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ABSTRACT

An important problem in signal processing consists in recur-
sively estimating an unobservable process x = {xn}n∈IN

from an observed process y = {yn}n∈IN. This is done clas-
sically in the framework of Hidden Markov Models (HMM).
In the linear Gaussian case, the classical recursive solution
is given by the well-known Kalman filter. In this paper, we
consider Pairwise Gaussian Models by assuming that the
pair (x,y) is Markovian and Gaussian. We show that this
model is strictly more general than the HMM, and yet still
enables Kalman-like filtering.

1. INTRODUCTION

Since its introduction in the 1960s in the control engineer-
ing community the Kalman filter has become a major tool in
signal processing and automatic control. In Kalman filter-
ing we wish to estimate samples of an unobserved process
x, given samples of some observed process y and a (state-
space) dynamic stochastic model for processes x and y.

Now, it is well known (see e.g. [1] [2]) that the state-
space model which underlies the Kalman filter is indeed an
HMM (with continuous state process).

In this paper, we propose to extend the Kalman filter by
using the general idea that enabled us to successfully gen-
eralize Hidden Markov Fields (HMF) to Pairwise Markov
Fields (PMF) [3], Hidden Markov Chains (with discrete hid-
den process) (HMC) to Pairwise Markov Chains (PMC) [4]
[5], and Hidden Markov Trees (HMT) to Pairwise Markov
Trees (PMT) [6]. More precisely, it is well known that
if (x,y) is a classical HMM, then the pair (x,y) itself is
Markovian. Our aim is to study the converse proposition :
what can be said if the pair (x,y) is a Markov Chain (MC)?

In this paper, we thus directly assume that the pair (x,y)
is a MC, and we show : (i) that a Kalman-like filter can still
be computed; and (ii) that such a “Pairwise Markov Model”
(PMM) is strictly more general than the classical HMM.

This paper is organized as follows. In section 2 we re-
call the classical dynamical state-space model, as well as the

properties which underly the derivation of the Kalman filter.
In section 3 we introduce a generalized stochastic dynami-
cal model in which the pair (x,y) is Markovian. We derive
the general time-update and measurement-update equations
for this model, as well as the associated Kalman-like filter
which holds in the particular case of a linear and Gaussian
PMM. In section 4 we show that Gaussian PMM are strictly
more general than Gaussian HMM.

2. CLASSICAL HIDDEN MARKOV MODELS

2.1. General HMM

Let us consider the following classical stochastic dynamical
system : {

xn+1 = gn(xn,un)
yn = hn(xn,vn)

, (1)

in which gn(., .) is a (possibly nonlinear) function from IRN×
IRp to IRN , hn(., .) is a (possibly nonlinear) function from
IRN × IRq to IRq , and u = {un}n∈IN and v = {vn}n∈IN

are zero-mean sequences which are independent, jointly in-
dependent and independent of x0.

Let x0:n = {xi}n
i=0 and y0:n = {yi}n

i=0. Let also
p(xn), p(x0:n) and p(xn|y0:n), say, denote the probabil-
ity density function (pdf) of xn, the pdf of x0:n, and the pdf
of xn, conditional on y0:n, respectively; the other pdf are
defined similarly. Then one can check that the following
properties hold :

p(xn+1|x0:n) = p(xn+1|xn) ; (2)

p(y0:n|x0:n) =

n∏

i=0

p(yi|x0:n) ; (3)

p(yi|x0:n) = p(yi|xi) for all i, 0 ≤ i ≤ n . (4)

In other words, x is a MC, and since it is known only through
the observed process y, (1) is an HMM.

Now, from (2) to (4) we get

p(xn+1|xn,y0:n) = p(xn+1|xn) , (5)

p(yn+1|xn+1,y0:n) = p(yn+1|xn+1). (6)
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As a consequence, the recursive propagation of the poste-
rior density (i.e., the computing of p(xn+1|y0:n+1) from
p(xn|y0:n)) under model (1) is given by the following “time-
update” and “measurement-update” equations :

p(xn+1|y0:n) =

∫
p(xn+1|xn)p(xn|y0:n)dxn ; (7)

p(xn+1|y0:n+1) =
p(yn+1|xn+1)p(xn+1|y0:n)

p(yn+1|y0:n)

