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ABSTRACT

The Output Error method, afundamental technique for the up-
dating of the coefficients of an adaptive IIR filter, is modified by
introducing a time varying step size. The adaptation of this term
is based on a gradient descent technique. This scheme can be con-
sidered as an extension of the algorithms presented in [1] and [2]
to IIR filters. The novel agorithm does not require any a priori
knowledge of the statistical characteristics of the input signal and
the unknown channel, since its step size converges automatically
to its optimal value. This algorithm has the ability to converge in
time-varying environments, which makesit suitable for processing
of nonstationary signals.

1. INTRODUCTION

Adaptive filters attempt to adjust their coefficients, so as to ap-
proximate a desired signal with their output, in terms of a prede-
fined distance function. In order to guarantee the existence of ex-
tremes, this function, often referred to as cost function, is usually
an even function. The most common cost function is the second
order norm (Euclidean distance). Minimizing the square of the
£2 norm of the error, defined as the difference between the output
of the adaptive filter and the desired response results in the Least
Squares (L S) solution. Denoting by E{e} the statistical expecta-
tion operator, by d(n) the desired response and by y(n) the output
of the adaptive filter at time instant » this cost function is usualy
givenby J(n) = 3E{e’(n)} = $E{(d(n) — y(n))*}. In prac-
tice the computation of the expectation is not feasible. Thus, real
time implementations aim to minimize the instantaneous squared
error

J(n) = £¢*(n) = £ (d(n) ~ y(n))? @

instead of the ensemble average of the squared error. A represen-
tative of this class of algorithmsisthe Least Mean Square (LMS),
a steepest descent iterative algorithm, that asymptotically tends to
the Wiener-Hopf solution. Its updating equation is given by

O(n+1) = O(n) + p(n)e(n)®(n) @
with ®(n) = [Bo(n),O1(n),...,0n_1(n)]", and &(n) =
[z(n),z(n — 1),...,z(n — N + 1)]” the parameters and the
regressor vector respectively, when adaptive Finite Impulse Re-
sponse (FIR) filters are used. The output of the adaptive filter at
timen isgivenby y(n) = @7 (n)®(n). Initssmplest formLMS
employs a constant, time invariant step size. This scheme though,
reguires a priori  knowledge about the signal and the system pa-
rameters, in order to set the step size close to its optimum value.
Also, in the case of signals or systems with time varying statistical
characteristics, the optimal step size istime varying, and it cannot
be approximated by a constant learning rate.
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Severa approaches that attempt to overcome this problem,
have been proposed, especiadly for FIR filters. The most common
is the Normalized LMS (NLMS) agorithm [3], that succeeds the
maximum possible minimization for agiven gradient direction, by
minimizing the a posteriori along with the a priori error. Alter-
natively, algorithms that employ variable step size can be applied
[1, 2, 4]. These can converge when applied to non-stationary sig-
nals, at the expense of increased computational complexity.

The situation is more complicated for adaptive Infinite Im-
pulse Response (IIR) filters. In this case, normalization of the step
size improves the performance only when the Equation Error (EE)
method is used for the updating of the filter’s coefficients. For the
Output Error (OE) technique, normalizing the step size does not
necessarily improve the convergence behavior, since in this case
the adaptation error is not a linear function of the coefficient error
[5, 6]. Thus, in this case a way to cope with time varying envi-
ronments is to apply algorithms with trainable step sizes. In this
paper such an algorithm, with time varying step size, isintroduced,
called Adaptive Step Size Output Error (ASSOE).

2. ADAPTIVE STEP SIZE LEAST MEAN SQUARE
ALGORITHM

In order to cater for the usual independence assumptions, and to
enable the LMS algorithm to adjust its step size according to the
input signa’s dynamics, a gradient adaptive step size that is up-
dated every timeinstant n, according a steepest descent technique,
can be applied. The update equation for the learning rate p(n) is
given by

:u/(n + 1) = /’L(n) - vaJ(n)\p,:p.(n—l)~ (3)
The cost function J(n) is given in (1). Hence the gradient of the
right hand side of equation (3) is

00(n)
Dl — 1)’ @
Utilizing the update equation of the parameters of the adaptive FIR
filter (2), and taking into account the dependence of the coeffi-
cients vector ®(n — 1) and the error e(n — 1) on the step size
wu(n — 1), the gradient of the right hand side of equation (4) be-
comes

V,.J(n) = —e(n)®" (n)

00 (n)
op(n — 1)

(1= — 1@ T(n 1) 22 -1

= (1 w(n — )®(n — 1)@" (n 1)) Bain T
+e(n—1)®(n—1).

