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ABSTRACT
The Output Error method, a fundamental technique for the up-

dating of the coefficients of an adaptive IIR filter, is modified by
introducing a time varying step size. The adaptation of this term
is based on a gradient descent technique. This scheme can be con-
sidered as an extension of the algorithms presented in [1] and [2]
to IIR filters. The novel algorithm does not require any a priori
knowledge of the statistical characteristics of the input signal and
the unknown channel, since its step size converges automatically
to its optimal value. This algorithm has the ability to converge in
time-varying environments, which makes it suitable for processing
of nonstationary signals.

1. INTRODUCTION

Adaptive filters attempt to adjust their coefficients, so as to ap-
proximate a desired signal with their output, in terms of a prede-
fined distance function. In order to guarantee the existence of ex-
tremes, this function, often referred to as cost function, is usually
an even function. The most common cost function is the second
order norm (Euclidean distance). Minimizing the square of the
�2 norm of the error, defined as the difference between the output
of the adaptive filter and the desired response results in the Least
Squares (LS) solution. Denoting by E{•} the statistical expecta-
tion operator, by d(n) the desired response and by y(n) the output
of the adaptive filter at time instant n this cost function is usually
given by J(n) = 1

2
E{e2(n)} = 1

2
E{(d(n) − y(n))2}. In prac-

tice the computation of the expectation is not feasible. Thus, real
time implementations aim to minimize the instantaneous squared
error

J(n) =
1

2
e2(n) =

1

2
(d(n) − y(n))2 (1)

instead of the ensemble average of the squared error. A represen-
tative of this class of algorithms is the Least Mean Square (LMS),
a steepest descent iterative algorithm, that asymptotically tends to
the Wiener-Hopf solution. Its updating equation is given by

Θ(n+ 1) = Θ(n) + µ(n)e(n)Φ(n) (2)

with Θ(n) = [Θ0(n),Θ1(n), . . . ,ΘN−1(n)]T , and Φ(n) =
[x(n), x(n − 1), . . . , x(n − N + 1)]T the parameters and the
regressor vector respectively, when adaptive Finite Impulse Re-
sponse (FIR) filters are used. The output of the adaptive filter at
time n is given by y(n) = ΘT (n)Φ(n). In its simplest form LMS
employs a constant, time invariant step size. This scheme though,
requires a priori knowledge about the signal and the system pa-
rameters, in order to set the step size close to its optimum value.
Also, in the case of signals or systems with time varying statistical
characteristics, the optimal step size is time varying, and it cannot
be approximated by a constant learning rate.

Several approaches that attempt to overcome this problem,
have been proposed, especially for FIR filters. The most common
is the Normalized LMS (NLMS) algorithm [3], that succeeds the
maximum possible minimization for a given gradient direction, by
minimizing the a posteriori along with the a priori error. Alter-
natively, algorithms that employ variable step size can be applied
[1, 2, 4]. These can converge when applied to non-stationary sig-
nals, at the expense of increased computational complexity.

The situation is more complicated for adaptive Infinite Im-
pulse Response (IIR) filters. In this case, normalization of the step
size improves the performance only when the Equation Error (EE)
method is used for the updating of the filter’s coefficients. For the
Output Error (OE) technique, normalizing the step size does not
necessarily improve the convergence behavior, since in this case
the adaptation error is not a linear function of the coefficient error
[5, 6]. Thus, in this case a way to cope with time varying envi-
ronments is to apply algorithms with trainable step sizes. In this
paper such an algorithm, with time varying step size, is introduced,
called Adaptive Step Size Output Error (ASSOE).

