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ABSTRACT

In a previous paper we introduced an adaptive ARMA es-
timation method for time series with missing samples [1].
Due to the non-linearity of the optimization criterion in the
case of missing observations, the proposed method has led
to an LMS-like algorithm with a higher computational com-
plexity than the standard LMS. As many applications re-
quire very low complexity algorithms [2], the purpose of
the present paper is to introduce simplified versions of the
LMS adapted to the non-uniform sampling context. Both
waveform reconstruction performances and computational
costs are evaluated as a function of probability density of
the sampling process. Stationary and non-stationary con-
texts are considered.

1. INTRODUCTION

In many physical systems, signals are sampled in a deliber-
ately non-uniform manner. Such cases are found, for exam-
ple, for power saving or, more generally for data compres-
sion purpose. In these cases, samples are supposed to be
on a periodic frame, some of them being missing. Random
pattern of loss may be various depending on the applica-
tion: for instance, Bernouilli law (constant probability of
loss), or Markov law for packet-mode loss distribution. An
ARMA model being suitable for a large class of signals, an
ARMA identification process has been proposed in [1] for
time domain reconstruction or spectral estimation of such
non-uniformly sampled signals. In the present paper we
adopt a classical approximation approach in order to drasti-
cally reduce the computational burden of the standard LMS
for adaptive imbedded algorithms. This approach is applied
to the previous real-time ARMA identification method in
the case of missing observations. The outline of the paper
is as follows. In Sec. 2.1 a brief overview of the simpli-
fied variants of the LMS frequently used in adaptive filter-
ing applications, namely the signed-error and the sign-sign
LMS, is given. In Sec. 3 the algorithms derivation for non-
uniformly sampled signals (NUSS) is carried out and in Sec.
4 the resulting algorithms are applied to a synthetic ARMA

signal and then to a speech signal for a validation of our low
computational cost adaptive predictor.

2. BACKGROUND

2.1. Simplified LMS algorithms

For an ARMA(Na, Nb) adaptive predictor, the predicted sig-
nal ŷn is classically given by (eq. 1):

ŷn = θ>hn (1)

with: θ> = [θ>a θ>b ], h>n = [y>n e>n ],
and:




y>n = [yn−1, . . . , yn−Na ]

e>n = [en−1, . . . , en−Nb
]

θ>a = [a1, . . . , aNa ] AR parameters

θ>b = [b1, . . . , bNb
] MA parameters

(2)

The standard LMS algorithm is:




θa,n+1 = θa,n + µaenyn

θb,n+1 = θb,n + µbenen

(3)

Although standard LMS is computationally quite sim-
ple, there are always applications for which even (Na +Nb)
multiplications are too many. The introduction of sign op-
erators respectively on the prediction error and / or on the
information vector in the typical adaptive parameter update
kernel (eq. 3) leads to a drastic reduction in the computa-
tional load. This gives respectively the signed-error (eq. 4)
and the sign-sign LMS (eq. 5) algorithms [2][3][4]:





θa,n+1 = (1− α)θa,n + µasign (en) yn

θb,n+1 = (1− β)θb,n + µbsign (en) en

(4)





θa,n+1 = (1− α) θa,n + µasign (en) sign (yn)

θb,n+1 = (1− β)θb,n + µbsign (en) sign (en)
(5)
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Where theα andβ leakage factors are introduced to prevent
the instability of these algorithms in ideal use due to the
inclusion of sign operators [4].

2.2. NUSS LMS

In the case of missing samples, the problem may be written
as follows with a vector built with theL last samples in
order to approximate the mean square error using a sliding
window ofL samples, this approximation being well suited
for a large number of applications [1]:

ŷn+1,L = H>
n+1,Lθ, (6)

where:

Hn+1,L =




hn . . . hn−L

...
...

...
hn−Na+1 . . . hn−L−Na+1

hn − θ>hn . . . hn−L − θ>hn−L

...
...

...
hn−Nb+1

−θ>hn−Nb+1
. . .

hn−L−Na+1

−θ>hn−L−Nb+1




,

hn−j =





yn−j if samplen− j is known,

ŷn−j if samplen− j is lost,

hn =




hn−1

...
hn−Na

hn−1 − θ>hn−1

...
hn−Nb

− θ>hn−Nb




=
[

ha,n

hb,n

]
.

An LMS-like algorithm is built with a gradient opti-
mization formula to update the parameters when the sample
is available [1]:





θa,n+1 = θa,n − µa
∂Jn+1,L

∂θa

θb,n+1 = θb,n − µb
∂Jn+1,L

∂θb

(7)

Jn+1,L =
1
L

(
yn+1,L − ŷn+1,L

)> (
yn+1,L − ŷn+1,L

)

(8)
the involved matrices and derivatives being built in a recur-
sive way.

The main drawback of the NUSS LMS is its relatively
high complexity. Actually, the equations giving the gradient
lead to the following complexity per sample:





2 (N)3 + 2 (N)2 missing sample

3 (N)3 + 4 (N)2 + N available sample
(9)

Where:N = Na + Nb

3. NUSS SIMPLIFIED LMS ALGORITHMS

3.1. NUSS simplified LMS

The first step to reduce NUSS LMS complexity is to ne-
glect the dependence onθ of the H matrix in the compu-
tation of the derivatives. This approximation is justified in
non stationary context where the evolution of theθ parame-
ters leads to an inaccuracy in the contribution of the second
order terms inθ. Its application leads to the following for-
mula in place of the recursive derivation of the equations 7
and 8:





θa,n+1 = θa,n + µahb,n+1 (1) ha,n

θb,n+1 = θb,n + µbhb,n+1 (1) hb,n

(10)

The adopted approach allows a significant complexity re-
duction:





Na + Nb missing sample

2 (Na + Nb) available sample
(11)

3.2. NUSS sign family LMS

The second step to complete the previous complexity reduc-
tion, is to introduce the same sign operators as in the peri-
odic sampling case. The resulting adaptive update kernels
are given in equations (12) and (13) in which the use of sign
operators requires only bits sliding.

