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ABSTRACT

This paper presents an analysis that justifies the improved per-
formance of the multi-split LMS algorithm. It is shown that in-
stead of reducing the eigenvalue ratio, the multi-split operation
increases the diagonalization factor of the transformed input sig-
nal autocorrelation matrix, which assists the power normalized and
time-varying step-size LMS algorithm used for updating the sin-
gle parameters independently. Case studies and simulation results
enable us to evaluate the improved performance of the multi-split
LMS algorithm.

1. INTRODUCTION

Owing to its simplicity and robustness, the standard LMS algo-
rithm is one of the most widely used algorithms for adaptive sig-
nal processing. Unfortunately, its performance in terms of con-
vergence rate and tracking capability depends on the eigenvalue
spread of the input signal autocorrelation matrix [3]. Transform
domain LMS algorithms, like DCT and DFT, which reduce such
a spread, have been used to solve this problem at the expense of a
high computational complexity [2].

A low computational burden multi-split preprocessing of the
input data vector has also been proposed for improving the perfor-
mance of the LMS algorithm [1, 4]. After preprocessing, the adap-
tive FIR filter is realized as a set of zero-order filters connected in
parallel, and with each single parameter independently updated.

Our contribution in this paper is to show that, instead of re-
ducing the eigenvalue spread, the multi-split operation increases
the diagonalization factor of the transformed input signal autocor-
relation matrix. This fact leads us to assert that the improved per-
formance of the multi-split LMS algorithm is due to its individ-
ual and independent updating characteristic by means of a power-
normalized and time-varying step-size LMS algorithm.

In Section 2 we briefly present the multi-split LMS prepro-
cessing using the linearly-constrained approach proposed in [1],
and investigate its effect on the eigenvalue spread of the input data
autocorrelation matrix. In Section 3, we consider a diagonalization
factor measure and show that the multi-split operation allows us to
perform an eigenvalue estimation and a subsequent step-size opt-
mization. We also show that, in the particular case of a filter with
only two coefficients, the multi-split LMS algorithm corresponds
to the Newton LMS algorithm. In Section 4 we present simulation
results that validate our analysis. Finally, in Section 5 we draw
some final remarks.

2. MULTI-SPLIT LMS ALGORITHM

Consider the classical scheme of an adaptive transversal filter whose
coefficients are represented by the� � � vector� ���, where
� � �� . Without loss of generality, all the parameters are as-
sumed to be real. Applying the multi-split operation as defined
in [1], we arrive, after M steps with���� splitting operations
�� � �� �� � � � ���, at the multi-split scheme shown in Figure 1,
where��� and��� are������ � ���� matrices, and	��,
for 
 � �� �� � � � � � � �, represent the single parameters of the
resulting zero-order filters.
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Fig. 1. Multi-split adaptive filtering.

The above multi-split scheme can be viewed as a linear trans-
formation of the input data���� denoted by:
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is a non-singular matrix, and� � � � � �� � 
. The columns of
� can be permuted in order to re-arrange the single parameters of
Figure 1. One of these permutations is obtained by making:
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for � � �� �� � � � �� , where� is the reflection matrix. Applying
(3) to (2), we get a linear transformation of���� with a butterfly
structure that is very suitable for VLSI implementation [1].

The autocorrelation matrix of��,����� , regardless of the
transformation� in use, can be written as a function of the auto-
correlation matrix of�,��� , as:

E��� ���
�� � E�� � �� ��� � � �

� �� � ��� � E�� ���� � ��
(4)

Thus,
����� � �� � ��� ���� � �� (5)

The matrix� � ��� � ��� � � is said to be similar to��� ,
where� is a similarity transformation [6]. As a consequence:
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� 	
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(6)

which means that matrix� has the same characteristic equation
and the same eigenvalues as��� . Therefore:

�������� � �� � ������� (7)

where���� denotes the eigenvalue diagonal matrix of�. Based
on (7) we can say that the multi-split operation does not affect the
eigenvalue spread of the input data correlation matrix.