2. ADAPTIVE STEP SIZE LEAST MEAN SQUARE
ALGORITHM

In order to cater for the usual independence assumptions, and to
enable the LMS algorithm to adjust its step size according to the
input signal’s dynamics, a gradient adaptive step size that is up-
dated every time instant n, according a steepest descent technique,
can be applied. The update equation for the learning rate µ(n) is
given by

µ(n+ 1) = µ(n) − ρ∇µJ(n)|µ=µ(n−1). (3)

The cost function J(n) is given in (1). Hence the gradient of the
right hand side of equation (3) is

∇µJ(n) = −e(n)ΦT (n)
∂Θ(n)

∂µ(n− 1)
. (4)

Utilizing the update equation of the parameters of the adaptive FIR
filter (2), and taking into account the dependence of the coeffi-
cients vector Θ(n − 1) and the error e(n − 1) on the step size
µ(n − 1), the gradient of the right hand side of equation (4) be-
comes

∂Θ(n)

∂µ(n− 1)
=

(
1 − µ(n− 1)Φ(n− 1)ΦT (n− 1)

) ∂Θ(n− 1)

∂µ(n− 1)

+ e(n− 1)Φ(n− 1).

(5)

Neglecting the partial derivative ∂Θ(n− 1)/µ(n− 1) in the
right-hand-side of equation (5), results in a biased estimate of
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the gradient ∂Θ(n)/µ(n− 1), since both variables Θ(n − 1)
and µ(n − 1) depend on previous values of the learning rate
(µ(n − i), i = 2, 3, . . .), but it relaxes significantly the compu-
tational complexity [2]. Since the parameter ρ, that is used for
the adaptation of the learning rate µ(n), is usually very small and
µ(n − 1) ≈ µ(n − 2), the hypothesis ∂Θ(n− 1)/∂µ(n− 1) ≈
∂Θ(n− 1)/∂µ(n− 2) holds. Denoting the partial derivative
∂Θ(n)/∂µ(n− 1) by Υ(n), the following recursive formula can
be derived [1]:

Υ(n) =λ
(
1 − µ(n− 1)Φ(n− 1)ΦT (n− 1)

)
Υ(n− 1)

+ e(n− 1)Φ(n− 1),
(6)

where λ is a multiplicative constant that compensates for
any difference between ∂Θ(n − 1)/∂µ(n− 1) and ∂Θ(n −
1)/∂µ(n− 2). The use of a constant instead of a time vary-
ing term λ is a compromise, but adapting λ as well would re-
sult in a very complicated and computationally complex algo-
rithm. Simulations show that computation of the gradient Υ(n) =
∂Θ(n)/∂µ(n− 1) with the recursive formula presented in (6) im-
proves significantly the performance of the adaptive step size al-
gorithm presented in [2], especially when λ is close to unity.

3. THE PROPOSED ADAPTIVE STEP SIZE
ALGORITHM FOR IIR FILTERS

Vector Definitions
Θ(n)=[a1(n), . . . , aN−1(n), b0(n), . . . , bM−1(n)]T

Φo(n)=[yo(n− 1), . . . , yo(n−N + 1)
, x(n), . . . , x(n−M + 1)]T

Φf (n)=[yf (n− 1), . . . , yf (n−N + 1)
, xf (n), . . . , xf (n−M + 1)]T

Output Error Algorithm
yo(n)=ΘT (n)Φo(n)
eo(n)=d(n) − yo(n)

xf (n)=x(n) +
∑N−1

m=1 am(n)xf (n−m)
yo(n)=ΘT (n)Φo(n)

yf (n)=yo(n) +
∑N−1

m=1 am(n)yf (n−m)
Θ(n+ 1)=Θ(n) + µ(n)eo(n)Φf (n)

Table 1. The Output Error method.

Applying the ideas of the previous section to Infinite Impulse
Response (IIR) filters, algorithms with trainable step size for re-
cursive adaptive filters can be developed. Adaptive step size algo-
rithms can be applied to both Equation Error (EE) and Output Er-
ror (OE) methods [6]. This section deals only with the the Output
Error update technique, which can not be straightforwardly nor-
malized like the Equation Error, since in this case the adaptation
error is not linearly dependent on the coefficient error [7].

The Output Error method is summarized in Table 1. The fil-
tered regressor vector Φf (n) is an estimate of the gradient of the
output signal with respect to the coefficients of the adaptive IIR
filter ∇Θyo(n), which is used for their updating [5].

