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ABSTRACT

In this paper we present new online algorithms to estimate static
parameters in nonlinear non Gaussian state space models. These
agorithmsrely on online Expectation-Maximization (EM) type al-
gorithms. Contrary to standard Sequential Monte Carlo (SMC)
methods recently proposed in the literature, these algorithms do
not degenerate over time.

1 Introduction
1.1 State-Space Modelsand Problem Statement

Let {Xn},~and {Y,}, -, be R? and R%-valued stochastic pro-
cesses defined on a measurable space (Q, F) and 6 € © where ©
is an open subset of R*. The process { X, }, -, is an unobserved
(hidden) Markov process of initial density u;i.e. Xo ~ u, and
Markov transition density fy (x,z’); i.e.

Xn1| Xn =z~ fo(z,-). 1)

One observes the process {Yy. },,-,,. It is assumed that the obser-
vations are conditionally independent upon { X}, -, of marginal
density go (z,y);i.e.

Yol Xn =2~ go (z,-). 2

This class of models includes many nonlinear and non-Gaussian
time series models such as

Xn+1 = Po (Xn7 Vn+1) B Y, = w& (Xn7 Wn)

where {V,.}, ., and {W,.} ., areindependent sequences.

We assume here that the model depends on some unknown pa-
rameter denoted 6. The true value of 6 is6*. We are interested in
deriving recursive algorithms to estimate 6* for the class of sta-
tionary state-space models; i.e. when the Markov chain { X}, .
admits a limiting distribution. This problem has numerous appli-
cations in electrical engineering, econometrics, statistics etc. It
is extremely complex. Even if 8 was known, the simpler prob-
lem of optimal filtering, i.e. estimating the posterior distribution
of X, given (Y1,...,Y,), does not usually admit a closed-form
solution.

Further on we will denote for any sequence zx/random process
Zk Zij = (Zi, Zitlye - ,Zj) and ZZ';]' = (Zl7 Zz'+17 ey Z]) .
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1.2 ABrief Literature Review
121 Filtering methods

A standard approach followed in the literature consists of setting
aprior distribution on the unknown parameter 6 and then consid-
ering the extended state S,, 2 (X, #). This converts the param-
eter estimation into an optimal filtering problem. One can then
apply, at least theoretically, standard particle filtering techniques
[5] to estimate p (xn, 0| Yi:n) and thus p (0] Y1.»). In this ap-
proach, the parameter space is only explored at the initialization
of the algorithm. Consequently the algorithm is inefficient; after
afew iterations the marginal posterior distribution of the parame-
ter is approximated by a single delta Dirac function. To limit this
problem, several authors have proposed to use kernel density esti-
mation methods [13]. However, this has the effect of transforming
the fixed parameter into a lowly time-varying one. A pragmatic
approach consists of introducing explicitly an artificial dynamic on
the parameter of interest; see [10], [11]. To avoid the introduction
of an artificia dynamic model, an approach proposed in [8] con-
sists of adding Markov chain Monte Carlo (MCMC) steps so asto
add “diversity” among the particles. However, this approach does
not solve the fixed-parameter estimation problem. More precisely,
the addition of MCMC steps does not make the dynamic model
ergodic. Thus, thereisan accumulation of errors over time and the
algorithm can diverge as observed in [1]. Similar problems arise
with the recent method proposed in [16].

1.2.2 Recursive maximum likelihood

Consider the log-likelihood function
lo (Yin) = Z log </ go (xk, Yi) Do ($k|Y1:k-—1)d$k) . (3
k=1

where pg (zr|Y1:x—1) isthe posterior density of the state X, given
the observations Y1.,—1 and 6. Under regularity assumptions in-
cluding the stationarity of the state-space model, one has

o (Vi) = 1(0) @

where

=/ [ . ( [a@wn@ d:c) Moo (dy, dis)
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where P (R”) is the space of probability distributions on R” and
Ao,0+ (dy,dp) is the joint invariant distribution of the couple
(Yi,po (zx|Y1:k—1)). It is dependent on both 6 and the true pa-
rameter 6. Maximizing [ (8) corresponds to minimizing the fol-
lowing Kullback—L eibler information measure given by

K(6,6")21(67) —1(6) >0, 5)

To optimize this cost function, Recursive Maximum Likelihood
(RML) is based on a stochastic gradient algorithm

9n+1 = 0n+’7nvlog (/ €0, (xnvyn)pelzn (mnlylinfl)dx") .

