x x, o T

whereT is a similarity transformation [6]. As a consequence:
det (R—X) =det(T™'-(Rxx —AI)-T)

whererg1 = r10 andrgo = r11. Then, the autocorrelation matrix
of the split vectorX | (n) = T - X(n) is

= det(RXX — )\I), (6)
Too + T 0
which means that matriR has the same characteristic equation Rx,x, =2- [ o 0 ol oo — To1 ] . a7)
and the same eigenvaluesis x . Therefore:
ARx, x,)=2" - A(Rxx), @) The eigenvalues of the matrx , x, are\; = 2-(roo+701) and

A2 = 2 - (roo — ro1), which is the same as the power in each tap

whereA(e) denotes the eigenvalue diagonal matrixeofBased  of 117, (). Thus, equation (14) actually estimates the eigenvalues
on (7) we can say that the multi-split operation does not affect the of Rx, x, , which, in matrix form, is:

eigenvalue spread of the input data correlation matrix.

According to [3], (7) reflects in the geometric ratios of the - 7o 0
learning curves of the LMS algorithm. The ratios for the classical A= [ 0 ] : (18)
algorithm are given by:

ri=1—2p- A\, (8)

fori = 0,1...,N — 1, wherey is the step-size parameter, and -
convergence is guaranteed if [3]: Wiln)=Wi(n—1)+ usA™" X1 (n)e(n). 19

Then, the updating equations (12) can be also written in matrix
form as:

. 9) Note that, since in this cask is a perfect estimate of the auto-
Amaz correlation matrix, equation (19) is the same as the Newton LMS
Based on this and taking into account that the multi-split adaptive updating equation [3].
scheme hadV filters with only one coefficient, we have: When the number of coefficients in the filléf(n) is increased
R Y 10 to the next powers of 2, the autocorrelation mafix, x, is not
"L Hip A (10) diagonal. It has the form:

O<pu<

and convergence for each filter is guaranteed if:
Srxx Oxxk (20)

(11) Rxix, = Oxxx Axrxrx |’

0< Miy, < 2M—)\1
Perfect knowledge of the eigenvalues in (7) allows us to optimize where X’ = N/2, and the eigenvalues dix , x, are the combi-
the choice ofu;, for each one of théV single coefficient filters.  nation of the eigenvalues 6fand 4, sinceRx , x, can be written
In [1] the authors proposed, without further analysis, the applica- as the direct sun$ @ A [6]. Even though matrix®x , x, is not

tion of a power-normalized version of the LMS algorithm indepen- diagonal, itsdiagonalization factois increased. The diagonaliza-

dently for each single coefficient: tion factor is defined in [4] as:
wii(n) = wiin —1) + Zsai(m)e(n)  (12) trace Ry, x, )
7i(n) Y(Rx, x,) = . :
) ) > |lelements oRx | x, | —trac€ Rx, x, )
wherep, is a constant step-size(n) = d(n) — y(n), (21)
N—1 In this case, equation (19) is an approximation of the Newton
y(n) = Z zii(n)wii(n—1), (13) LMS. The closeness of this approximation can be measured by the
i—o increase in the diagonalization factor produced by the multi-split
and: operation.
1 Theorem of the Circle of Gerschgorin [6Each eigenvalua
7i(n) = ~fi(n — 1) + —(Iaui(n)IQ — yFi(n — 1)), (14) (real or complex) of a matriB, n x n, satisfies at least one of the
n inequalities:
fori =0,1,..., N — 1. When the autocorrelation matrix of |

is diagonal, the eigenvalues can be perfectly estimated, and the " )

step-sizes (11) can be independently optimized. In this case, the | = biil <wi, where ;= Z lbij| (i =1,....n).
multi-split LMS algorithm performas as well as the Newton LMS iz

algorithm [3]. We analyze this case in the next section. (22)
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Thus, increasing the trace of the matfx , x, by afactor thatis Example 2: Consider thatz(n) is the output of the 2kft-
larger than the increase of the sum of the module of the elementsAWG26 HDSL channel as presented in [5], when the input is a
not in its main diagonal, increases the accuracy of the eigenvaluesandom signal with unit variance and zero mean, ahe: 8. The
estimate given by equation (14). That is exactly the effect of the autocorrelation matrix ok (n) has diagonalization factor:
multi-split operation, as can be seen from comparing the diagonal-
ization factor ofRx x andRx , x, . _ 1122 1.18

In the case ofV = 4, the autocorrelation matriRyx x is 9.48 ’

while the autocorrelation matrix of vectdf (n) has diagonaliza-

oo Tor Toz 7o tion factor:
Tol Too Tol To2 ' 89.76

To2 Tol Too Toi | =563 =3.25.

T03 ro2 To1 T00 . . . . .
Here, the diagonalization factor was increageth times, also

improving considerably the estimate on the eigenvalues given by
equation (14), but by a smaller factor than the improvement in Ex-
ample 1. Note also that here is2.65 times greater than in Exam-

Suppose thajro1| > |ro2| > |res|. Then, due to th&@heorem of
the Circle of Gerschgorinthe minimum error on the estimate of
the eigenvalues given by the main diagonaR3fx is given by:

ple 1.
Y1 = |ro1| + |roz| + |ro3]. (23) In the next section we will present simulations showing that
the performance of the multi-split LMS algorithm can be seen as
The autocorrelation matriRx , x, is half-way between the classical LMS and the RLS algorithm per-
formances. We use the RLS algorithm in the simulations since it
(2ro0 + 3701 + 2702 + 1r03) (roa —ro1) 0 0 can be considered as a stochastic approximation of the iterative
o. | (ros—ro1) (2roo —ro1 —2ro2 +7103) 0 0 deterministic Newton algorithm [7].

