A NOTE ON STATE ESTIMATION ASA CONVEX OPTIMIZATION PROBLEM

Thomas Sabn, Fredrik Gustafsson, Anders Hansson

Department of Electrical Engineering
Linkoping University, SE-581 83 Linjing, Sweden
Email: (schon, fredrik, hansson) @sy.liu.se

ABSTRACT min  fo(x
. . . : P — 1
The Kalman filter computes theaximum a posteriofMAP) 8.t fl(f < 0 1=0,...,m (@)
estimate of the states for linear state space models with Gaus- a;r = by i1=0,...,m
sian noise. We interpret the Kalman filter as the solutionto a, v -« the functiong, . . ., f,n, are convex and the equal-

convex optimization problem, and show that we can gener-
alize the MAP state estimator to any noise with log-concave
density function and any combination of linear equality and
convex inequality constraints on the states.

We illustrate the principle on a hidden Markov model,
where the state vector contains probabilities that are positive
and sum to one.

ity constraints are linear. We will in the following sections
try to identify some estimation problems that can be cast as
convex optimization problems.

3. NOTATION AND BACKGROUND

Maximuma posteriori(MAP) estimation [3] is about find-
ing an estimator of a stochastic variabléhat maximizes

1. INTRODUCTION the conditional density(z|y), given the observation (y €
R andz € R"=). Thus, the MAP problem is

State estimation in stochastic linear models is an important

problem in many model-based approaches in signal process- max  logp(y) 2

ing and automatic control applications, where the Kalman .

filter is the standard method. However, if we have prior in- N the sequel, the measurements vectoréom time 1 to

formation of some kind it is often impossible to incorporate time & will be denotedy,.;, and similarlyz.; denotes all

this in the Kalman filter framework. We will in this paper unknowns including the initial values. The operaﬁdl’)

show how we can use prior information by considering the extracts theth element from the vectar;.

optimization problem that the Kalman filter solves. A sim- The assumptions commonly used in the literature are

ilar treatment can be found in [1], however they only con- that the elements in the vectors are spatially and tempo-

sider quadratic problems, whereas we will consider a larger rally independent ('white noise’) and Gaussian distributed.

class of convex problems. We will insist on the independence assumption, but not on
the assumption of Gaussian densities, giving us the follow-

ing form oflog p(z) (supressing the dependenceyn
2. CONVEX OPTIMIZATION

k k

In this section we will give a very brief introduction to con- log p(zo:x) = log [ [ p=:(2i) = Y logps, (z1).  (3)
vex optimization (see also [2]). i=0 i=0

The main message in convex optimization is that one pepending on the distribution, the objective function in (1)
shouldnot differ between linear and non-linear optimiza-  can pe explicitely written as in Table 1, see also [2].
tion problems, but instead between convex and non-convex
problems. This is due to the fact that the class of convex
problems is much larger than that covered by linear prob-
lems, and we know that for a convex problem any local op-
timum is also a global optimum. Moreover, there exist effi-
cient algorithms for solving convex optimization problems.
A convex optimization problem is defined as

4. CONVEX OPTIMIZATION ESTIMATION

In this section we will discuss the estimation problem in the
presence of constraints. In Table 1 the objective functions
are given for several log-concavedensities. Constraints

LA function functionf : R* — R islog-concavef f(x) > 0 for all x
This work was supported by the Swedish Research Council in the domain off, andlog f is a concave function [2].
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PDF Objective function Extra constrain
Gaussian Y ||zil]?

Exponential 3¢ (37" 27 1 z>0

Laplacian  Y2i, 307, |24

Uniform

constant

(2]

~V3<2<V3

Table 1. Objective functions in (1) for different normalized
(zero mean and unit variance) probability density functions.

arise in the derivation of some of these probability density
functions (PDF), but constraints also arise from prior infor-
mation of some kind, e.g., a model assumption. This will be
discussed in the Section 6.

Assume we want to estimate, z), wherez has a cer-
tain known distribution, and thatandz are related through
the constraints

T ] _p
z

If we now want to use (2) we are faced with the problem of
finding the joint distribution of: andz, which can be quite
tedious.

A (4)

Problem 4.1 (Convex optimization estimation) Assume
that p(z) is a known log-concave PDF. The MAP-estimate
for z, z, wherez andz are related via4) is given by

max logp.(z)
T,z

'T}:b
z

Remark: Any linear equalities and convex inequalities may

(5)

s.t. A

be added to this formulation, and standard software applies.

