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Abstract  In over-the-hor izon radar (OTHR) target detection, the
signal to clutter ratio (SCR) is very low, typically from –50 dB to –60
dB. Fur thermore, for maneuvering targets, such as aircrafts and
missiles, Doppler frequencies of their r adar return signals may be
time-varying. In this case, the Four ier transform based techniques
and super resolution spectrum estimation techniques may not work
well since they use sinusoidal signal models. In this paper, we propose
a signal subspace clutter r ejection algor ithm combined with an
adaptive chirplet transform technique for maneuver ing target
detection with OTHR. Simulation results by adding simulated
maneuvering targets into raw OTHR clutter data are presented to
ill ustrate the effectiveness of the proposed algor ithm. The simulation
results show that moving targets with –53.5 dB SCR can be detected.

1. INTRODUCTION

Over-the-horizon radar (OTHR) has been widely used in detection
and tracking of aircraft targets and ship targets in very wide-area
surveill ance, see for example [1-4]. The existing OTHR algorithms
are based on the assumption that the Doppler frequency of target is
constant during each dwell . A two-dimensional Fourier transform
is taken to the received signal.  Targets are detected from
amplitude peaks away from the zero frequency. The detection
capabilit y of an algorithm depends on the SCR and the Doppler
resolution. For a maneuvering target, such as an aircraft and a fast
boat, the Fourier transformation based techniques may not work
well due to the time-varying Doppler frequency nature of the
signal. In this paper, we first propose an adaptive chirplet
transform (ACT) for Doppler processing as an alternative of the
Fourier transform, where the sinusoidal signal model is replaced by
the chirplet signal model because the radar return signals from
maneuvering targets have chirp type characteristics. With the ACT
technique, the coherent integration time (CIT) can be extended, and
therefore, the Doppler resolution may be better than that using the
Fourier transform techniques. Since the SCR is very low, about –
50 dB to –60 dB, before implementing the ACT, clutter reject
algorithms must be used to improve the SCR. Most existing clutter
rejection methods are integrated in signal spectrum estimation
methods in target detection [3,9] for sinusoidal signal models, i.e.,
uniformly moving targets. Because the clutter in neighboring range
cells have high correlation, the received signals from neighboring
range cells are used to estimate the clutter covariance matrix,
clutter subspace and signal subspace of the current range cell .
When the signal subspace is accurately estimated, most clutter
energy can be removed and the signal arrival from a target is kept
after projecting the received signal into the signal subspace. We
call this as subspace clutter rejection algorithm (SCRA) for
convenience.  The ACT is then applied to the clutter-removed
signal, with which the maneuvering target signal energy can be
focused. By using combined ACT and SCRA, our simulation
results show that maneuvering targets with SCR at –53.5dB can be

correctly detected. In this paper, we also consider the multi -path
propagation environment that causes several received signals from
each target to be possibly in different range, azimuth and Doppler
cells. This may make the target detection and tracking more
diff icult. We show that our proposed algorithm is also helpful in
multi -path signal detection because multi -path signals from a target
with similar time-frequency distributions can be easily identified.

2. OTHR SIGNAL MODEL AND PROBLEM
DESCRIPTION

In this section, we first describe the OTHR signal model
presented in [4], the conventional OTHR processing for uniform
moving targets, and then the problem of interest in this paper for
maneuvering targets.

2.1 OTHR Signal Model for OTHR Processing
After the low pass filtering and sampling in the time interval, the
received signal ),( mns  for a target p with ground range r  is,
see for example [4],
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where n , m , 0T , 

lpω , mn,ξ  are the fast time sample index, chirp

pulse index, the minimum delay, Doppler frequency shift, and
additive noise, respectively. From (1), we find that the signal part
in ),( nms  in terms of index n is a complex sinusoidal signal. It is
also a sinusoidal signal in terms of index m  if the Doppler
frequency 

lpω  does not change with m . In this case, a two-

dimensional discrete Fourier transform over m  and n  provides
the range-Doppler surface )','( nmS . For a particular OTHR
processing algorithm, the target detection capabil ity depends on
the SCR. Therefore, in order to improve the target detection
performance, one can increase the range, Doppler resolution, and

the SCR. The range resolution, 
B

c
r

2
=∆ , depends on the radar

system (the bandwidth B of radar), which is fixed for a fixed

radar. However, the Doppler resolution, 
cT

πω 2=∆ , depends on

the CIT cT , which is chosen at the receiver. Targets and clutter

with a Doppler difference less than ω∆ are located in one
Doppler cell . One Doppler cell will be divided into k smaller
cells and the SCR is then increased by k times if the CIT increases
k  times. The assumption here is that the target moves uniformly
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within the CIT interval, which may not hold when the CIT is
long.

