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ABSTRACT

In this paper we present new online algorithms to estimate static
parameters in nonlinear non Gaussian state space models. These
algorithms rely on online Expectation-Maximization (EM) type al-
gorithms. Contrary to standard Sequential Monte Carlo (SMC)
methods recently proposed in the literature, these algorithms do
not degenerate over time.

1 Introduction

1.1 State-Space Models and Problem Statement

Let {Xn}n≥0 and {Yn}n≥1 be R
p and R

q-valued stochastic pro-
cesses defined on a measurable space (Ω,F) and θ ∈ Θ where Θ
is an open subset of R

k. The process {Xn}n≥0 is an unobserved
(hidden) Markov process of initial density µ; i.e. X0 ∼ µ, and
Markov transition density fθ (x, x′); i.e.

Xn+1|Xn = x ∼ fθ (x, ·) . (1)

One observes the process {Yn}n≥1. It is assumed that the obser-
vations are conditionally independent upon {Xn}n≥0 of marginal
density gθ (x, y) ; i.e.

Yn|Xn = x ∼ gθ (x, ·) . (2)

This class of models includes many nonlinear and non-Gaussian
time series models such as

Xn+1 = ϕθ (Xn, Vn+1) , Yn = ψθ (Xn, Wn)

where {Vn}n≥1 and {Wn}n≥1 are independent sequences.
We assume here that the model depends on some unknown pa-

rameter denoted θ. The true value of θ is θ∗. We are interested in
deriving recursive algorithms to estimate θ∗ for the class of sta-
tionary state-space models; i.e. when the Markov chain {Xn}n≥0

admits a limiting distribution. This problem has numerous appli-
cations in electrical engineering, econometrics, statistics etc. It
is extremely complex. Even if θ∗ was known, the simpler prob-
lem of optimal filtering, i.e. estimating the posterior distribution
of Xn given (Y1, . . . , Yn) , does not usually admit a closed-form
solution.

Further on we will denote for any sequence zk/random process
Zk zi:j = (zi, zi+1, . . . , zj) and Zi:j = (Zi, Zi+1, . . . , Zj) .

1.2 A Brief Literature Review

1.2.1 Filtering methods

A standard approach followed in the literature consists of setting
a prior distribution on the unknown parameter θ and then consid-
ering the extended state Sn � (Xn, θ). This converts the param-
eter estimation into an optimal filtering problem. One can then
apply, at least theoretically, standard particle filtering techniques
[5] to estimate p (xn, θ|Y1:n) and thus p (θ|Y1:n). In this ap-
proach, the parameter space is only explored at the initialization
of the algorithm. Consequently the algorithm is inefficient; after
a few iterations the marginal posterior distribution of the parame-
ter is approximated by a single delta Dirac function. To limit this
problem, several authors have proposed to use kernel density esti-
mation methods [13]. However, this has the effect of transforming
the fixed parameter into a slowly time-varying one. A pragmatic
approach consists of introducing explicitly an artificial dynamic on
the parameter of interest; see [10], [11]. To avoid the introduction
of an artificial dynamic model, an approach proposed in [8] con-
sists of adding Markov chain Monte Carlo (MCMC) steps so as to
add “diversity” among the particles. However, this approach does
not solve the fixed-parameter estimation problem. More precisely,
the addition of MCMC steps does not make the dynamic model
ergodic. Thus, there is an accumulation of errors over time and the
algorithm can diverge as observed in [1]. Similar problems arise
with the recent method proposed in [16].

1.2.2 Recursive maximum likelihood

Consider the log-likelihood function

lθ (Y1:n) =
n∑

k=1

log

(∫
gθ (xk, Yk) pθ (xk|Y1:k−1) dxk

)
. (3)

where pθ (xk|Y1:k−1) is the posterior density of the state Xk given
the observations Y1:k−1 and θ. Under regularity assumptions in-
cluding the stationarity of the state-space model, one has

1

n
lθ (Y1:n) → l (θ) (4)

where

l (θ) �
∫ ∫

Rq×P(Rp)

log

(∫
gθ (x, y) µ (x) dx

)
λθ,θ∗ (dy, dµ) ,
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where P (Rp) is the space of probability distributions on R
p and

λθ,θ∗ (dy, dµ) is the joint invariant distribution of the couple
(Yk, pθ (xk|Y1:k−1)). It is dependent on both θ and the true pa-
rameter θ∗. Maximizing l (θ) corresponds to minimizing the fol-
lowing Kullback–Leibler information measure given by

K (θ, θ∗) � l (θ∗) − l (θ) ≥ 0. (5)

To optimize this cost function, Recursive Maximum Likelihood
(RML) is based on a stochastic gradient algorithm

θn+1 = θn+γn∇ log

(∫
εθn (xn, Yn) pθ1:n (xn|Y1:n−1) dxn

)
.