©)

Neglecting the partial derivative 0@(n — 1)/pu(n — 1) in the

right-hand-side of eguation (5), results in a biased estimate of
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the gradient 9@ (n)/u(n — 1), since both variables ®(n — 1)
and p(n — 1) depend on previous values of the learning rate
(w(n — 1), 1 = 2,3,...), but it relaxes significantly the compu-
tational complexity [2]. Since the parameter p, that is used for
the adaptation of the learning rate p.(n), is usually very small and
w(n — 1) = p(n — 2), the hypothesis 0@ (n — 1) /0u(n — 1) ~
90(n —1)/0u(n — 2) holds. Dencting the partial derivative
00(n)/ou(n — 1) by Y (n), thefollowing recursive formula can
be derived [1]:

Y(n) =\ (1 —uln—1)®n—1)8" (n — 1)) Y(n—1)
+e(n—1)®(n—1),

(6)

where X\ is a multiplicative constant that compensates for
any difference between 9@ (n — 1)/0u(n —1) and 9@ (n —
1)/0u(n —2). The use of a constant instead of a time vary-
ing term A is a compromise, but adapting A as well would re-
sult in a very complicated and computationally complex ago-
rithm. Simulations show that computation of the gradient X' (n) =
90(n)/0u(n — 1) withthe recursive formulapresentedin (6) im-
proves significantly the performance of the adaptive step size al-
gorithm presented in [2], especially when X is close to unity.

3. THE PROPOSED ADAPTIVE STEP SIZE
ALGORITHM FOR IIR FILTERS

Vector Definitions
O(n)=[ai(n),...,an-1(n),bo(n),... ,bM_l(n)]T

Po(n)=[yo(n —1),...,yo(n — N +1)
sx(n), ..., x(n — M4+ 1)]7
e(n)=lys(n—1),..,yr(n = N+1)

sxp(n), ..., xp(n—M+1)]7
Output Error Algorithm

5o (1)=07 (), (n)

co(m)=d(n) — yo(n)

w5 (n)=r(n) + 2} an(n)as(n —m)

o(n)=0 () o ()

7 (m)=yo(n) + 10 an (n)ys (n —m)
O(n+ 1)=8(n) + p{n)eo(n)e(n)

Table 1. The Output Error method.

Applying the ideas of the previous section to Infinite Impulse
Response (IIR) filters, algorithms with trainable step size for re-
cursive adaptive filters can be developed. Adaptive step size algo-
rithms can be applied to both Equation Error (EE) and Output Er-
ror (OE) methods [6]. This section deals only with the the Output
Error update technique, which can not be straightforwardly nor-
malized like the Equation Error, since in this case the adaptation
error isnot linearly dependent on the coefficient error [7].

The Output Error method is summarized in Table 1. The fil-
tered regressor vector ®¢(n) is an estimate of the gradient of the
output signal with respect to the coefficients of the adaptive IIR
filter Veyo(n), which isused for their updating [5].

In the standard Output Error method the step size u(n) is as-
sumed to be constant. Applying an adaptive step size enables the
IR filter to converge even for nonstationary input signals, since it

automatically adjusts to the changes of the environment, provided
that the filter operates inside the region of stability.

A steepest descent scheme is adopted for the adaptation of
the learning rate [8] (equation (3)), that attempts to minimize
the squared error (1). The gradient of the cost function with re-
spect to the step size 9J(n)/du(n — 1) isgiven by (4). Denoting
00 (n)/du(n — 1) by Y (n), and expressing ©(n) as afunction
of ®(n — 1) and u(n — 1) (Teble 1) yields

00(n)  00(n—-1)
ou(n—1)  dpu(n —1)

+un=1) (@20 - DAY

Y(n) 2 +e(n—1)Pe(n—1)

OPs(n —1)
+e(n—1) onin—1)
Following similar considerations with the FIR case, the partial
derivative of theerror e(n—1) with respect to the step size u(n—1)
isfound to be

de(n — 1)

00(n —1)
op(n —1)

= —un=1)@e(n-1)®:" (n—1) 50—

- (M

Contrary to the FIR case, the gradient of the regressor vector
P¢(n — 1) with respect to the learning rate p(n — 1) is not zero,
and it can be analyzed as follows

0®r(n—1) 0Pr(n—1)00(n—1) ®)
ou(n—1)  90(n—1) du(n —1)
Assuming that the adaptation parameter p for the updating

of the step sizes is sufficiently small, justifies the assumption
00(n—1)/0u(n — 1) = 00 (n — 1) /0u(n — 2). Hence