In the standard Output Error method the step size µ(n) is as-
sumed to be constant. Applying an adaptive step size enables the
IIR filter to converge even for nonstationary input signals, since it

automatically adjusts to the changes of the environment, provided
that the filter operates inside the region of stability.

A steepest descent scheme is adopted for the adaptation of
the learning rate [8] (equation (3)), that attempts to minimize
the squared error (1). The gradient of the cost function with re-
spect to the step size ∂J(n)/∂µ(n− 1) is given by (4). Denoting
∂Θ(n)/∂µ(n − 1) by Υ(n), and expressing Θ(n) as a function
of Θ(n− 1) and µ(n− 1) (Table 1) yields

Υ(n) � ∂Θ(n)

∂µ(n− 1)
=
∂Θ(n− 1)

∂µ(n− 1)
+ e(n− 1)Φf (n− 1)

+ µ(n− 1)

(
Φf (n− 1)

∂e(n− 1)

∂µ(n− 1)
+ e(n− 1)

∂Φf (n− 1)

∂µ(n− 1)

)

Following similar considerations with the FIR case, the partial
derivative of the error e(n−1) with respect to the step size µ(n−1)
is found to be

∂e(n− 1)

∂µ(n− 1)
= −µ(n−1)Φf (n−1)Φf

T (n−1)
∂Θ(n− 1)

∂µ(n− 1)
. (7)

Contrary to the FIR case, the gradient of the regressor vector
Φf (n − 1) with respect to the learning rate µ(n − 1) is not zero,
and it can be analyzed as follows

∂Φf (n− 1)

∂µ(n− 1)
=
∂Φf (n− 1)

∂Θ(n− 1)

∂Θ(n− 1)

∂µ(n− 1)
(8)

Assuming that the adaptation parameter ρ for the updating
of the step sizes is sufficiently small, justifies the assumption
∂Θ(n− 1)/∂µ(n− 1) ≈ ∂Θ(n− 1)/∂µ(n− 2). Hence

Υ(n) = λΥ(n− 1) − λµ(n− 1)Φf (n− 1)Φf
T (n− 1)Υ(n− 1)

+ λµ(n− 1)e(n− 1)
∂Φf (n− 1)

∂Θ(n− 1)
Υ(n− 1)

+ e(n− 1)Φf (n− 1)

(9)

The multiplicative term λ is introduced in order to compen-
sate for any difference between ∂Θ(n− 1)/∂µ(n− 1) and
∂Θ(n− 1)/∂µ(n− 2). The effect of this parameter is cru-
cial since it controls the memory of the algorithm. The gradi-
ent ∂Φf (n− 1)/∂Θ(n− 1) is a matrix whose (i, j) element is
the partial derivative of the i-th element of the regressor vec-
tor Φf (n − 1) with respect to the j-th element of the param-
eters vector Θ(n − 1), both defined in Table 1. Denoting this
(N +M −1)× (N +M −1) square matrix by D(n), withN −1
the number of poles and M − 1 the number of zeros of the IIR
filter, yields

D(n) =

[
Ξ(n) Z(n)
X(n) Ψ(n)

]
,where (10)

Ξ(n) =




∂yf (n−1)

∂a1(n)
· · · ∂yf (n−1)

∂aN−1(n)

...
. . .

...
∂yf (n−N+1)

∂a1(n)
· · · ∂yf (n−N+1)

∂aN−1(n)


 , (11)
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Z(n) =




∂yf (n−1)

∂b0(n)
· · · ∂yf (n−1)

∂bM−1(n)

...
. . .

...
∂yf (n−N+1)

∂b0(n)
· · · ∂yf (n−N+1)

∂bM−1(n)


 , (12)

X(n) =




∂xf (n)

∂a1(n)
· · · ∂xf (n)

∂aN−1(n)

...
. . .

...
∂xf (n−M+1)

∂a1(n)
· · · ∂xf (n−M+1)

∂aN−1(n)


 , and (13)

Ψ(n) =




∂xf (n)

∂b0(n)
· · · ∂xf (n)

∂bM−1(n)

...
. . .