=
p(yn+1|xn+1)p(xn+1|y0:n)∫

p(yn+1|xn+1)p(xn+1|y0:n)dxn+1

(8)

2.2. Linear Gaussian HMM

Let us now consider the important particular case in which
(1) reduces to the linear, stochastic dynamical model

{
xn+1 = Fnxn + Gnun

yn = Hnxn + vn
, (9)

in which Fn, Gn and Hn are matrices of dimensions N ×
N , N × p and q × N , respectively. Let wn = [uT

n ,vT
n ]T

and zn = [xT
n+1,y

T
n ]T . If furthermorex0 and wn are Gaus-

sian variables, the process z = {zn}n∈IN is Gaussian. So
the posterior densities are also Gaussian and are thus de-
scribed by their means and covariance matrices. Propagat-
ing p(xn|y0:n) amounts to propagating these parameters,
and in this case equations (7) and (8) reduce to the well
known Kalman filter [7]. On the other hand, if the Gaus-
sian assumption does not hold, or if (9) is replaced by the
general, nonlinear model (1), then computing equations (7)
and (8) often becomes difficult in practice. Consequently, a
number of approximate, Monte Carlo based methods have
been derived; see e.g. the recent books [8] [9] or tutorial
[10].

3. PAIRWISE MARKOV MODELS

3.1. General PMM

Let us now turn back to model (1). Let zn = [xT
n ,yT

n−1]
T

and let z0 = x0. zn satisfies

zn+1 = Gn(zn,wn) (10)

for some function Gn(., .), where wn = [uT
n ,vT

n ]T is a
zero-mean process which is independent and independent
of x0. As a consequence (and as is well known), the pro-
cess z = {zn}n∈IN is also a MC.

Throughout this section we will thus consider model
(10). As we now see, this model still enables to solve the
filtering problem. One can show that equations (5) and (6)
are replaced respectively by

p(xn+1|xn,y0:n) = p(xn+1|xn,yn,yn−1), (11)

p(yn+1|xn+1,y0:n) = p(yn+1|xn+1,yn). (12)

Consequently, (7) and (8) are replaced respectively by the
new relations

p(xn+1|y0:n) =

∫
p(xn+1|xn,yn,yn−1)p(xn|y0:n)dxn,

(13)

p(xn+1|y0:n+1) =
p(yn+1|xn+1,yn)p(xn+1|y0:n)∫

p(yn+1|xn+1,yn)p(xn+1|y0:n)dxn+1

,

(14)
which enable to compute p(xn|y0:n) recursively under model
(10).

3.2. Linear Gaussian PMM

We now consider the important particular case where Gn(., .)
is a linear function. Let us consider the following model :

[
xn+1

yn

]

︸ ︷︷ ︸
zn+1

=

[
F1

n F2
n

H1
n H2

n

]

︸ ︷︷ ︸
Fn

[
xn

yn−1

]
+

[
G11

n G12
n

G21
n G22

n

]

︸ ︷︷ ︸
Gn

[
un

vn

]

︸ ︷︷ ︸
wn

(15)
in which {wn = [uT

n ,vT
n ]T }n≥0 are random vectors which

are zero-mean, independent and independent of x0. Matri-
ces F1

n, F2
n, H1

n and H2
n are of dimensions N ×N , N × q,

q×N and q×q, and G11
n , G12

n , G21
n and G22

n of dimensions
N × p, N × q, q × p and q × q, respectively. This model
is a particular case of model (10), and a generalization of
the classical linear HMM (1), which is obtained by setting
F2

n = 0N×q, H2
n = 0q×q , G12

n = 0N×q, G21
n = 0q×p and

G22
n = Iq×q .