This requires the computation of pθ1:n (xn|Y1:n−1) and its deriva-
tives with respect to θ using the parameter θk at time k where
pθ1:n (xn|Y1:n−1) denotes the predictive distribution computed us-
ing parameter θk at time k. This is the approach followed in [12]
for finite state-space HMM and in [6] for general state-space mod-
els. In the general state-space case, the filter and its derivatives are
approximated numerically. This method does not suffer from the
problems mentioned above. However it is sensitive to initializa-
tion and in practice it can be difficult to scale the components of
the gradient properly.

1.2.3 Online EM algorithm

Another stochastic gradient type algorithm is based on an online
version of the EM. This approach is better from a practical point
of view as it is easy to implement and numerically well-behaved.
One can actually show that online EM corresponds to a Newton-
Raphson like algorithm; the difference being that the gradient is
not scaled by the information matrix but by the complete informa-
tion matrix. Online EM algorithms have been proposed for finite
state-space HMM and linear Gaussian state-space models; e.g. [7].

It is formally possible to come up with a similar algorithm for
general state-space models. However, it requires one to compute
quantities such as

Qn (θ| θ′) = Eθ′ ( log pθ (x0:n, Y1:n)|Y1:n)

= Eθ′ ( log µ (x0)|Y1:n) +
n∑

k=1

Eθ′ ( log fθ (xk−1, xk)|Y1:n)

+
n∑

k=1

Eθ′ ( log gθ (xk, Yk)|Y1:n)

It is trivially possible to estimate Qn (θ| θ′) using particle methods
as one gets an estimate of the joint posterior density pθ (x1:n|Y1:n).
However, as n increases, only the approximation of marginal den-
sities pθ (xn−L:n|Y1:n) for a reasonable value of L, say L around
5, is good for a reasonable number of particles [5]. It seems impos-
sible to obtain a good approximation of Qn (θ| θ′) with an online
algorithm as n increases. It is thus necessary to come up with an
alternative method.

1.3 Contributions

We propose here three new algorithms to address the problem
of recursive parameter estimation in general state-space models.
These algorithms rely on online EM type algorithms, namely on-
line EM, Stochastic EM (SEM) and Data Augmentation (DA). To
prevent the degeneracy inherent to all previous approaches (except
[6]), the key point of our paper is to modify the contrast function
to optimize. Instead of considering the likelihood function which

leads to (5), we will consider here the so-called split-data likeli-
hood (SDL) as originally proposed in [14], [15] for finite state-
space HMM. In this approach, the data set is divided in blocks of
say L data and one maximizes the average of the resulting log-
SDL. This leads to an alternative Kullback-Leibler contrast func-
tion. It can be shown under regularity assumptions that the set
of parameters optimizing this contrast function includes the true
parameter. An approach consists of using the Fisher identity to
obtain a gradient estimate. We will not discuss this approach here
and we will maximize the average log-SDL using online EM type
algorithms. As we work on data blocks of fixed dimension, the
crucial point is that there is no more degeneracy problem. More-
over, contrary to [6], [12], [15], these algorithms are numerically
well-behaved. An additional annealing schedule can also be added
to the DA algorithm to make it more robust to initialization.

The rest of this paper is organized as follows. In Section 2, we
introduce the average log-SPL. In Section 3, we present three re-
cursive algorithms to optimize the resulting Kullback-Leibler con-
trast function and discuss the implementation issues. Finally in
Section 4, we present an application to stochastic volatility.

2 Split-data likelihood

The standard likelihood function of Y1:nL is defined by

Lθ (Y1:nL) =

∫
µ (x0)

nL∏
k=1

fθ (xk−1, xk) gθ (xk, Yk) dx0:nL.

The SDL consists of dividing the data Y1:nL in n blocks of L data.
For each data block, the pseudo-likelihood L̃θ

(
Y(i−1)L+1:iL

)
is

given by∫
p̃θ

(
x(i−1)L+1:iL, Y(i−1)L+1:iL

)
dx(i−1)L+1:iL, (6)

with p̃θ

(
x(i−1)L+1:iL, Y(i−1)L+1:iL

)
equal to

πθ

(
x(i−1)L+1

)
gθ

(
x(i−1)L+1, Y(i−1)L+1

)
×

iL∏
k=(i−1)L+2

fθ (xk−1, xk) gθ (xk, Yk) ,
(7)

where πθ correspond to the invariant density of the latent Markov
process. The SDL corresponds to the product of the n pseudo-
likelihoods (6). It is important to remark that our algorithms will
require the knowledge of the analytical expression of this invariant
density up to a normalizing constant. This is a restriction. How-
ever, this density is known in many important applications; it is
satisfied for instance for all the examples addressed in [16].

