
PARTICLE FILTERING AND CRAMÉR-RAO LOWER BOUND
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ABSTRACT

We have studied a sea navigation method relying on a dig-
ital underwater terrain map and sonar measurements. The
method is applicable for both ships and underwater vessels.
We have used experimental data to build an underwater map
and to investigate the estimation performance. Since the
problem is non-linear, due to the measurement relation, we
apply a sequential Monte Carlo method, or particle filter, for
the state estimation. The fundamental limitations in naviga-
tion uncertainty can be described in terms of the Cramér-
Rao lower bound, which is interpreted in terms of the iner-
tial navigation system (INS) error, the sensor accuracy and
the terrain map excitation. Hence, the Cramér-Rao lower
bound can be interpreted and used in design for INS sys-
tems, sensor performance or if these are given, how much
terrain or depth excitation that is needed for use in position-
ing and navigation.

1. INTRODUCTION

The primary navigation system is in many applications the
INS. However, for most applications these systems suffer
from small drift errors and must be supported by some ex-
ternal system to correct the errors. This can be done by in-
corporation GPS measurements. In some applications this
is not possible, since the system can not rely on GPS in-
formation or these signals can not be received. For under-
water navigation we propose a navigation method based on
terrain navigation similar to the aircraft terrain navigation
proposed in [1]. In [2], several different positioning and
navigation systems for particle filtering are discussed. Here
we use an underwater map to support our navigation system.
Since the depth information is highly non-linear we use the
particle filter method for state estimation. By investigating
the Craḿer-Rao lower bound from [1, 3] we can decide the
sensor accuracy needed or if the map yield sufficient infor-
mation for navigation.

In Fig. 1, the underwater navigation system is described.

The sonar measurement is denotedst, the underwater ves-
sel’s depth,dt, and the depth from the terrain database in
the locationxt is denotedh(xt).

Sea level

h(xt)

dt

st

Fig. 1. Underwater navigation using depth information.

2. PARTICLE FILTER

Navigation problems are often treated as Bayesian interfer-
ence. Underwater navigation using a depth map to support
the INS is a non-linear problem, therefore the underlying
Bayesian equations are non-tractable. To solve in an on-
line application without using linearization or Gaussian as-
sumptions, sequential Monte Carlo methods, or particle fil-
ters, could be used. The simulation based ideas have been
discussed in [4], where the conditional mean and covari-
ance were calculated using importance sampling for recur-
sive Bayesian estimation. However, the crucial resampling
step introduced in [5, 6] solved the divergence problems. In
this section the presentation of the particle filter theory is
according to [1, 3, 6, 7].

Consider the following non-linear discrete-time system

xt+1 = f(xt, vt) (1a)

yt = st + dt = h(xt, et), (1b)

wherext ∈ R
n denotes the state of the system and whereyt

is the observation at timet. The process noisevt and mea-
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surement noiseet are assumed independent with densities
pvt

andpet
respectively. The particle filter method provides

an approximative Bayesian solution to discrete-time recur-
sive problem by updating an approximative description of
the posterior filtering density. LetYt = {yi}t

i=1 be the
set of observations until present time. The Monte Carlo fil-
ter approximates the probability densityp(xt|Yt) by a large
set ofN particles{x(i)

t }N
i=1, where each particle has an as-

signed relative weight,w(i)
t , such that all weights sum to

unity. The location and weight of each particle reflect the
value of the density in the region of the state space. The par-
ticle filter updates the particle location and the correspond-
ing weights recursively with each new observation. The
non-linear prediction densityp(xt|Yt−1) and filtering den-
sity p(xt|Yt) for the Bayesian interference, [8], are given
by

p(xt+1|Yt) =
∫

Rn

p(xt+1|xt)p(xt|Yt)dxt (2a)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
. (2b)

The likelihoodp(yt|xt) is calculated from (1) using the
known measurement noise densitypet

. An often used as-
sumption is additive noise, soyt = h(xt) + et.

The main idea is to approximatep(xt|Yt−1) with a sum
of delta-Dirac functions located in the samples,x

(i)
t . Using

the importance weights the posterior can be written as

p(xt|Yt) ≈
N∑

i=1

w̃
(i)
t δ(xt − x

(i)
t ), (3)

where the normalized importance weights are defined as

w̃
(i)
t =

w
(i)
t∑N

j=1 w
(j)
t

, i = 1, . . . , N. (4)

This was the original estimation idea. However, this ap-
proach leads to divergence, where almost all of the particles
have zero weights. By introducing a selection or resampling
step as proposed in [6] this can be handled. The weights for
the additive noise case are then calculated as

wt = p(yt|xt) = pet
(yt − h(xt)). (5)

This resampling idea from [6] is often referred to assam-
pling importance resampling (SIR), and the idea is summa-
rized in Alg 1.

Sampling Importance Resampling (SIR)

1. Sett = 0 and generateN samples{x(i)
0 }N

i=1 from
the initial distributionp(x0).

2. Computew(i)
t = p(yt|x(i)

t ) and normalize, i.e.,
w̃

(i)
t = w

(i)
t /

∑N
j=1 w

(j)
t , i = 1, . . . , N .

3. Generate a new set{x(i�)
t }N

i=1 by resampling with

replacementN times from{x(i)
t }N

i=1, with proba-

bility w̃
(j)
t = Pr{x(i�)

t = x
(j)
t }.

4. Predict (simulate) new particles, i.e.,x
(i)
t+1 =

f(x(i�)
t , v

(i)
t ), i = 1, . . . , N using different noise

realizations for the particles.

