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ABSTRACT The sonar measurement is denotedthe underwater ves-

We have studied a sea navigation method relying on a dig'?r?elsloizgz)hrgt,isz(ejrfgfegze(zﬂ)] from the terrain database in
t t)-

ital underwater terrain map and sonar measurements. The
method is applicable for both ships and underwater vessels.
We have used experimental data to build an underwater map dy
and to investigate the estimation performance. Since the -
problem is non-linear, due to the measurement relation, we

apply a sequential Monte Carlo method, or particle filter, for h(x)
the state estimation. The fundamental limitations in naviga- Py
tion uncertainty can be described in terms of the Ggam
Rao lower bound, which is interpreted in terms of the iner- o
tial navigation system (INS) error, the sensor accuracy and
the terrain map excitation. Hence, the C&arRao lower
bound can be interpreted and used in design for INS sys- rig 1 ynderwater navigation using depth information.
tems, sensor performance or if these are given, how much

terrain or depth excitation that is needed for use in position-

ing and navigation.

Sea level

2. PARTICLE FILTER

1. INTRODUCTION o o
Navigation problems are often treated as Bayesian interfer-

The primary navigation system is in many applications the €nce. Underwater navigation using a depth map to support
INS. However, for most applications these systems sufferthe INS is a non-linear problem, therefore the underlying
from small drift errors and must be supported by some ex- Bayesian equations are non-tractable. To solve in an on-
ternal system to correct the errors. This can be done by in-line application without using linearization or Gaussian as-
corporation GPS measurements. In some applications thigsumptions, sequential Monte Carlo methods, or particle fil-
is not possible, since the system can not rely on GPS in-ters, could be used. The simulation based ideas have been
formation or these signals can not be received. For under-discussed in [4], where the conditional mean and covari-
water navigation we propose a navigation method based or@nce were calculated using importance sampling for recur-
terrain navigation similar to the aircraft terrain navigation Sive Bayesian estimation. However, the crucial resampling
proposed in [1]. In [2], several different positioning and St€p introduced in [5, 6] solved the divergence problems. In
navigation systems for particle filtering are discussed. Herethis section the presentation of the particle filter theory is
we use an underwater map to support our navigation systemaccording to [1, 3, 6, 7].
Since the depth information is highly non-linear we use the ~ Consider the following non-linear discrete-time system
particle filter method for state estimation. By investigating Toa1 = fze,00) (1a)
the Crangr-Rao lower bound from [1, 3] we can decide the
sensor accuracy needed or if the map yield sufficient infor- ye =5t +dp = h(wy, e0), (1b)
mation for navigation. wherex; € R™ denotes the state of the system and where
In Fig. 1, the underwater navigation system is described. is the observation at time The process noisg and mea-
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surement noise; are assumed independent with densities | Sampling | mportance Resampling (SIR)
Dy, andp,, respectively. The particle filter method provides ,
an approximative Bayesian solution to discrete-time recur-| 1. Sett = 0 and generatéV samples{z§” }X, from
sive problem by updating an approximative description of the initial distributionp(xo).

the posterior filtering density. LeY; = {y;}!_, be the @ - .
set of observations until present time. The Monte Carlo fil- | 2 Computew = p(ytlx)t ) and normalize, i.e.,
ter approximates the probability densitf:;|Y) by a large = wt /Z] 1 wt] v i=1,...,N.

set of N partlcles{xtl)}l 1 where each particle has an as-
signed relative welghtwt , such that all weights sum to
unity. The location and weight of each particle reflect the
value of the density in the region of the state space. The par- bility ng) = Pr{:c,(f*) = t])}'
ticle filter updates the particle location and the correspond-
ing weights recursively with each new observation. The

3. Generate a new sgt!™ 1V by resampling with
replacementV times from{xt Y., with proba-]

4. Predict (simulate) new particles, |e1:§321 =

non-linear prediction density(z;|Y;_1) and filtering den- Fla™ o), i=1,... , IV using different noise
sity p(x¢|Y,) for the Bayesian interference, [8], are given realizations for the particles.
by

5. Increase and iterate to step 2.

Alg. 1. Sampling Importance Resampling.
plaral¥) = [ plovaledp(of¥de  (2a) g 1. Sampling Imp pling
P(ye| ) p(ae| Ye1) 3. THE CRAMER-RAO LOWER BOUND

p($t|Yt) = p(ytth) (2b)