We propose to maximize the average log-SDL

1

n

n∑
i=1

l̃θ
(
Y(i−1)L+1:iL

) → l̃ (θ) (8)

where l̃θ
(
Y(i−1)L+1:iL

)
� log L̃θ

(
Y(i−1)L+1:iL

)
and

l̃ (θ) =

∫
l̃θ (Y1:L) pθ∗ (Y1:L) dY1:L,

pθ∗ (Y1:L) corresponds to the invariant distribution of the obser-
vations under the true parameter θ∗; i.e. this is the marginal of
(7) for i = 1, θ = θ∗. Note the difference with the standard
RML approach, see (4). Maximizing l̃ (θ) is equivalent to mini-
mizing K̃ (θ, θ∗) � l̃ (θ∗) − l̃ (θ) which satisfies under regularity
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assumptions K̃ (θ∗, θ∗) = 0 [14]. There is a trade-off associated
to the choice of L. If L is small, the algorithm is typically easier
to implement but the convergence of the algorithm might be slow.
If L is large, the algorithm will converge faster as one mimics the
convergence properties of the RML estimate but the algorithm is
getting more complex.

3 Recursive Algorithms and Implementation

We describe briefly in this section the algorithms. A detailed ex-
ample is given in the next section. In practice we consider only
models for which the joint density pθ (x0:n, y1:n) is in the expo-
nential family so that one only needs to propagate a set of sufficient
statistics. We will denote by Φ the set of (typically multivariate)
sufficient statistics. All algorithms rely on a non-increasing pos-
itive stepsize sequence {γi}i≥0 satisfying

∑
γi = ∞,

∑
γ2

i <

∞; one usually selects γi = i−α with α ∈ (
1
2
, 1

]
.

3.1 Algorithms

The online EM algorithm proceeds as follows.

Online EM

• Initialization: i = 0, Φ(0) = 0 and θ(0).
• Iteration i, i ≥ 1

• Φ(i) = (1 − γi) Φ(i−1)

+γiẼθ(i−1)

(
ϕ

(
X(i−1)L+1:iL, Y(i−1)L+1:iL

)∣∣ Y(i−1)L+1:iL

)
.

• θ(i) = Ψ
(
Φ(i)

)
.

where Ẽθ(i−1)

(
ϕ

(
X(i−1)L+1:iL

)∣∣ Y(i−1)L+1:iL

)
denotes the suf-

ficient statistics associated to the data block Y(i−1)L+1:iL and Ψ
is the mapping between the set of sufficient statistics and the pa-
rameter space. The symbol Ẽθ(i−1)

( ·|Y(i−1)L+1:iL

)
denotes the

expectation with respect to p̃θ

(
x(i−1)L+1:iL

∣∣ Y(i−1)L+1:iL

) ∝
p̃θ

(
x(i−1)L+1:iL, Y(i−1)L+1:iL

)
.

The online SEM algorithm is a simple variation of the online
EM which proceeds as follows.

Online SEM

• Initialization: i = 0, Φ(0) = 0 and θ(0).
• Iteration i, i ≥ 1

• Sample X̃(i−1)L+1:iL

∼ p̃θ(i−1)

(
x(i−1)L+1:iL

∣∣ Y(i−1)L+1:iL

)
.

•Φ(i) = (1 − γi) Φ(i−1)+γiϕ
(
X̃(i−1)L+1:iL, Y(i−1)L+1:iL

)
.

• θ(i) = Ψ
(
Φ(i)

)
.

In the SEM algorithm, we replace the expectation term by an un-
biased estimate. This has the effect of adding “noise” in the algo-
rithm and can allow it to escape from a local maximum.

The online DA algorithm is a more recent variant introduced
by the authors in [2]. In this case, one sets a prior density p (θ) on
the unknown parameter θ and define the following artificial condi-
tional density for the parameter θ

p̃ (θ|x1:nL, Y1:nL) ∝ [l (θ; x1:nL, Y1:nL)]βn p (θ)

where {βn}n≥0 is the inverse of the “temperature” and l (θ; x1:nL, Y1:nL)
is defined recursively as follows

l (θ; x1:L, Y1:L) = p̃θ (x1:L, Y1:L) ,

l (θ; x1:iL, Y1:iL) =
[
l
(
θ; x1:(i−1)L, Y1:(i−1)L

)]1−γi

× [
p̃θ

(
x(i−1)L+1:iL, Y(i−1)L+1:iL

)]γi .

Though it is not entirely obvious, one can show that this algo-
rithm corresponds to a “noisy” online EM algorithm in the case
where βn = n. The additional parameter βn corresponds to an
annealing schedule that can be used to slower the concentration of
p̃ (θ|x1:nL, Y1:nL); typically one will chose βn = Anδ (δ > 0).
For models of interest, p̃ (θ|x1:nL, Y1:nL) only depends on a set
of sufficient statistics (similar to those of the EM and SEM) and
the online DA algorithm proceeds as follows.