Thisrequiresthe computation of pe,.,, (z»|Y1:n—1) anditsderiva-
tives with respect to 6 using the parameter 6, at time k& where
Do1... (Tn|Y1:n—1) denotesthe predictive distribution computed us-
ing parameter 6y, at time k. Thisis the approach followed in [12]
for finite state-space HMM and in [6] for general state-space mod-
els. Inthe general state-space case, the filter and its derivatives are
approximated numerically. This method does not suffer from the
problems mentioned above. However it is sensitive to initiaiza-
tion and in practice it can be difficult to scale the components of
the gradient properly.

1.2.3 OnlineEM algorithm

Another stochastic gradient type algorithm is based on an online
version of the EM. This approach is better from a practical point
of view asit is easy to implement and numerically well-behaved.
One can actually show that online EM corresponds to a Newton-
Raphson like algorithm; the difference being that the gradient is
not scaled by the information matrix but by the complete informa-
tion matrix. Online EM algorithms have been proposed for finite
state-space HMM and linear Gaussian state-space models; e.g. [7].

Itisformally possible to come up with asimilar algorithm for
general state-space models. However, it requires one to compute
quantities such as

Qn (el 9’) = EG/ (logpﬂ (l‘O:n, Yl:n)' Yl:n)
= Eor (log it (x0)| Yi:n) + 3 Eor (log fo (xr—1,2k)| Y1:n)
k=1

+ Z ]Eg/ (10g99 (mkv Yk)| Yl:n)
k=1

Itistrivialy possibleto estimate Q,, (0| ') using particle methods

asonegetsan estimate of thejoint posterior density po (z1:n| Yi:n)-

However, as n increases, only the approximation of marginal den-
sitiespg (Zn—r:n| Y1:n) for areasonablevalue of L, say L around
5, isgood for areasonable number of particles[5]. It seemsimpos-
sible to obtain a good approximation of Q,, (6] 0") with an online
algorithm as n increases. It is thus necessary to come up with an
alternative method.

1.3 Contributions

We propose here three new agorithms to address the problem
of recursive parameter estimation in general state-space models.
These algorithms rely on online EM type agorithms, namely on-
line EM, Stochastic EM (SEM) and Data Augmentation (DA). To
prevent the degeneracy inherent to all previous approaches (except
[6]), the key point of our paper is to modify the contrast function
to optimize. Instead of considering the likelihood function which

leads to (5), we will consider here the so-called split-data likeli-
hood (SDL) as originally proposed in [14], [15] for finite state-
space HMM. In this approach, the data set is divided in blocks of
say L data and one maximizes the average of the resulting log-
SDL. This leads to an aternative Kullback-Leibler contrast func-
tion. It can be shown under regularity assumptions that the set
of parameters optimizing this contrast function includes the true
parameter. An approach consists of using the Fisher identity to
obtain a gradient estimate. We will not discuss this approach here
and we will maximize the average log-SDL using online EM type
algorithms. As we work on data blocks of fixed dimension, the
crucia point is that there is no more degeneracy problem. More-
over, contrary to [6], [12], [15], these algorithms are numerically
well-behaved. An additional annealing schedule can also be added
to the DA agorithm to make it more robust to initialization.
Therest of this paper is organized asfollows. In Section 2, we
introduce the average log-SPL. In Section 3, we present three re-
cursive algorithms to optimize the resulting Kullback-Leibler con-
trast function and discuss the implementation issues. Finally in
Section 4, we present an application to stochastic volatility.