Let us further assume that the process w = {wn}n∈IN

is Gaussian and that p(x0) ∼ N (x̂0,P0). Then z is a
Gaussian process and consequently the pdf p(xn|y0:n) and
p(xn+1|y0:n) are also Gaussian. Let us set

p(xn|y0:n) ∼ N (x̂n|n,Pn|n) , (16)

p(xn+1|y0:n) ∼ N (x̂n+1|n,Pn+1|n) , (17)

and let

E(wnwT
m) =

[
Qn Sn

ST
n Rn

]
δn,m = Qn δn,m , (18)

[
G̃11

n G̃12
n

G̃21
n G̃22

n

]
=

[
G11

n G12
n

G21
n G22

n

][
Qn Sn

ST
n Rn

][
G11

n G12
n

G21
n G22

n

]T

= G̃n . (19)

The following result is an extension to model (15) of the
classical Kalman filter :

Proposition 1 (Pairwise Kalman Filter) Let us assume that
model (15) holds. Suppose that p(x0) ∼ N (x̂0,P0) and
that p(wn) ∼ N (0,Qn). Then x̂n+1|n+1 and Pn+1|n+1
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can be computed from x̂n|n et Pn|n via :

x̂n+1|n = [F1
n−G̃12

n (G̃22
n )−1H1

n]x̂n|n+G̃12
n (G̃22

n )−1yn

+ [F2
n − G̃12

n (G̃22
n )−1H2

n] yn−1 (20)

Pn+1|n = [G̃11
n − G̃12

n (G̃22
n )−1G̃21

n ]

+ [F1
n − G̃12

n (G̃22
n )−1H1

n] Pn|n

[F1
n − G̃12

n (G̃22
n )−1H1

n]T (21)

ỹn+1 = yn+1 −H1
n+1x̂n+1|n −H2

n+1yn (22)

Ln+1 = G̃22
n+1 + H1

n+1Pn+1|n(H1
n+1)

T (23)

Kn+1|n+1 = Pn+1|n(H1
n+1)

T L−1
n+1 (24)

x̂n+1|n+1 = x̂n+1|n + Kn+1|n+1 ỹn+1 (25)

Pn+1|n+1 = Pn+1|n −Kn+1|n+1Ln+1K
T
n+1|n+1 (26)

Proof. From (15) and (19), we get

p(xn+1,yn|xn,yn−1) ∼ N (FN

[
xn

yn−1

]
, G̃n) . (27)

By combining (13), (14), (16), (17) and (27), we compute
p(xn+1,xn|y0:n) and p(xn+1,yn+1|y0:n), from which equa-
tions (20) to (26) are deduced.

We check that if F2
n = 0N×q, H2

n = 0q×q , G12
n =

0N×q, G21
n = 0q×p et G22

n = Iq×q , then (15) reduces to
the classical model (9), and equations (20) to (26) reduce to
classical Kalman filter equations (for example, (20), (21),
(25) and (26) coincide respectively with [11, eq. (5.5) p.
115], [11, eq. (5.12) p. 117], [11, eq. (5.6) p. 116] and [11,
eq. (5.11) p. 117]).

Remarks.

The introduction of Pairwise Models in the context of Kalman
filtering is not entirely new. A closely related model was in-
troduded independently in the Gaussian case [12] (see also
[13, Corollary 1 p. 72]). In this model, the pair zn =
[xT

n ,yT
n ]T satisfies a linear equation similar to (15) and thus

is Markovian. Optimal filtering equations for this model
have also been derived [13, eqs. (13.56) et (13.57)] (in fact,
due to the difference in times indices, these equations ex-
tend the classical Kalman one-step ahead prediction algo-
rithm (x̂n|n−1,Pn|n−1) → (x̂n+1|n,Pn+1|n)). However,
to our best knowledge, equations (20) to (26) of Proposi-
tion 1 (which form the optimal filter for model (15) in the
Gaussian case); equations (13) and (14), which generalize
(7) and (8), on the one hand, and (20) to (26), on the other
hand; and section 4, which specifies relationships between
PMM and classical HMM, are original.

4. PAIRWISE MARKOV MODELS VS. HIDDEN
MARKOV MODELS

In section 3, we introduced models (10) and (15), which
are generalizations of (1) and (9), respectively. The aim of

this section is to make relations between HMM and PMM
clearer. To that end, we are looking for conditions under
which the marginal process x of a Markovian process z =
(x,y) is itself Markovian.

Proposition 2 Let zn = [xT
n ,yT

n−1]
T (with z0 = x0) and

z = {zn}n∈IN. Assume that z is a MC. Further assume that
either

for all n, p(yn|xn+1,xn+2) = p(yn|xn+1) , (28)

or

for all n, p(yn|xn+1,xn) = p(yn|xn+1) . (29)

Then {xn}n≥0 is a MC.