...
∂xf (n−M+1)

∂b0(n)
· · · ∂xf (n−M+1)

∂bM−1(n)


 . (14)

The values of the quantities xf (n) and yf (n) were
defined in Table 1. Proceeding like the output error
method, where it is assumed that ∂y(n− i)/∂al(n) ≈
∂y(n− i)/∂al(n− i), for l, i = 1, 2, . . . , N − 1
and ∂y(n− i)/∂bm(n) ≈ ∂y(n− i)/∂bm(n− i), for
i = 1, 2, . . . , N − 1 and m = 1, 2, . . . ,M − 1, it can as-
sumed that ∂yf (n− i)/∂al(n) ≈ ∂yf (n− i)/∂al(n− i),
∂xf (n− j)/∂al(n) ≈ ∂xf (n− j)/∂al(n− j),
∂yf (n− i)/∂bm(n) ≈ ∂yf (n− i)/∂bm(n− i) and
∂xf (n− j)/∂bm(n) ≈ ∂xf (n− j)/∂bm(n− j), for
i, l = 1, 2, . . . , N − 1 and j,m = 1, 2, . . . ,M − 1.
Denoting by ξi(n) the term ∂yf (n)/∂ai(n), by ζi(n)
the quantity ∂yf (n)/∂bi(n), ∂xf (n)/∂ai(n) by χi(n)
and ∂yf (n)/∂bi(n) by ψi(n), and observing from Ta-
ble 1 that yf (n) = y(n) +

∑N−1
i=1 ai(n)yf (n − i) and

xf (n) = x(n) +
∑N−1

i=1 ai(n)xf (n− i), yields

ξl(n) � ∂yf (n)

∂al(n)
= yf (n− l) +

N−1∑
i=1

ai(n)ξl(n− i) (15)

ζl(n) � ∂yf (n)

∂bl(n)
= xf (n− l) +

N−1∑
i=1

ai(n)ζl(n− i) (16)

χl(n) � ∂xf (n)

∂al(n)
= xf (n− l) +

N−1∑
i=1

ai(n)χl(n− i) (17)

ψl(n) � ∂xf (n)

∂bl(n)
=

N−1∑
i=1

ai(n)ψl(n− i) (18)

Without loss of generality it can be assumed that ψl(n) = 0 for
n < 0. Then from (18) ψl(n) = 0 for every n. Furthermore, from
equations (17) and (16), and assuming that χl(n) = ζl(n) = 0
for n < 0 it is concluded that χl(n) = ζl(n) for every n, thus
X(n) = ZT (n). Finally it can be assumed that ξl(n) = ξ0(n −
l) � ξ(n− l) and ζl(n) = ζ0(n− l) � ζ(n− l). Applying those
assumptions to the matrices defined in equations (11)–(14) gives

Ξ(n) =




ξ(n− 2) · · · ξ(n−N)
...

. . .
...

ξ(n−N) · · · ξ(n− 2N + 2)


 , and (19)

Z(n) =




ζ(n− 1) · · · ζ(n−M)
...

. . .
...

ζ(n−N + 1) · · · ζ(n−N −M + 1)


 ,

(20)
where

ξ(n) = yf (n) +

N−1∑
i=1

ai(n)ξ(n− i) (21)

ζ(n) = xf (n) +

N−1∑
i=1

ai(n)ζ(n− i) (22)

Thus the matrix D(n) finally becomes

D(n) =
∂Φ(n)

∂Θ(n)
=

[
Ξ(n) Z(n)
ZT (n) 0M×M

]
. (23)

Updating the step size of the OE method according to equa-
tions (19)– (23) and (9), results in the Adaptive Step Size Output
Error (ASSOE) algorithm for adaptive IIR filters. This algorithm
can be seen as an extension of the Variable Step Size algorithms
from FIR to IIR filters. More specifically, for λ = 0 this algorithm
is an application of the algorithm presented in [2] to IIR filters,
while for λ = 1 ASSOE is the extension of the variable step size
scheme of [1] to IIR filters.