2 Split-data likelihood
The standard likelihood function of Y., 1, is defined by

nL

Lo (Y1:nr) = /,u(fﬂo) H fo (Tr—1,2k) 9o (zk, Yi) dToinL.

k=1

The SDL consists of dividing thedata Y.,z [1 n blocks of L data.
For each data block, the pseudo-likelihood Lo (Y{;—1)r+1:ir) IS
given by

/179 (Jf(i—l)L+1;iL7Y(i-l)L-u;iL) dw(i—1)L+1n‘L7 (6)

With P (@(i—1)p+1:i1, Yi—1)p+1:i2) €qual to

o (x(i—l)L+1) ge (-T(i—l)L+17 Y(i—l)L+1)
il

x II  fo(@e—1,2x) g0 (k, Vi), @)

k=(i—1)L+2
where 7y correspond to the invariant density of the latent Markov
process. The SDL corresponds to the product of the n pseudo-
likelihoods (6). It isimportant to remark that our algorithms will
require the knowledge of the analytical expression of thisinvariant
density up to a normalizing constant. Thisis a restriction. How-
ever, this density is known in many important applications; it is
satisfied for instance for al the examples addressed in [16].
We propose to maximize the average log-SDL

% ZZNG (Y(i—l)L+1:iL) — 7(9) @)

i=1
Whefe% (Y(i—l)LJflziL) £ log z/e (Y(i—l)L+1:iL) and

1(0) = /79 (Y1.) por (Y1.) dY1.1,

pe~ (Y1:1) corresponds to the invariant distribution of the obser-
vations under the true parameter 6*; i.e. thisis the marginal of
(7) for i = 1, 8 = 0*. Note the difference with the standard
RML approach, see (4). Maximizing lN(G) is equivalent to mini-
mizing K (6,6*) £ 1(6*) — [ (#) which satisfies under regularity
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assumptions K (0*,60") = 0 [14]. Thereis atrade-off associated
to the choice of L. If L issmall, the agorithm is typically easier
to implement but the convergence of the algorithm might be slow.
If L islarge, the algorithm will converge faster as one mimics the
convergence properties of the RML estimate but the algorithm is
getting more complex.

3 Recursive Algorithmsand I mplementation

We describe briefly in this section the algorithms. A detailed ex-
ample is given in the next section. In practice we consider only
models for which the joint density ps (zo:n, y1:n) iSin the expo-
nential family so that one only needsto propagate a set of sufficient
statistics. We will denote by ® the set of (typically multivariate)
sufficient statistics. All algorithms rely on a non-increasing pos-
itive stepsize sequence {vi},~, satisfying 3" v = oo, 1.7 <
oo; one usually selectsv; = i~ witha € (3, 1].

3.1 Algorithms
The online EM algorithm proceeds as follows.
Online EM

e Initialization: i = 0, ®® = 0 and 6.
e lteration 4,7 > 1 _
¢ d) = (1 —~;) (=D

+7iEgii-1) (¢ (X(i—l)L+1:iL7Y(i—l)L+1:iL)| Y(i—1)L41:L)-

0 = (o)
WhereINEG(i,U (¢ (X(i—1yr+1:ir) | Yii—1)£+1:42) denotesthe suf-
ficient statistics associated to the data block Y(;_1)z41.5z ad ¥
is the mapping between the  set of sufficient statistics and the pa-
rameter space. The symbol Ey¢;—1) (| Y(i—1)r+1.:2) denotesthe
eXpeCtaIlon with respect to ﬁg (x(i—l)L+1:iL| 1/“_1)[,_;,_1;1'[1) o<
179 (x(i—l)L+1:iL>Y(i—l)L+1:iL)-

The online SEM algorithm is a simple variation of the online
EM which proceeds as follows.

Online SEM

o Initialization: + = 0, ® = 0 and (.
e lteration 4,7 > 1
e Sample X(;_1)r11:L
~ Poi-1) (x(i—l)L-H:iL‘ Y(i—l)L-H:iL) .

e () = (1—) <I><i*1)+%90 (jz(i—l)LJrl:iLa Y(z'71)L+1:iL>-

00 = @(Q .
In the SEM algorithm, we replace the expectation term by an un-
biased estimate. This has the effect of adding “noise” in the algo-
rithm and can allow it to escape from alocal maximum.

The online DA algorithm is a more recent variant introduced
by the authorsin [2]. In this case, one sets a prior density p () on
the unknown parameter 6 and define the following artificial condi-
tional density for the parameter 6

ﬁ(e‘ T1:nL, )/l:nL) X [l (07 T1:nL, )/l:nL)]B" P (0)

Though it is not entirely obvious, one can show that this algo-
rithm corresponds to a “noisy” online EM agorithm in the case
where 3,, = n. The additional parameter 3,, corresponds to an
annealing schedule that can be used to slower the concentration of
P (0| 211, Yi.nz); typicaly one will chose 3, = An® (6 > 0).
For models of interest, p (6| z1:nL, Y1:n) ONly depends on a set
of sufficient statistics (similar to those of the EM and SEM) and
the online DA agorithm proceeds as follows.