3.2.1. NUSS sign-error LMS





θa,n+1 = (1− α)θa,n + µasign (hb,n+1 (1)) ha,n

θb,n+1 = (1− β)θb,n + µbsign (hb,n+1 (1)) hb,n

(12)

3.2.2. NUSS sign-sign LMS





θa,n+1 = (1− α)θa,n + µasign (hb,n+1 (1)) sign (ha,n)

θb,n+1 = (1− β)θb,n + µbsign (hb,n+1 (1)) sign (hb,n)
(13)
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These approaches lead to very low complexity algorithms
the behavior of which is evaluated in the next section.

4. SIMULATION RESULTS

4.1. Tests signals

In order to evaluate and to compare the performances of the
proposed algorithms with the complete NUSS LMS algo-
rithm [1] in a stationary context, a low-pass ARMA (2, 2)
signal is considered. This signal is generated as the output
of an elliptic filter (passband rippleRp = 4dB, stopband
attenuationRs = 15dB and cut-off frequency:νc = 0.15).
The sampling scheme is defined as follows: each sample of
the uniformly sampled signal has the probabilityq = 1− p
of being lost (Bernouilli law). All simulations are carried
out with adaptation stepsµ satisfying the classical stability
conditions [1]:

0 < µaNaσ2
y + µbNbσ

2
e < 1 (14)

where : µ = [µa µb]
>, σ2

y being the signal variance
and σ2

e the prediction error variance. The performances
are also evaluated in a non-stationary context with various
speech signals.

4.2. Algorithms convergence

Preliminary studies of the algorithms convergence has shown
that the NUSS sign-sign LMS algorithm converges signif-
icantly more slowly than the others NUSS simplified LMS
algorithms. This may be seen with theθa (1) parameter in
figure 1 where the sameµa has been used for all the algo-
rithms. However, it may be noticed in figure 2 a very sim-
ilar behavior for all the algorithms when an adapted value
for µa is used. Moreover, the speed of convergence for
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Fig. 1. Original (—) and estimated parameters: NUSS simpli-
fied LMS (blue)(—), sign-error LMS (red)(-.-.-), sign-sign LMS
(green)(- - -) forp = 1
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Fig. 2. Original (—) and estimated parameters: NUSS simpli-
fied LMS (blue)(—), sign-error LMS (red)(-.-.-), sign-sign LMS
(green)(- - -) forp = 1

all algorithms is also depending on the probability of lost
samples as it may be seen in figures 3 and 4 which give
respectively the NUSS simplified LMS and the NUSS sign-
sign LMS mean square prediction error for different values
of the probabilityp.
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Fig. 3. Mean square error for the NUSS simplified LMS:p = 0.9
(-.-.-), p = 0.8 (...),p = 0.7 (- - -), p = 0.6 (—)

4.3. Time domain reconstruction

4.3.1. stationary context

Averaged values of signal to prediction noise ratios (evalu-
ated after the convergence delay of the algorithms) are pre-
sented in table1 for all algorithms and for different values
of probability p. Very similar performances are obtained
for the simplified algorithms. They are lightly below those
of the NUSS LMS for small densities of lost samples. For
higher densities, opposite results may be seen. This can
be explained by the increase of lost samples density which
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Fig. 4. Mean square error for the NUSS sign-sign LMS:p = 0.9
(-.-.-), p = 0.8 (...),p = 0.7 (- - -), p = 0.6 (—)

leads to an increase of cumulative errors in the iterative pro-
cess to compute the derivative of theH matrix.

p 0.9 0.8 0.7 0.6
NUSS LMS 21 16.3 12.6 9.4
NUSS simplified LMS 20.5 16 12.6 10
NUSS sign-error LMS 20.6 16 12.9 10.1
NUSS sign-sign LMS 20.5 16.1 12.6 10.1

Table 1: Signal-to-prediction noise ratio (dB).

The performances of the waveform reconstruction are
also very similar for the simplified algorithms. An example
of the quality of the signal reconstruction is given in figure
5 for the NUSS sign-sign LMS in the case where20% of
the samples are lost.
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Fig. 5. Original (—) and reconstructed (-.-.-) signal, missing sam-
ples (++) with the NUSS sign-sign LMS

4.3.2. non-stationary context

Number of simulations have been carried out to evaluate the
performances of the proposed algorithms for speech signals.
The results reported here come from the sentence: ”Mary
had a little lamb its fleece was white as snow”. As men-
tioned above, it may be seen in table 2, that in non-stationary
context, the performances of the NUSS LMS aren’t any-
more above those of the NUSS simplified LMS. It may be
noticed that at least both the NUSS simplified LMS and the
NUSS sign-error LMS are well suited for the ARMA iden-
tification of non uniformly sampled speech signals.

p 0.9 0.8 0.7 0.6
NUSS LMS 19.2 14.6 11.6 9.1
NUSS simplified LMS 19.1 14.8 11.8 9.4
NUSS sign-error LMS 18.9 14.6 11.4 9
NUSS sign-sign LMS 17.9 13.7 10.5 8.4

Table 2: Signal-to-prediction noise ratio (dB).

5. CONCLUSION

A significant reduction of the NUSS LMS algorithm com-
plexity, for similar performances, may be reached by the
proposed simplified versions. These algorithms may be used
for various applications as data compression. In a previous
work [6], it was shown that such algorithms are required in
ADPCM speech coders with adaptive transmission.
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