Y(n) =AC(n—1)— Au(n —1)®s(n — )& (n—1)Y(n—1)
OPs(n—1)

+ Ap(n—1e(n —1) 901 —1)

Y(n-1)
+e(n—1)Pe(n—1)
9

The multiplicative term X is introduced in order to compen-
sate for any difference between 9©(n —1)/0u(n —1) and
00(n —1)/0u(n —2). The effect of this parameter is cru-
cia since it controls the memory of the algorithm. The gradi-
ent 90®¢(n — 1)/00(n — 1) is a matrix whose (7, j) element is
the partial derivative of the i-th element of the regressor vec-
tor ®¢(n — 1) with respect to the j-th element of the param-
eters vector ®(n — 1), both defined in Table 1. Denoting this
(N+M—1)x (N+M —1) square matrix by D(n), with N — 1
the number of poles and M — 1 the number of zeros of the IIR
filter, yields

=E(n Z(n
D(n) = { Xin)) ‘I,((n)) } ,where (10)
Ay (n—1) o dyy(n—1)
daq(n) dapn —1(n)
E(n) = : : ;o (1D
Qus(n=N+1)  Ous(n=N+1)
dai(n) dan_1(n)
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dys(n—1) . dys(n—1)
0bo(n) b —1(n)
zw=| i . | @
dyy(n—N+1) . dyy(n—N+1)
0bo(n) b —1(n)
dz s (n) o Oz f(n)
dai(n) dan_1(n)
X(n) = : : ,and (13)
9z (n—M+1) o 9z (n—M+1)
day(n) dan_1(n)
9z g (n) . dw g (n)
Bbg (n) Obps—1(n)
Y(n) = : : B
Oz p(n—M+1) Oz p(n—M+1)

The values of the quantities z;(n) and ys(n) were
defined in Table 1. Proceeding like the output error
method, where it is assumed that Jy(n —i)/dai(n) =
dy(n —1)/dai(n — 1), for 1,1 = 1,2,...,N — 1
and Jy(n —1i)/0bm(n) =~  Jy(n—1i)/Obm (n—z) for
i = 1,2,....N—1ladm = 1,2,...,M — 1, it can as
sumed that dys(n —i)/dai(n) =~ Jys(n —1i)/Oai(n —1),
Oz y(n — j)/9ar(n) ~ Oxy(n —j)/Oar(n — j),
Oys(n —i)/0bm(n) ~ dys(n —1)/Obm(n —1i) and
Oz y(n — 7)/0bm(n) ~  Ozy(n—73)/0bm(n—7j), for
il = 1,2,...,N —1ad jm = 1,2,...,M — 1.
Denoting by &i(n) the term dys(n)/dai(n), by (i(n)
the quantity dyy(n)/dbi(n), Ozy(n)/dai(n) by xi(n)
and Oys(n)/0bi(n) by 1(n), and observing from Ta

)

ble 1 that yr(n) = y(n) + SV ai(n)ys(n — i) and
27(n) = o(n) + 275 as(n)es (n — 1), yields
i) 2 G — g0 1) + Ng a(me(n—) (19
) & %Z;‘((:)) — 2 (n—1)+ Tg a(m)Ci(n—i)  (16)
) 2 G0 o)+ N almpa(n—i) (7)
) & 200 5y (19

Without loss of generality it can be assumed that v;(n) = 0 for
n < 0. Then from (18) +;(n) = 0 for every n. Furthermore, from
equations (17) and (16), and assuming that x;(n) = ((n) = 0
for n < 0 itisconcluded that x;(n) = ((n) for every n, thus
X(n) = Z™(n). Findly it can be assumed that & (n) = &o(n —
1) £ &(n—1)and ¢i(n) = Co(n —1) = ((n —1). Applying those
assumptions to the matrices defined in equations (11)—(14) gives

§(n—2) §(n—N)
E(n) = : : ,and  (19)
§(n—N) §(n—2N +2)

Cn—1) ((n— M)
Z(n) = ; - |
((n—N+1) ((n—N-M+1)
(20
where
M=y + Y wen -0 @
() =2y + 3 as(m)(n— 1) 22)

Thus the matrix D(n) finally becomes

_0®(n) _ | E(n) Z(n)
D(n) = 00(n) { Z"(n) Omxm } ' (23)

Updating the step size of the OE method according to equa-
tions (19)— (23) and (9), results in the Adaptive Step Size Output
Error (ASSOE) agorithm for adaptive IIR filters. This algorithm
can be seen as an extension of the Variable Step Size algorithms
from FIR to lIR filters. More specifically, for A = 0 thisagorithm
is an application of the algorithm presented in [2] to IR filters,
while for A = 1 ASSOE is the extension of the variable step size
scheme of [1] to lIR filters.