4. SIMULATIONS

The proposed algorithm was evaluated in a system identification
context. The unknown channel, depicted in Figure 1, was an IIR
filter with four poles and three zeros. The input signal was white
noise of zero mean and unit variance. The desired response was
contaminated with 60dB of measurement noise. To perform this
identification task, an IIR filter was employed, with numerator and
denominator order both set to ten. Notice that in adaptive IIR fil-
ters, the order of the numerator must be at least equal to that of the
denominator [5]. The weights of the adaptive filter were updated
with the Adaptive Step Size Output Error (ASSOE) method. The
initial value of the adaptive step size was zero.The results were av-
eraged over an ensemble of 50 simulation runs. The performance
of the algorithm was evaluated for λ = 1 and λ = 0.
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Fig. 1. The impulse response of the unknown channel.
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Fig. 2. The dependence of the performance of the Adaptive Step
Size Output Error (ASSOE) technique on the multiplicative term
λ.

From Figure 2 it is observed that the larger the value of λ
the faster the convergence of the algorithm (λ ∈ [0, 1]), which
was expected, since for values of λ close to unity, the adaptive
step size is closer to the exact solution. This behavior can be also
justified from Figure 3, where it is depicted that a larger value for
λ results in faster convergence, and in larger steady state value
µo = limn→∞ µ(n) for the adaptive step size.

The parameter ρ for λ = 1 is set to 10−7, while for λ = 0,
ρ = 10−5. These values were empirically chosen to be those
that provide the faster convergence under the constraint that the
system remains stable. When ρ is very small λ should be cho-
sen close to unity, because in this case the difference between
∂Θ(n− 1)/∂µ(n− 1) and ∂Θ(n− 1)/∂µ(n− 2) is negligible.
But while ρ increases λ decreases, since the distance between these
two gradients increases. Contrary to what was the case for FIR fil-
ters, the range of allowable values for the step size µ(n) in the IIR
case depends on the unknown channel, a property that is inherited
to the parameter ρ as well. The reason for that behavior is that
the oscillation of the poles of the adaptive filter around their opti-
mum values, which depends on the value of the step size, should
be smaller than the distance of the unknown channel’s poles from
the unit circle in order for this filter to remain stable.
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Fig. 3. The effect of the multiplicative term λ on the time evolution
of the varying step size, for the Adaptive Step Size Output Error
(ASSOE) algorithm.

From Figure 2 observe that the convergence speed of the algo-
rithm changes suddenly after crossing the -20dB threshold. This
happens because the poles of the adaptive filter that are not used
in the identification of the poles of the unknown channel are can-
celled from its own zeros, a procedure that is usually very fast.
Thus when the zeros of the adaptive filter ”lock” on its extra poles,
the convergence rate instantly changes. The performance of the
Output Error method, when constant step size is employed is also
shown in this figure. Applying a constant learning rate, under the
assumption that its optimum value is known performs slightly bet-
ter that the ASSOE algorithm, since the transition period required
for the adaptive step size to settle to its optimal value is avoided.
This is not a realistic situation though, since in practise usually
there is no a priori information concerning the statistical charac-
teristics of the input signal and the unknown system, and thus the
optimum step size can be only empirically found. In the case of
signals whose statistical properties vary with time (i.e. speech) and
there is no time-invariant optimum value for the step size, the AS-
SOE algorithm performs significantly better, since the step size is
adjusted according to the signal dynamics.

5. CONCLUSIONS

A gradient adaptive step size algorithm for IIR adaptive filters has
been derived, by applying similar considerations to those that led
to the development of the Variable Step Size (VSS) algorithms for
FIR filters. The problems that were encountered in the compu-
tation of the adaptive step size due to the existence of the recur-
sion have been overcome by introducing assumptions similar to
those used in the derivation of the Output Error method. The novel
Adaptive Step Size Output Error (ASSOE) algorithm, does not re-
quire any a priori knowledge, since its step size automatically con-
verges to its optimum value. This adaptive nature of the step size
enables this algorithm to converge in time-varying environments.
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