This approach to estimation is presented in [2]. The
standard estimation problem is to interpreas the param-
eters conditioned on the measuremetits and thenz is

just a nuisance parameter. The standard approach, not ofter

written explicitely, is to marginalize the nuisance parame-
ters to getp(z|y) = [ p(z|y, z)p(z|y)dz where the con-
straints are used explicitely. This works fine in a range of

applications, and the solution most often has a quite simple
form. In the general case, we can formulate the problem

below.

5. LINEAR REGRESSION EXAMPLE

result from marginalization is that

6 € N((@oT) 1oy, s* (@) ). @)
Alternatively, we can pose the problem as
max logps(F)
” 8
5.t [@T,u{g}zy ®)

If this regression model happens to be an ARX model of a
transfer function

iy o e
G(e ) - 1 _+_ El a(l)efiwl7

in system identification, we uge= (a”,5")”. Now, we
can simply add constraints such as bounded DC gain
G(0) < U, or more generally, any lower and upper bound
on the transfer function

5, 06t
L(w) < W <U(w),

which is easily rewritten in the standard form. Similarly,
any other interval for any other frequency of the transfer
function can be bounded.

C)

(10)

6. CONVEX OPTIMIZATION FILTERING

In the previous section we talked about constraints in gen-
eral. We will in this section discuss a special type of con-
straints, namely the ones that appear in describing the dy-
namic behaviour of a model. In order to obtain convex
problems we will use linear models of the dynamics. The
following model

Exyy1 = Azy, + Bwy, + Key,

yr = Cxyp + Dey,

(11a)
(11b)

together with a density for the initial state,,, andpe, p,,
ill constitute our model. WithE = I, K = 0 we have
the standard state space model, and With= I, B = 0,
D = I we have the so called innovation form. If tlie
matrix in (11a) is invertible we can rewrite the equation in
a state space model. Otherwise we have what is commonly
refered to as a descriptor model. [4].

To put state filtering in the general estimation form as in
Problem 4.1, let

z = [mga wg:kfla englc]Ta (12)

As an example of estimation, consider a linear regression 5 interpret asz 1.4 |y1.x. To rewrite the conditional den-

problem in matrix form

Y =019+ E. (6)

InterpretE «< 2z as a Gaussian nuisance parameter with

variancer?, the regression parameter> z as the param-
eter andY, ® + y as the observations. The well-known

sity more explicitly, use the independence assumption and
(3), which gives

log p(zo,wo:k—1, €0:k) = 10g Pey (o)

k—1 k
+ Y logpu, (wi) + Y _logpe,(e:).  (13)
=0 =0
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Using Bayes’ rulep(z|y) = p(y|z)p(z)/p(y) and the fact  filter? There are two reasons. The first reason is that we

that can handle all log-concave density functions, not just the
b1 Gaussian. The second reason is that we can add any prior
) = " ws 14 mformatlon, in convex form,_ to problem 6.1. '_I'hat is we can
P@k) = Pao (20 ZH)PW i) (14) add linear equality constraints and convex inequality con-
straints, and still find the optimal estimate. We will see an
illustration of this in the example in the subsequent section.
plyslzr) = Hp& (ed), (15) P q

. . : 7. HMM EXAMPLE
we obtain the following goal function

There are mainly two filtering problems, where there exist
P(@o, woik—1, 0:k) = | [ Pes (€1)Pao (o) [ s (wi). finite-dimensional recursive optimal filters, and in particu-
' ' lar a finite-dimensional MAP estimator. One is, as already
Conditioned orx in (12), the states in (11a) are uniquely de- Mentioned, linear state space models with Gaussian noise.

MAP estimate ofr andz are simply related by MAP = filter computes the linear state estimate with minimum vari-
F(2MAP) " Similarly, the joint MAP estimater, z in the ance, but it is no longer the MAP or ML estimator.
convex optimization formulation is given by maximizing The other case is hidden Markov models (HMM). Inter-

p(2), sincep(z,z) = p(z|z)p(z) = f(z)p(z) by Bayes’ estingly, it has been pointed out [9] that the HMM can be
rule. Hence we have now justified the following general Written in a state space model. That is, the Kalman filter
convex estimation problem. computes the best possible linear estimate of the Markov

state. This fact makes it possible to compare conceptually
Problem 6.1 (Convex optimization filtering) Assumethat  different approaches on the same example!