Online DA

o Initialization: i = 0, ®® = 0and §(.
e Iteration 4, ¢ >1

e Sample X(;_1)r+1:L

~ 179(1‘—1) (m(i—l)L+1:iL| Y(i—l)L+1:iL) .

e d) = (1 —7) @Vt <X(i—1)L+1:iLa Y(z'fl)LH:iL)-

e Sample 6 ~ (9| o
Remark. The different components of the vector § might be up-
dated one-at-a-time using a Gibbs sampling strategy.
Remark. Note that instead of using non-overlapping data blocks
{Y(i—1)L+1:i }i>1, it is possible to use a sliding window. This
enables one to update the parameter estimate at the data rate for
example [14].

3.2 Implementation I ssues

The algorithms presented above assume that we know how to inte-
grate with respect to ﬁe (l‘(ifl)LJFl;iL ’ Yv(ifl)L+1;iL) or to sam-
plefromthisdensity. It istypically impossible but one can perform
these integration/sampling steps exactly or approximately using
modern simulation techniques; i.e. Markov Chain Monte Carlo
(MCMC) and SMC. When one uses SMC to estimate this density,
the approximation one gets will be reasonable only if L is not too
large. If not, one can use the forward filtering backward sampling
algorithm proposed in [9] to sample from the joint density based
on the particle approximations of the margina filtering densities
Po (k| Yii—1)L+1:%). One should keep in mind that even if one
uses this method, the algorithm is still an online algorithm.

4 Application

Let us consider the following stochastic volatility model arising in
finance

Xn+1 -
Y., =

QbXn + OVn+1,
Bexp (Xn/2) W,

where V,, =" A (0,1) and W,, "% A (0,1) are two mutually
sequences, independent of theinitial state Xo. We areinterested in

estimating the parameter § £ (¢, o, 3) . Inthis case, the stationary
distribution of the hidden processis N/ (0 ) . One has

)1 — ¢2
log po (x1:, Yi:1)

cste — 1log(lf(;?) — Llogo — Llog 8

where {$,.},,-, istheinverse of the“temperature” and (6; z1:nr, Y1:nL)

is defined recursively asfollows
1(0;z1.0,Y1.1)
l(e;xlzi[”)/l:iL) =

po (x1.1, Y1.1),
[l (9; T1:(i—1)L> Yl:(ifl)L)} o

X [ﬁe ($(171)L+1:¢L7 S/(ifl)LJrl:iL)} n

(1-¢°)
_ 252 1 2B2 Z Yk exp

L

)2
Z (zr — pTr—1)
k=2
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soclearly ¢ (1.1, Yi.1.) isgiven by (x%, Sr, Vi exp (—xk),

L—1 L L .
o Thy D ko Ty D s mkazk,l). If one writes ® = (&,

..., ®5) then the mapping ¥ between the sufficient statistics and
the parameter space necessary to the EM and SEM algorithms is

defined as follows 3 = / + @2 and

=1 (gl — ¢°) @1 + ¢°P3 — 205 + a)
(1-9¢°) ¢+ (P1—P3)0 *p+0 05 =0.
Plugging the expression of o2 in the last equation gives an equa-
tion in ¢ that can be solved by a simple dichotomic search. For
the DA augmentation algorithm, we used a rejection technique to
sample from p (0] ®) . We present here a numerical experiment
on synthetic data. The true parameter valuesare ¢ = 0.9,8 =
1.0, = 0.1 and the RDA algorithm was used for L = 2 with a

temperature 3,, = n°-®.

o

Figure 1: Convergence of the estimate of ¢.
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Figure 2: Convergence of the estimate of .

Figure 3: Convergence of the estimate of o2,
5 Discussion

In this paper, we have proposed three original algorithms to per-
form online parameter estimation in general state-space models.
These algorithms are online EM type algorithms. Provided the in-
variant distribution of the hidden Markov process is known, these
a gorithms are simple and we have demonstrated their efficiency in
practice. Analternative and computationally very efficient strategy
which does not require state estimation has been recently proposed
in[3].
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