According to [3], (7) reflects in the geometric ratios of the
learning curves of the LMS algorithm. The ratios for the classical
algorithm are given by:

�� � �� �� � ��� (8)

for 
 � �� � � � � � � � �, where� is the step-size parameter, and
convergence is guaranteed if [3]:

� � � �
�

���	
� (9)

Based on this and taking into account that the multi-split adaptive
scheme has� filters with only one coefficient, we have:

��� � �� ������� � ��� (10)

and convergence for each filter is guaranteed if:

� � ��� �
�

�� � ��
� (11)

Perfect knowledge of the eigenvalues in (7) allows us to optimize
the choice of��� for each one of the� single coefficient filters.
In [1] the authors proposed, without further analysis, the applica-
tion of a power-normalized version of the LMS algorithm indepen-
dently for each single coefficient:

	����� � 	����� �� 
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������
���������� (12)

where�� is a constant step-size,���� � ����� ����,
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and:
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� � ������� ���� (14)

for 
 � �� �� � � � � � � �. When the autocorrelation matrix of��
is diagonal, the eigenvalues can be perfectly estimated, and the
step-sizes (11) can be independently optimized. In this case, the
multi-split LMS algorithm performas as well as the Newton LMS
algorithm [3]. We analyze this case in the next section.

3. DIAGONALIZATION ANALYSIS

Consider a filter� ��� with only 2 coefficients. To perform the
multi-split operation in this case, we can apply the transformation:
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to the input vector����, whose autocorrelation matrix is

��� �
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�
� (16)

where��� � ��� and��� � ���. Then, the autocorrelation matrix
of the split vector����� � � � ����� is
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The eigenvalues of the matrix����� are�� � ������
���� and
�� � � � ���� � ����, which is the same as the power in each tap
of �����. Thus, equation (14) actually estimates the eigenvalues
of ����� , which, in matrix form, is:
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Then, the updating equations (12) can be also written in matrix
form as:

����� ������ �� 
 �� ��
������������ (19)

Note that, since in this case�� is a perfect estimate of the auto-
correlation matrix, equation (19) is the same as the Newton LMS
updating equation [3].

When the number of coefficients in the filter� ��� is increased
to the next powers of 2, the autocorrelation matrix����� is not
diagonal. It has the form:
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� (20)

where� � ���, and the eigenvalues of����� are the combi-
nation of the eigenvalues of� and�, since����� can be written
as the direct sum� � � [6]. Even though matrix����� is not
diagonal, itsdiagonalization factoris increased. The diagonaliza-
tion factor is defined in [4] as:

�������� �
trace��������

�elements of����� � � trace�������
�

(21)
In this case, equation (19) is an approximation of the Newton
LMS. The closeness of this approximation can be measured by the
increase in the diagonalization factor produced by the multi-split
operation.

Theorem of the Circle of Gerschgorin [6]:Each eigenvalue�
(real or complex) of a matrix�, ���, satisfies at least one of the
inequalities:
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(22)
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Thus, increasing the trace of the matrix����� by a factor that is
larger than the increase of the sum of the module of the elements
not in its main diagonal, increases the accuracy of the eigenvalues
estimate given by equation (14). That is exactly the effect of the
multi-split operation, as can be seen from comparing the diagonal-
ization factor of��� and����� .

In the case of� � �, the autocorrelation matrix��� is

�
��
��� ��� ��� ���
��� ��� ��� ���
��� ��� ��� ���
��� ��� ��� ���

�
�� �

Suppose that����� � ����� � �����. Then, due to theTheorem of
the Circle of Gerschgorin, the minimum error on the estimate of
the eigenvalues given by the main diagonal of��� is given by:

�� � �����
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 ������ (23)

The autocorrelation matrix����� is
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and the error on the estimate of the eigenvalues given by the main
diagonal of����� are at most:

��� � �� ���� � ����� (24)

for 
 � �� �� �� �. While the eigenvalues of����� are�� times
larger than the eigenvalues of��� , the estimation error of��, in
the worst case, is twice the estimation error of�. So, the efficiency
of the estimate given by equation (14) is considerably increased.

Example 1: Consider a similar case as the one in the Example
of Figure 6.2 from [3, Chapter 6], where the input signal is���� �
�������� �, the desired response is���� � ���������� �, the
filter � ��� has four coefficients, the power of the random signal
added to���� in the input of the filter is! � ����, and � ��
samples per signal cycle. Then, the autocorrelation matrix of the
input vector���� has diagonalization factor:

� �
����

�����
� ������

Applying the multi-split operation to the input vector���� yields
the split input vector�����, whose autocorrelation matrix has
diagonalization factor:

�� �
����

�����
� �����

Thus, the diagonalization factor was increased by more than 8
times, and, according to theTheorem of the Circle of Gercshgorin,
the accuracy of the estimate given by equation (14) was also con-
siderably increased.