Online DA

• Initialization: i = 0, Φ(0) = 0 and θ(0).
• Iteration i, i ≥ 1

• Sample X̃(i−1)L+1:iL

∼ p̃θ(i−1)

(
x(i−1)L+1:iL

∣∣ Y(i−1)L+1:iL

)
.

•Φ(i) = (1 − γi) Φ(i−1)+γiϕ
(
X̃(i−1)L+1:iL, Y(i−1)L+1:iL

)
.

• Sample θ(i) ∼ p̃
(

θ|Φ(i)
)

.

Remark. The different components of the vector θ might be up-
dated one-at-a-time using a Gibbs sampling strategy.
Remark. Note that instead of using non-overlapping data blocks
{Y(i−1)L+1:iL}i≥1, it is possible to use a sliding window. This
enables one to update the parameter estimate at the data rate for
example [14].

3.2 Implementation Issues

The algorithms presented above assume that we know how to inte-
grate with respect to p̃θ

(
x(i−1)L+1:iL

∣∣ Y(i−1)L+1:iL

)
or to sam-

ple from this density. It is typically impossible but one can perform
these integration/sampling steps exactly or approximately using
modern simulation techniques; i.e. Markov Chain Monte Carlo
(MCMC) and SMC. When one uses SMC to estimate this density,
the approximation one gets will be reasonable only if L is not too
large. If not, one can use the forward filtering backward sampling
algorithm proposed in [9] to sample from the joint density based
on the particle approximations of the marginal filtering densities
p̃θ

(
xk|Y(i−1)L+1:k

)
. One should keep in mind that even if one

uses this method, the algorithm is still an online algorithm.

4 Application

Let us consider the following stochastic volatility model arising in
finance

Xn+1 = φXn + σVn+1,

Yn = β exp (Xn/2) Wn,

where Vn
i.i.d.∼ N (0, 1) and Wn

i.i.d.∼ N (0, 1) are two mutually
sequences, independent of the initial state X0. We are interested in
estimating the parameter θ � (φ, σ, β) . In this case, the stationary

distribution of the hidden process is N
(
0, σ2

1−φ2

)
. One has

log p̃θ (x1:L, Y1:L)

= cste − 1

2
log

(
1 − φ2) − L log σ − L log β

−
(
1 − φ2

)
2σ2

x2
1 − 1

2β2

L∑
k=1

Y 2
k exp (−xk)

− 1

2σ2

L∑
k=2

(xk − φxk−1)
2
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so clearly ϕ (x1:L, Y1:L) is given by
(
x2

1,
∑L

k=1 Y 2
k exp (−xk) ,∑L−1

k=1 x2
k,

∑L
k=2 x2

k,
∑L

k=2 xkxk−1

)
. If one writes Φ = (Φ1,

. . . , Φ5) then the mapping Ψ between the sufficient statistics and
the parameter space necessary to the EM and SEM algorithms is

defined as follows β =
√

1
L

Φ2 and

σ2 = 1
L

((
1 − φ2

)
Φ1 + φ2Φ3 − 2φΦ5 + Φ4

)
,(

1 − φ2
)−1

φ + (Φ1 − Φ3) σ−2φ + σ−2Φ5 = 0.

Plugging the expression of σ2 in the last equation gives an equa-
tion in φ that can be solved by a simple dichotomic search. For
the DA augmentation algorithm, we used a rejection technique to
sample from p̃ (θ|Φ) . We present here a numerical experiment
on synthetic data. The true parameter values are φ = 0.9, β =
1.0, σ2 = 0.1 and the RDA algorithm was used for L = 2 with a
temperature βn = n0.5.
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Figure 1: Convergence of the estimate of φ.
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Figure 2: Convergence of the estimate of β.
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Figure 3: Convergence of the estimate of σ2.

5 Discussion

In this paper, we have proposed three original algorithms to per-
form online parameter estimation in general state-space models.
These algorithms are online EM type algorithms. Provided the in-
variant distribution of the hidden Markov process is known, these
algorithms are simple and we have demonstrated their efficiency in
practice. An alternative and computationally very efficient strategy
which does not require state estimation has been recently proposed
in [3].
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pling for parameter estimation in general state space models,
Proc. Worshop Sysid, Rotterdam.

[4] Doucet, A., Godsill, S.J. and Andrieu, C. (2000). On sequen-
tial Monte Carlo sampling methods for Bayesian filtering.
Statist. Comput., 10, 197-208.

[5] Doucet, A., de Freitas, J.F.G. and Gordon N.J. (eds.) (2001).
Sequential Monte Carlo Methods in Practice. New York:
Springer-Verlag.
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