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ABSTRACT signal and then to a speech signal for a validation of our low

) ) ) computational cost adaptive predictor.
In a previous paper we introduced an adaptive ARMA es-

timation method for time series with missing samples [1].
Due to the non-linearity of the optimization criterion in the
case of missing observations, the proposed method has le
to an LMS-like algorithm with a higher computational com-
plexity than the standard LMS. As many applications re- Foran ARMA(N,, N;) adaptive predictor, the predicted sig-
quire very low complexity algorithms [2], the purpose of nalg, is classically given by (eq. 1):

the present paper is to introduce simplified versions of the . T

LMS adapted to the non-uniform sampling context. Both gn =10 "hy @)
waveform reconstruction performances and computational  ith: 7 = 0] 6],hl =y’ e,

costs are evaluated as a function of probability density of  gpq: ’

the sampling process. Stationary and non-stationary con-

2. BACKGROUND

% 1. simplified LMS algorithms

texts are considered. Yo = [Wn-1:-- Yn-n,]
e;[ = [enfl, ey en,Nb]
1. INTRODUCTION (2)
0] =lay,...,an,] AR parameters
In many physical systems, signals are sampled in a deliber-
ately non-uniform manner. Such cases are found, for exam- 0; = [b1,...,bn,] MA parameters

ple, for power saving or, more generally for data compres- ) .
sion purpose. In these cases, samples are supposed to be'e standard LMS algorithm is:
on a periodic frame, some (_)f them being missing. Rand_om Ount1 = 0o + patny,
pattern of loss may be various depending on the applica-

tion: for instance, Bernouilli law (constant probability of {
loss), or Markov law for packet-mode loss distribution. An

ARMA model being suitable for a large class of signals, an  Although standard LMS is computationally quite sim-
ARMA identification process has been proposed in [1] for Ple, there are always applications for which evaq ¢ Ny)
time domain reconstruction or spectral estimation of such multiplications are too many. The introduction of sign op-
non-uniformly sampled signals. In the present paper we €rators respectively on the prediction error and / or on the
adopt a classical approximation approach in order to drasti-information vector in the typical adaptive parameter update
cally reduce the computational burden of the standard LMS kernel (eq. 3) leads to a drastic reduction in the computa-
for adaptive imbedded algorithms. This approach is appliedtional load. This gives respectively the signed-error (eq. 4)
to the previous real-time ARMA identification method in and the sign-sign LMS (eq. 5) algorithms [2][3][4]:

3)
0b,n+1 - ab,n + Nbenen

the case of missing observations. The outline of the paper . .

is as follows. In Sec. 2.1 a brief overview of the simpli- Oansr = (1= a)0an + pasign (en) Yu @)
fied variants of the LMS frequently used in adaptive filter- 0 — (1= B) By + psign (en) &

ing applications, namely the signed-error and the sign-sign bt bin T HbSEIT L) En

LMS, is given. In Sec. 3 the algorithms derivation for non- Ouni1 = (1—0a)80u., + pasign (e,) sign (y,,)
uniformly sampled signals (NUSS) is carried out and in Sec. (5)
4 the resulting algorithms are applied to a synthetic ARMA { Opni1 = (1= B) 0y, + psign (en) sign (€,)
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Where thex andj leakage factors are introduced to prevent The main drawback of the NUSS LMS is its relatively
the instability of these algorithms in ideal use due to the high complexity. Actually, the equations giving the gradient
inclusion of sign operators [4]. lead to the following complexity per sample:

3 2 ‘s
29 NUSS LMS 2(N)"+2(N) missing sample o
In the case of missing samples, the problem may be written 3 (N)3 +4 (N)2 + N available sample
as follows with a vector built with thd. last samples in
order to approximate the mean square error using a indingWhere:N =No+ Ny
window of L samples, this approximation being well suited
for a large number of applications [1]: 3. NUSS SIMPLIFIED LMS ALGORITHMS

$oi1 = HLLLQ’ (6) 3.1. NUSS simplified LMS

The first step to reduce NUSS LMS complexity is to ne-

where: -
glect the dependence @hof the H matrix in the compu-
tation of the derivatives. This approximation is justified in
I hn e Bn—1, 7  non stationary context where the evolution of éhearame-
ters leads to an inaccuracy in the contribution of the second
' ' order terms ird. Its application leads to the following for-
h’”—NaTJrl e h”—L—JYra“ mula in place of the recursive derivation of the equations 7
Hn+1,L = hn —0 hn e p—r, — 0 hnfL » and 8:
’ ’ 0a,n+1 = Oa,n + ,Ufahb,n+1 (1) ha,n
hn—TNb—i-l hn—TL—Na,+1 (10)
=0 N1 0 hor-ny1 ] Ob.n+1 = Opn + pphpnp1 (1) Ny
yn_; if samplen — j is known, The _adopted approach allows a significant complexity re-
hp—j = duction:
Un—; ifsamplen — j is lost, N, + N, missing sample
(11)
- b . 2(N, + Np) available sample
N 3.2. NUSS sign family LMS
n—Ng ha,n . .
h, = he 1 —0Th, . = [ Ay } : The second step to complete the previous complexity reduc-
’ ' . tion, is to introduce the same sign operators as in the peri-
: odic sampling case. The resulting adaptive update kernels
L ftn-n, — 0 hyn, are given in equations (12) and (13) in which the use of sign

operators requires only bits sliding.
An LMS-like algorithm is built with a gradient opti-

mization formula to update the parameters when the sampl% 2.1. NUSS sign-error LMS
is available [1]: el

_ OJny1,L Ount1 = (1—-a) 040 + pasign (hb,n-&-l (1)) ham
0a,n+1 - aa,n - lffa 69
(7) Opni1=(1—05) 60y, + ppsign (Npni1 (1)) hpp
OJnt1,L (12)

0b,n+1 = 0b,7l - aeb

1 - 3.2.2. NUSS sign-sign LMS
Jnt1,L = I Vorz = Yns1.) Vosrn —Ynsir)

(8) O i1 =(1—0a)bun+ pasign (hypi (1)) sign (ha,rn)
the involved matrices and derivatives being built in a recur-
sive way. 0y n+1=(1—0)0p,, + ppsign (hy 41 (1)) sign (hy )
(13)
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These approaches lead to very low complexity algorithms
the behavior of which is evaluated in the next section.