When� " �, the analysis is not so simple, and it becomes
tedious to analyze each case individually. But making use of equa-
tion (20), it can be shown that the split operation also increases the
diagonalization factor for� " �. It is also important to note that
the improvement in the diagonalization factor� is also a function
of the amount of correlation in����. In order to explore this idea,
let us consider the following example.

Example 2: Consider that���� is the output of the 2kft-
AWG26 HDSL channel as presented in [5], when the input is a
random signal with unit variance and zero mean, and� � �. The
autocorrelation matrix of���� has diagonalization factor:

� �
�����

����
� �����

while the autocorrelation matrix of vector����� has diagonaliza-
tion factor:

�� �
�����

�����
� �����

Here, the diagonalization factor was increased���� times, also
improving considerably the estimate on the eigenvalues given by
equation (14), but by a smaller factor than the improvement in Ex-
ample 1. Note also that� here is���� times greater than in Exam-
ple 1.

In the next section we will present simulations showing that
the performance of the multi-split LMS algorithm can be seen as
half-way between the classical LMS and the RLS algorithm per-
formances. We use the RLS algorithm in the simulations since it
can be considered as a stochastic approximation of the iterative
deterministic Newton algorithm [7].

4. SIMULATION RESULTS

Now we make use of simulations to compare the performances of
the Multi-Split LMS (MS), the classical LMS and the RLS algo-
rithms.

In the following simulations, we consider an adaptive system
as the one in Figure 2, where the channel input is binary, with
���� � 	�, and#��� is an additive noise with variance$�
 �
�����.

equalizerb(n)
channel

delay

v(n)

e(n)
adaptive

Fig. 2. Adaptive equalizer

In Figures 3, 4, and 5 we compare the ensemble mean square
error (MSE) performances of the LMS, the MS and the RLS algo-
rithms, when applied to the minimization of the estimation error in
Figure 2, for three different channels. The step-sizes� and��, for
the LMS and the MS algorithms, respectively, were set to���� .

In the first two cases we considered the raised cosine channel
[2] with coefficients described by:

%� �



�

�

	
� 
 ���

	
��
�

�& � ��



� & � �� �� ��

�� otherwise
� (25)

where' controls the eigenvalue spread( of the autocorrelation
matrix of the channel input vector����, and� is the number of
tap-weights of the equalizer.

Figure 3 presents the ensemble MSE when' � ��� and� �
�, and Figure 4 presents the case where' � ��� and� � �. The
poorer performance of the LMS algorithm in Figure 3 compared
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Fig. 3. Ensemble mean square error versus number of iterations.
Raised cosine channel -'=2.9, N=8.
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Fig. 4. Ensemble mean square error versus the number of itera-
tions. Raised cosine channel -'=3.5, N=8.

with Figure 4 is due to the increase in the eigenvalues spread(
[2]. We can also observe that the performance of the MS algorithm
relative to the RLS algorithm did not suffer from the increase in the
eigenvalue spread.

In Figure 5 we considered the 2kft-AWG26 HDSL channel
presented in [5]. The equalizer has� � �� taps. This channel is
the one that introduces the largest distortion and the largest eigen-
value spread among the three examples shown here. The relative
performance of the MS algorithm to the RLS algorithm is about
the same as in Figures 3 and 4, while the performance of the LMS
algorithm was even more degradated.

5. FINAL REMARKS

We presented an analysis of the performance of the multi-split
LMS algorithm. Our analysis is different from the one presented
in [4] in the sense that we consider the linearly-constrained ap-
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Fig. 5. Ensemble mean square error versus the number of itera-
tions - 2kft-AWG26 HDSL channel - N=32.

proach proposed in [1], and that we compare its performance with
the LMS and the RLS algorithms.

It was shown that the multi-split operation increases the diag-
onalization factor of the input signal autocorrelation matrix, allow-
ing us to perform an estimation of its eigenvalues from the input
data. Based on this eigenvalues estimation we view the multi-split
LMS algorithm as a power-normalized time-varying step-size al-
gorithm.

For the special case of� � � coefficients, we showed that the
multi-split and the Newton LMS algorithms are equivalent. Sim-
ulation results validate our analysis and confirm that the perfor-
mance of the multi-split LMS is in between the RLS and the LMS
algorithms.

The presented analytical approach provides additional insight
into how the multi-split operation improves the performance of the
LMS algorithm, justifying its choice as a powerful low complexity
updating algorithm for adaptive filters.
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