0 0 (2roo+ 701 — 27102 —703) (T03 — ro1)
00 (ros —701) (2roo —3ro1 + 270> = ro3) 4. SIMULATION RESULTS
and the error on the estimate of the eigenvalues given by the main . .
; . Now we make use of simulations to compare the performances of
diagonal ofRx , x, are at most: S .
the Multi-Split LMS (MS), the classical LMS and the RLS algo-

Yii =2 X |ros — ro1|, (24) rithms. _ _ _ _ _
In the following simulations, we consider an adaptive system
fori = 1,2,3,4. While the eigenvalues dix, x, are2” times as the one in Figure 2, where the channel input is binary, with
larger than the eigenvalues Bfx x, the estimation error of , in b(n) = +1, andwv(n) is an additive noise with varianeg =

the worst case, is twice the estimation errohofSo, the efficiency 0.001.
of the estimate given by equation (14) is considerably increased.

Example 1. Consider a similar case as the one in the Example delay
of Figure 6.2 from [3, Chapter 6], where the input signal(g) = L= y
sin(2x /L), the desired responsedén) = 2xcos(2x7/L), the
filter W (n) has four coefficients, the power of the random signal channel adL?plt.'VG
added tar(n) in the input of the filter isp = 0.01, andL = 16 b(n) ?9 alzer - e
samples per signal cycle. Then, the autocorrelation matrix ofthe | .~ ]
input vectorX (n) has diagonalization factor: v(n

2.04
V= I566 0446 Fig. 2. Adaptive equalizer

Applying the multi-split operation to the input vectar(n) yields
the split input vectorX | (n), whose autocorrelation matrix has
diagonalization factor:

In Figures 3, 4, and 5 we compare the ensemble mean square
error (MSE) performances of the LMS, the MS and the RLS algo-
rithms, when applied to the minimization of the estimation error in
8.16 Figure 2, for three different channels. The step-sjzesid ., for
3162 = o1 the LMS and the MS algorithms, respectively, were setfaN.

T 9764
. o ) In the first two cases we considered the raised cosine channel
Thus, the diagonalization factor was increased by more than 8[2] with coefficients described by:

times, and, according to tiigheorem of the Circle of Gercshgorin

the accuracy of the estimate given by equation (14) was also con- % (1 + cos (2_77 (j— 2))) ,ji=1,2,3.

siderably increased. ¢ = { 0, otherwise ,
WhenN > 4, the analysis is not so simple, and it becomes

tedious to analyze each case individually. But making use of equa-wherea: controls the eigenvalue spregdof the autocorrelation

tion (20), it can be shown that the split operation also increases thematrix of the channel input vectox (n), and N is the number of

diagonalization factor folV > 4. It is also important to note that  tap-weights of the equalizer.

(25)

the improvement in the diagonalization factpis also a function Figure 3 presents the ensemble MSE whes 2.9 and N =
of the amount of correlation iX (n). In order to explore thisidea, 8, and Figure 4 presents the case where 3.5 and N = 8. The
let us consider the following example. poorer performance of the LMS algorithm in Figure 3 compared
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Fig. 3. Ensemble mean square error versus number of iterations
Raised cosine channeh=2.9, N=8.

Ensemble MSE

I
50

I I I I I I I I
100 150 200 250 300 350 400 450 500

Iterations

Fig. 4. Ensemble mean square error versus the number of itera-
tions. Raised cosine channek=3.5, N=8.

with Figure 4 is due to the increase in the eigenvalues spxead
[2]. We can also observe that the performance of the MS algorithm
relative to the RLS algorithm did not suffer from the increase in the
eigenvalue spread.

In Figure 5 we considered the 2kft-AWG26 HDSL channel
presented in [5]. The equalizer hds= 32 taps. This channel is

the one that introduces the largest distortion and the largest eigen-
value spread among the three examples shown here. The relative

performance of the MS algorithm to the RLS algorithm is about
the same as in Figures 3 and 4, while the performance of the LMS
algorithm was even more degradated.

5. FINAL REMARKS

We presented an analysis of the performance of the multi-split
LMS algorithm. Our analysis is different from the one presented
in [4] in the sense that we consider the linearly-constrained ap-
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Fig. 5. Ensemble mean square error versus the number of itera-
tions - 2kft-AWG26 HDSL channel - N=32.

proach proposed in [1], and that we compare its performance with
the LMS and the RLS algorithms.

It was shown that the multi-split operation increases the diag-
onalization factor of the input signal autocorrelation matrix, allow-
ing us to perform an estimation of its eigenvalues from the input
data. Based on this eigenvalues estimation we view the multi-split
LMS algorithm as a power-normalized time-varying step-size al-
gorithm.

For the special case &f = 2 coefficients, we showed that the
multi-split and the Newton LMS algorithms are equivalent. Sim-
ulation results validate our analysis and confirm that the perfor-
mance of the multi-split LMS is in between the RLS and the LMS
algorithms.

The presented analytical approach provides additional insight
into how the multi-split operation improves the performance of the
LMS algorithm, justifying its choice as a powerful low complexity
updating algorithm for adaptive filters.
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