4. SIMULATIONS

The proposed algorithm was evaluated in a system identification
context. The unknown channel, depicted in Figure 1, was an IIR
filter with four poles and three zeros. The input signal was white
noise of zero mean and unit variance. The desired response was
contaminated with 60dB of measurement noise. To perform this
identification task, an | IR filter was employed, with numerator and
denominator order both set to ten. Notice that in adaptive IR fil-
ters, the order of the numerator must be at least equal to that of the
denominator [5]. The weights of the adaptive filter were updated
with the Adaptive Step Size Output Error (ASSOE) method. The
initial value of the adaptive step size was zero.The results were av-
eraged over an ensemble of 50 simulation runs. The performance
of the algorithm was evaluated for A = 1 and A = 0.

The impulse response of the unknown channel
T T T

o
=

Amplitude
o
R

—02b

-0.4F

-0.6
0

L L L L L
10 20 30 40 50 60
Time index n

Fig. 1. The impulse response of the unknown channel.
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Error Performance for the Output Error Method

Constant p=3+10"

MSE in dB
! | ]

itk
[
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Fig. 2. The dependence of the performance of the Adaptive Step
Size Output Error (ASSOE) technique on the multiplicative term
A

From Figure 2 it is observed that the larger the value of A
the faster the convergence of the agorithm (A € [0, 1]), which
was expected, since for values of A close to unity, the adaptive
step sizeis closer to the exact solution. This behavior can be also
justified from Figure 3, where it is depicted that a larger value for
A results in faster convergence, and in larger steady state value
to = lim, .o pu(n) for the adaptive step size.

The parameter p for A = 1 issetto 1077, whilefor A = 0,
p = 107°. These values were empirically chosen to be those
that provide the faster convergence under the constraint that the
system remains stable. When p is very small A should be cho-
sen close to unity, because in this case the difference between
00(n —1)/0u(n — 1) and 90 (n — 1)/0u(n — 2) isnegligible.
But while p increases \ decreases, since the distance between these
two gradientsincreases. Contrary to what was the case for FIR fil-
ters, the range of alowable values for the step size u(n) inthelIR
case depends on the unknown channel, a property that is inherited
to the parameter p as well. The reason for that behavior is that
the oscillation of the poles of the adaptive filter around their opti-
mum values, which depends on the value of the step size, should
be smaller than the distance of the unknown channel’s poles from
the unit circlein order for thisfilter to remain stable.

(10° The time-varying step size

sl
7+ \ A=1

o)

L L L L L L L L L |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time index n

Fig. 3. Theeffect of the multiplicativeterm A on thetime evolution
of the varying step size, for the Adaptive Step Size Output Error
(ASSOE) agorithm.

From Figure 2 observe that the convergence speed of the algo-
rithm changes suddenly after crossing the -20dB threshold. This
happens because the poles of the adaptive filter that are not used
in the identification of the poles of the unknown channel are can-
celled from its own zeros, a procedure that is usually very fast.
Thus when the zeros of the adaptivefilter "lock” on its extrapoles,
the convergence rate instantly changes. The performance of the
Output Error method, when constant step size is employed is also
shown in this figure. Applying a constant learning rate, under the
assumption that its optimum value is known performs slightly bet-
ter that the ASSOE algorithm, since the transition period required
for the adaptive step size to settle to its optimal value is avoided.
This is not a realistic situation though, since in practise usually
thereis no a priori information concerning the statistical charac-
teristics of the input signal and the unknown system, and thus the
optimum step size can be only empirically found. In the case of
signalswhose statistical propertiesvary with time (i.e. speech) and
there is no time-invariant optimum value for the step size, the AS-
SOE agorithm performs significantly better, since the step sizeis
adjusted according to the signal dynamics.

5. CONCLUSIONS

A gradient adaptive step size algorithm for IR adaptive filters has
been derived, by applying similar considerations to those that led
to the development of the Variable Step Size (V'SS) agorithms for
FIR filters. The problems that were encountered in the compu-
tation of the adaptive step size due to the existence of the recur-
sion have been overcome by introducing assumptions similar to
those used in the derivation of the Output Error method. The novel
Adaptive Step Size Output Error (ASSOE) algorithm, does not re-
quireany apriori knowledge, sinceits step size automatically con-
verges to its optimum value. This adaptive nature of the step size
enables this algorithm to converge in time-varying environments.
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