We consider the following model for an inertial navigation
system (INS) according to [1]
The likelihoodp(y;|z;) is calculated from (1) using the
known measurement noise density. An often used as- Te41 = Te+ U+t (6a)
sumption is additive noise, 3 = h(z;) + ;. ye = h(z)+ e, (6b)
The main idea is to approximapéz;|Y;_;) with a sum
of delta-Dirac functions located in the samplﬁg?. Using
the importance weights the posterior can be written as

wherez, € R? is the horizontal position state vectar,
is the INS corrections and, the process noise due to INS
drift. The observation relation consists of sonar measure-
ments of the depth, wheeg is the measurement noise. Us-
ing standard notations we consider independent noise sources,
pa:|Yy) =~ Zwt (2 — (), () with variances), = E{v,vT} andR, = E{eel}.
The Cranér-Rao lower bound for one step prediction

with models according to (6) is given in [1, 3]. We can

where the normalized importance weights are defined as  formulate this as

(@) Prpy = (P71 + Blo(a) R o ()) 7 + Qe (7)
~(4) _ Wy C_
W™ = EJ_V wd’ i=1...,N. ) where P, is the covariance matrix for the estimation error,
g=1 7% when we evaluate locally around the position In (7) we

. . L ) have defined
This was the original estimation idea. However, this ap-

proach leads to divergence, where almost all of the particles o(xr) = Voh(2)|p=s, - (8)
have zero weights. By introducing a selection or resampling . _ '
step as proposed in [6] this can be handled. The weights forFor a diagonal measurement noise mattjxwe have
the additive noise case are then calculated as _ _ _
P =P + R Z) T+ Q, 9)

wi = p(ye|Te) = pe, (Yt — h(xr))- (5) using the definition

Zy = E{p(a)" (1)} (10)
This resampling idea from [6] is often referred to sasn+ ' ' '
pling importance resampling (SIR), and the idea is summa- We are interested in the stationary behavior in each posi-
rized in Alg 1. tion, i.e., Z, = Z(x). The assumption is that we get the
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global behavior by studying the covariance locally in each
position. For stationary systemB;, — P(x),t — oo, this
can be written as

Pl)=P Y 2)+ R 'Z(x) ' +Q

z)(I + P(x)R™'Z(x)) "' +Q

z)(I = P(x)R™'Z(x)) + Q. (11)

Hence the stationary covariance for the CeatRao lower
bound is given by (12)

PX(2) = QZ ' (@)R, (12)

under the assumption that the Taylor expansion is valid,
P(z) < RZ~'(x) (in some norm). We can directly in-

terpret this relation, for example increased INS uncertainty
yields higher covariance. Conversely, a better sensor (lower

R) or higher terrain excitation (largef) reducesP. For an

Fig. 2. Underwater terrain information depth map.

important special case, scalar values and independent 200 as
coordinates in (10) we have
250
3
z1 0 5 p1 0
R=r,Q=qls, Z = = P = , 300
-anz= (3 2)=2=(5 ) .
350 ’
wherel; is the2 x 2 identity matrix. Hence, the systemcan
by solved exactly by studying the scalar equation T 2
=450
= = Pi= 2 R/, i =1,2,
p; +zifr 2

(13) 550

0.5

4. SIMULATIONS 650

In this section we implement and evaluate the particle filter  "%sg 300 350 400 450 500 550

on experimental data from an underwater vessel system. We xm]
also apply the Craér-Rao lower bound calculations from _ _
Section 3. Fig. 3. CRLB presented dsg(P) in map coordinates.

In [9] a terrain map for underwater systems was col-
lected using sonar depth measurements and differential GPS. A particle filter method is then tested on the underwa-
This data is here resampled to a uniform grid and used forter map. It is initialized be placing particles uniformly over
navigation and calculation of the Cr&mRao lower bound . the entire map. The process and measurement noise are as-
The terrain underwater map is shown in Fig. 2 and in Fig. 5 sumed Gaussian with covarianc@s= I, and R = 0.1
the data used in the depth interpolation is shown, togetherrespectively, but other distributions could easily be used.
with the vessels true trajectory. The particle filter is initialized withV' = 20000 particles,

The Crang&r-Rao lower bound values for each position but after a few iteration it is reduced f00. The depth
in the map are given in Fig. 3 fasg (|| P||) accordingto (12).  of the vessel is considered constant during the simulation.
If the Taylor approximation is not valid, the covariance isit- The input signak; is from the GPS estimate since no true
erated until convergence. The expected mean in (10) is im-speedometer was present. However, the signal is perturbed
plemented as a mean value over different numerical differ-to emulate true performance by adding an error of 10 per-
entiation approximations, e.g Euler-forward, backward etc. cent with a uniform distribution.

In Fig. 4 the mean value estimate is shown from the par-
ticle filter, when a large initial uncertainty is considered (as
large as the map). The original sample rate WafHz], but
data was decimated so the filter was updated evgsy As
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seen, the filter estimate is close to the true position. In Fig. 6

the root mean square error (RMSE) is presented.
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Fig. 4. The mean estimate from the particle filter.
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Fig. 5. Underwater vessel trajectory and map generation.

5. CONCLUSIONS

In this paper we have constructed a digital underwater map
from experimental data, for usage in an underwater navi-

gation application. We have investigated the CeaiRao
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Fig. 6. Root Mean Square Error for the patrticle filter.
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