4. SIMULATION RESULTS

4.1. Tests signals

Amplitude

In order to evaluate and to compare the performances of the
proposed algorithms with the complete NUSS LMS algo-

rithm [1] in a stationary context, a low-pass ARMA, ) o

signal is considered. This signal is generated as the output

of an elliptic filter (passband rippl&, = 4dB, stopband . ‘ ‘ ‘ ‘ ‘ ‘ ‘
attenuationR, = 15dB and cut-off frequencyr, = 0.15). e

The sampling scheme is defined as follows: each sample of__ o . o
the uniformly sampled signal has the probability= 1 — p Flg. 2. Original (—) a_nd estimated parameters: NUS$ simpli-
of being lost (Bernouilli law). All simulations are carried ¢4 LMS (blue)(—), sign-error LMS (red)(-.--), sign-sign LMS
out with adaptation steps satisfying the classical stability (green)(- - ) forp = 1

conditions [1]: B

all algorithms is also depending on the probability of lost
samples as it may be seen in figures 3 and 4 which give
respectively the NUSS simplified LMS and the NUSS sign-

o .. : .
where iy = [ua ], oy being the signal variance  gign | Ms mean square prediction error for different values
and ¢? the prediction error variance. The performances o the probabilityp.

are also evaluated in a non-stationary context with various
speech signals.

0 < ptaNaoy, + s Npo < 1 (14)

]T

4.2. Algorithms convergence °

Preliminary studies of the algorithms convergence has shown
that the NUSS sign-sign LMS algorithm converges signif-
icantly more slowly than the others NUSS simplified LMS
algorithms. This may be seen with thg (1) parameter in
figure 1 where the same, has been used for all the algo-
rithms. However, it may be noticed in figure 2 a very sim-
ilar behavior for all the algorithms when an adapted value
for u, is used. Moreover, the speed of convergence for

T B 1
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Fig. 3. Mean square error for the NUSS simplified LMS= 0.9
(---),p=08(..),p=0.7(---),p=0.6 (—)

Amplitude

4.3. Time domain reconstruction

4.3.1. stationary context

: | Averaged values of signal to prediction noise ratios (evalu-
ated after the convergence delay of the algorithms) are pre-
o e me o wwm W w10 o0 sented in tablé for all algorithms and for different values

of probability p. Very similar performances are obtained
Fig. 1. Original (—) and estimated parameters: NUSS simpli- for the simplified algorithms. They are lightly below those
fied LMS (blue)(—), sign-error LMS (red)(-.-.-), sign-sign LMS of the NUSS LMS for small densities of lost samples. For
(green)(- - -) forp = 1 higher densities, opposite results may be seen. This can
be explained by the increase of lost samples density which
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Fig. 4. Mean square error for the NUSS sign-sign LMS= 0.9

(=) p=08(.)p=0.7(---),p = 0.6 (—)

leads to an increase of cumulative errors in the iterative pro-
cess to compute the derivative of thematrix.

D 09 08 07 0.6
NUSS LMS 21 163 126 94
NUSS simplified LMS| 20.5 16 126 10
NUSS sign-error LMS| 20.6 16 129 10.1
NUSS sign-sign LMS | 20.5 16.1 12.6 10.1

Table 1: Signal-to-prediction noise ratio (dB).

The performances of the waveform reconstruction are
also very similar for the simplified algorithms. An example
of the quality of the signal reconstruction is given in figure
5 for the NUSS sign-sign LMS in the case whex®% of
the samples are lost.
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Fig. 5. Original (—) and reconstructed (-.-.-) signal, missing sam-
ples (++) with the NUSS sign-sign LMS

4.3.2. non-stationary context

Number of simulations have been carried out to evaluate the
performances of the proposed algorithms for speech signals.
The results reported here come from the sentence: "Mary
had a little lamb its fleece was white as snow”. As men-
tioned above, it may be seen intable 2, that in non-stationary
context, the performances of the NUSS LMS aren’t any-
more above those of the NUSS simplified LMS. It may be
noticed that at least both the NUSS simplified LMS and the
NUSS sign-error LMS are well suited for the ARMA iden-
tification of non uniformly sampled speech signals.

D 09 08 07 06
NUSS LMS 19.2 146 116 9.1
NUSS simplified LMS| 19.1 14.8 11.8 94
NUSS sign-error LMS| 189 14.6 114 9
NUSS sign-sign LMS | 17.9 13.7 105 8.4

Table 2: Signal-to-prediction noise ratio (dB).

5. CONCLUSION

A significant reduction of the NUSS LMS algorithm com-
plexity, for similar performances, may be reached by the
proposed simplified versions. These algorithms may be used
for various applications as data compression. In a previous
work [6], it was shown that such algorithms are required in
ADPCM speech coders with adaptive transmission.
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