the densitieg., ,pw,, andp,, are log-concave. In the pres- A hidden Markov model is defined by a discrete vari-
ence of constraints in terms of a dynamic modéfla)— able¢ € (1,2,...,n) with a known transition probability
(11b)the MAP-estimate is the solutidn, = z;, to the fol- matrix A, where A(»)) = P(& = i|&_1 = j), that is,
lowing problem given that¢ = j at timek — 1, the probability that = i
kel k at timek is A(-J). We will assume an observation process
max  logpa, (7o) + Zlogpm (wi) + Y logpe(er) e (1,2....,m), whereP(v = i|¢ = j) = C(&). The
st Eux _ Aa: 4 Bu + ch 0 filter for computing thea posterioriprobabilities can be ex-
v bl = k k k pressed as the recursion
yr = Cuaxp+ Dey,
Remark: Any linear equalities and convex inequalities may ) = pl& =) (16a)
be added to this formulation, and standard software applies. DY 79 A ovrd)
As is evident from Problem 6.1 we see that we are free to = ]_1n k_l( 5 . (16b)
use different densities for the different disturbanegs p., , Zj:l > 7%]_1 Cwd)

andp,, . It is here also worth noting that the recursive solu-
tion to Problem 6.1 under the assumptions of Gaussian den-The MAP estimate i§; = argmax; « s )- Now, the HMM
sities and a non-singul@-matrix is the celebrated Kalman ~can be written as the state space model

filter. This has been known for a long time, see e.g., [5],

and [6] for nice historical accounts of this fact, and for a Th+1 = ATk +wg, (17a)
proof see e.g., [7]. It is also worthwhile noting that Prob- yr = Cxp, + e, (17b)

lem 6.1 under the assumption of Gaussian disturbances is ) . @) _ o

a weighted least-squares problem. To see this combine 6. wherez,” = p(& = i) andy,” = p(vy = i). Thisis the

and the Gaussian case in Table 1, where the weights are thétate-space form (11a)-(11f (= D = E = I, K = ()
inverse of the covariance matrices. This provides a deter-Where the disturbances are zero-mean white noises, and the
ministic interpretation of the problem that the Kalman filter Stationary covariance matrices can be shown to be

solves. For more on the similarities and differences between

_ ST _ - T
deterministic and stochastic filtering see e.g., [8]. We also @ = Covuwy, = diag(r) — Adiag(m)4", (182)
see that if we solve Problem 6.1 we will not only obtain the R = Cov e, = diag(Cn) — C diag(n)C?, (18b)
filtered estimatery,, but also all the smoothed estimates, i ) i .
Bigri=0,.. k-1 wherer is the stationary solution to (in vector form)
.SO why should we solve the.estimation probl_em via6.1, 7 = lim AFr,, wheremy > 0. (19)
which demands more computations, instead of via the Kalman k—o0
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Since the stateswe are estimating in a HMM are probabil-
ities we have the following prior information on the states

1, and z¥ >0,i=1,2. (20)

In the standard Kalman filter it is impossible to incorporate
this prior information about the states, however in Prob-

lem 6.1 it is straightforward. We will now examine four
different filters using an increasing amount of prior infor-
mation (In1-3 we have approximated; ande; in (17) as
Gaussian with zero mean and covariances (18)):

1. The Kalman filter.

2. The convex optimization filter with constraint
D :cgj) = 1. This case can alternatively be computed

by the Kalman filter usind®, = po G }) and any

D :cf)’) = 1, or by using the fictitious measurement
yo = (1,1,...,1)zg = 1 with zero measurement

noise. Note, however, that the Ricatti equation will
be singular here, which may imply certain numerical
difficulties. A more theoretically sound alternative is
givenin [9].

3. The convex optimization filter with constraint (20).
4. The optimal filter (16).
The numerical example is taken from [9], where
a=c=(57 )
In Table 2, the root mean square error (RMSE) is given fo
these four cases and in Fig. 1 the states are shown. Fro

(21)

1. Kalman filter 0.585
2. 6.1withaz; + 25 =1 0.573
3. 6.1 withz; + 25 = 1andz >0 | 0.566
4. Optimal filter 0.403

Table 2. RMSE values for the different filters.

10 25 30
Fig. 1. The true state is marked by o, and the measured
states by x. The dashed/solid line is the estimate from filter

3, respective 4.

estimate of the state vector, without any problems with lo-
cal minima. Compared to the Kalman filter, the advantage is
that any log-concave noise distribution can be used and any
linear equality or convex inequality state contraint may be
included, while the main drawback is that no recursive con-
vex optimization algorithm is yet available, which makes
the approach computer intensive.
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