5. Increaset and iterate to step 2.

Alg. 1. Sampling Importance Resampling.

3. THE CRAMÉR-RAO LOWER BOUND

We consider the following model for an inertial navigation
system (INS) according to [1]

xt+1 = xt + ut + vt (6a)

yt = h(xt) + et, (6b)

wherext ∈ R
2 is the horizontal position state vector,ut

is the INS corrections andvt the process noise due to INS
drift. The observation relation consists of sonar measure-
ments of the depth, whereet is the measurement noise. Us-
ing standard notations we consider independent noise sources,
with variancesQt = E{vtv

T
t } andRt = E{ete

T
t }.

The Craḿer-Rao lower bound for one step prediction
with models according to (6) is given in [1, 3]. We can
formulate this as

Pt+1 = (P−1
t + E{ϕ(xt)R−1

t ϕT (xt)})−1 + Qt, (7)

wherePt is the covariance matrix for the estimation error,
when we evaluate locally around the positionxt. In (7) we
have defined

ϕ(xt) = ∇xh(x)|x=xt
. (8)

For a diagonal measurement noise matrixRt, we have

Pt+1 = (P−1
t + R−1

t Zt)−1 + Qt, (9)

using the definition

Zt = E{ϕ(xt)ϕT (xt)}. (10)

We are interested in the stationary behavior in each posi-
tion, i.e., Zt = Z(x). The assumption is that we get the
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global behavior by studying the covariance locally in each
position. For stationary systems,Pt → P̄ (x), t → ∞, this
can be written as

P̄ (x) = (P̄−1(x) + R−1Z(x))−1 + Q

= P̄ (x)(I + P̄ (x)R−1Z(x))−1 + Q

≈ P̄ (x)(I − P̄ (x)R−1Z(x)) + Q. (11)

Hence the stationary covariance for the Cramér-Rao lower
bound is given by (12)

P̄ 2(x) = QZ−1(x)R, (12)

under the assumption that the Taylor expansion is valid,
P̄ (x) � RZ−1(x) (in some norm). We can directly in-
terpret this relation, for example increased INS uncertainty
yields higher covariance. Conversely, a better sensor (lower
R) or higher terrain excitation (largerZ) reducesP̄ . For an
important special case, scalar valuesr, q and independent
coordinates in (10) we have

R = r,Q = qI2, Z =
(

z1 0
0 z2

)
⇒ P̄ =

(
p1 0
0 p2

)
,

whereI2 is the2×2 identity matrix. Hence, the system can
by solved exactly by studying the scalar equation

p̄i =
1

p̄−1
i + zi/r

+ q ⇒ p̄i =
q

2
+

√
q2/4 + qr/zi, i = 1, 2.

(13)

4. SIMULATIONS

In this section we implement and evaluate the particle filter
on experimental data from an underwater vessel system. We
also apply the Craḿer-Rao lower bound calculations from
Section 3.

In [9] a terrain map for underwater systems was col-
lected using sonar depth measurements and differential GPS.
This data is here resampled to a uniform grid and used for
navigation and calculation of the Cramér-Rao lower bound .
The terrain underwater map is shown in Fig. 2 and in Fig. 5
the data used in the depth interpolation is shown, together
with the vessels true trajectory.

The Craḿer-Rao lower bound values for each position
in the map are given in Fig. 3 forlog(||P̄ ||) according to (12).
If the Taylor approximation is not valid, the covariance is it-
erated until convergence. The expected mean in (10) is im-
plemented as a mean value over different numerical differ-
entiation approximations, e.g Euler-forward, backward etc.
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Fig. 2. Underwater terrain information depth map.
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Fig. 3. CRLB presented aslog(P̄ ) in map coordinates.

A particle filter method is then tested on the underwa-
ter map. It is initialized be placing particles uniformly over
the entire map. The process and measurement noise are as-
sumed Gaussian with covariancesQ = I2 andR = 0.1
respectively, but other distributions could easily be used.
The particle filter is initialized withN = 20000 particles,
but after a few iteration it is reduced to5000. The depth
of the vessel is considered constant during the simulation.
The input signalut is from the GPS estimate since no true
speedometer was present. However, the signal is perturbed
to emulate true performance by adding an error of 10 per-
cent with a uniform distribution.

In Fig. 4 the mean value estimate is shown from the par-
ticle filter, when a large initial uncertainty is considered (as
large as the map). The original sample rate was10 [Hz], but
data was decimated so the filter was updated every5 [s]. As
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seen, the filter estimate is close to the true position. In Fig. 6
the root mean square error (RMSE) is presented.
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Fig. 4. The mean estimate from the particle filter.
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Fig. 5. Underwater vessel trajectory and map generation.

5. CONCLUSIONS

In this paper we have constructed a digital underwater map
from experimental data, for usage in an underwater navi-
gation application. We have investigated the Cramér-Rao
lower bound for the underwater application presented in Sec-
tion 3, and interpreted it in terms of the INS error, the sensor
accuracy and the terrain map excitation. Hence, Cramér-
Rao lower bound can be interpreted and used in design for
INS systems, sensor performance or if these are given, how
much terrain or depth excitation that is needed for use in
positioning and navigation using the particle filter. A suc-
cessful implementation of the particle filter for underwater
navigation using the collected depth map was also given,
where the presented RMSE gives the performance.
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Fig. 6. Root Mean Square Error for the particle filter.
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