Proof. Since z is a MC,

p(z0:n) =
p(z0, z1) · · · p(zn−1, zn)

p(z1) · · · p(zn−1)

=
p(y0|x0,x1) · · · p(yn−2,yn−1|xn−1,xn)

p(y0|x1) · · · p(yn−2|xn−1)︸ ︷︷ ︸
A

×
p(x0,x1) · · · p(xn−1,xn)

p(x1) · · · p(xn−1)︸ ︷︷ ︸
B

.

x is a MC if and only if
∫

Ady0:n−1 = 1, which is ensured
under (28) or under (29).

Conversely, we are now looking for local conditions im-
plied if x is Markovian. In the Gaussian case, the following
result holds :

Proposition 3 Let zn = [xT
n ,yT

n−1]
T (with z0 = x0) and

z = {zn}n∈IN. Assume that z is a MC. Further assume
that z is zero-mean and Gaussian, and that yn ∈ IR (i.e.
that q = 1). If {xn}n≥0 is a MC, then for all n, either
p(yn|xn+1,xn+2) = p(yn|xn+1), or p(yn|xn+1,xn) =
p(yn|xn+1).

Proof. Since z is a MC, for all n [xT
n , yn−1]

T and [xT
n+2, yn+1]

T

are independent conditionally on [xT
n+1, yn]T . Consequently,

xn et xn+2 are also independent conditionally on [xT
n+1, yn]T .

Let

E(




xn+1

yn

xn

xn+2


 (.)T ) =




An BT
n CT

n DT
n

Bn en FT
n GT

n

Cn Fn Hn JT
n

Dn Gn Jn Kn


 . (30)

Conditionally on [xT
n+1, yn]T , the pdf of [xT

n ,xT
n+2]

T is
Gaussian with covariance matrix
[

Hn JT
n

Jn Kn

]
−

[
Cn Fn

Dn Gn

][
An BT

n

Bn en

]−1[
CT

n DT
n

FT
n GT

n

]
;
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the variables xn et xn+2 are independent conditionnally on
[xT

n+1, yn]T if and only if this matrix is block-diagonal, i.e.
if and only if

(i) 0N×N = (Jn −DnA−1
n CT

n ) − (Gn −DnA−1
n BT

n )

×(en −BnA−1
n BT

n )−1(FT
n −BnA−1

n CT
n ).

Now, further assume that xn is a MC. Then for all n, xn

and xn+2 are independent conditionally on xn+1, which is
equivalent to

(ii) Jn −DnA−1
n CT

n = 0N×N .

Consequently, under condition (i), (ii) holds if and only if

(Gn−DnA−1
n BT

n )︸ ︷︷ ︸
N×1

(en−BnA
−1
n BT

n )︸ ︷︷ ︸
1×1

−1(FT
n −BnA

−1
n CT

n )︸ ︷︷ ︸
1×N

is equal to 0N×N , i.e., since q = 1, if and only if

Gn −DnA
−1
n BT

n =0N×1 or FT
n −BnA

−1
n CT

n =01×N .

As we see from (30), this condition means that xn+2 and
yn are independent conditionally on xn+1, or that xn and
yn are independent conditionally on xn+1, which can be
written as

p(yn|xn+1,xn+2) = p(yn|xn+1) or

p(yn|xn+1,xn) = p(yn|xn+1) .

Remarks

The sufficient condition of Proposition 2 is local and
can thus easily be checked in the framework of a dynamic
stochastic model. For instance, let us come back to the Pair-
wise linear model (15). We check that if F2

n = 0, then
p(xn+1|xn,yn−1) = p(xn+1|xn) and so the process x is
a MC. Note that the case F2

n = 0, H2
n 6= 0 provides a

model which is more general than (9), and in which x re-
mains Markovian.

On the other hand, we can easily verify that there exist
models for which the necessary condition of Proposition 3
is not satisfied (consider for instance the model

zn+1=

[
.5 .1
1 0

]
zn+wn,Qn =

[
1 .3
.3 1

]
, p(x0)∼N (0, 1).)

This shows that we can find PMM for which x is not a MC,
and thus that model (10) is strictly more general than model
(1).
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