2.2 Problem Description on Maneuvering Target Detection
         For a maneuvering target, the signal Doppler frequency

lpω in (1) due to the target motion is no longer constant but time

varying. The non-uniform motion of electron density distributions
in ionospheric media can also induce the signal Doppler
frequency change [9,10]. Consider a moving target with velocity
v  and acceleration a  in the direction of slant range. The Doppler

frequency pω in (1) is )()( atvtp +=
λ
πω . The Doppler spread

length is cp aT
λ
πω =∆ , and therefore, the number of Doppler

cells that the target energy spreads over is 
λω

ω
2

2
cp aT

=
∆

∆
. So,

when the target moves uniformly, i.e., 0=a , the target energy
using the Fourier transform is always concentrated in a single
Doppler cell . It is, however, different when the target moves non-
uniformly, i.e., 0≠a . As an example, let us assume 1)2/( =λa .

In this case, the target energy spreads over 2
cT  Doppler cells. This

implies that, if the CIT cT  increases k  times, the number of

Doppler cells over which the target energy spreads increases
2k times. Therefore, in this case, the SCR in Doppler reduces
2k times compared to that in the uniform moving target case. This

tells us that, for a maneuvering target, the CIT increase does not
benefit the OTHR target detection if the Fourier transform based
technique is used in the Doppler processing. We next propose an
adaptive chirplet transform (ACT) in the Doppler processing that
takes advantage of the long CIT no matter whether the target
moves uniformly or not.

3. CHIRP SIGNAL DETECTION AND ADAPTIVE
CHIRPLET TRANSFORM

In OTHR, the received signal in a range cell i s usually a multi -
component signal with time-varying frequency since there may be
multiple targets and clutter with different velocities in a range
cell . If the CIT is not short, the received signal from a
maneuvering target may be a linear chirp or a higher order time-
varying frequency signal, i.e., a high order chirp. The idea in what
follows is quite simple, i.e., a high order chirp from a target is
expressed as a combination of several li near chirps over different
time intervals called chirplets introduced by Mann and Haykin
[8]. To a received signal )(ts , based on a given frame

{ }Zkthk ∈),( , it will be decomposed as
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where 〉〈= )()(),( '
, tuthtsC ikki are the frame decomposition

coefficients and { }Zkhk ∈(t),'  is dual frame of { }Zkhk ∈(t), ,
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i tjtu iα for some chirp rate iα . For details about

(2), see [7,11]. To have an eff icient frame decomposition,
{ }Zkhk ∈(t),  should include functions with different time and

frequency widths and center (mean) locations. For example, the
following modulated Gaussian functions
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 are commonly used, where  there are basically  four indexes kγ ,

kφ , kβ , and kt  corresponding to the envelope, phase, frequency

and time centers, respectively.
      We next present how the chirp rate parameters iα in
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i tjtu iα  and the corresponding )(thk  of the form

(3) are estimated. For a given signal )(ts , chirp rate 1α  is

obtained by searching the largest peak in the Radon-Wigner plane
after taking the Radon-Wigner Transform (RWT) of the signal

)(ts . We then obtain frame { }Zkthtu k ∈),()(1  by modulating

frame { }Zkthk ∈),(  in (3) with )
2

(exp)( 21
1 tjtu

α
= . We next

estimate which element in the modified frame { }Zkthtu k ∈),()(1

optimally matches the signal s and denote the element as
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Define signal 1s as
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By repeating the same procedure to )(1 ts  as to )(ts , we obtain

the following things: parameter 2α is obtained by estimate the

largest chirp component of )(1 ts  by the RWT and let
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Repeating the above procedure, signal )(ts  can be expressed as

.)()( ∑=
i

i tsts Based on the above decomposition, the

instantaneous frequencies of the signal’s auto-terms can be
obtained and then used for the OTHR target detection.
       One can see that the search in (4) and (6) is in fact four
dimensional, which has a high computational complexity. In order
to reduce the complexity, a sub-optimal algorithm is given in [11]
and summarized as follows:

Adaptive Chirplet Transform
Step 1. Estimate chirp rate 1α and frequency 1ω of )(ts by RWT

),(maxarg),(
),(

11 ωαωα
ωα

sD= .

Step 2. Generate )(1 th by a narrow band filter )(tg  with center

frequency 1ω , )
2

(exp 21
1 tju

α
= and ))()(()()( *

11 tutstgth �= .

Step 3. The coefficient 11,C
 
in (2) is obtained as follows

VI - 50

➡ ➡



dttuthtstuthtsC )()()()()(,)( *
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Step 4. Let  =)(1 ty )(11,1 thC )(1 tu , and )()()( 11 tytsts −= .  (9)

Step 5.  Set ).()( 1 tsts = .

Step 6. Stop if energy of )(ts is small enough, otherwise go to
Step 1.

4. CLUTTER REJECTION

As mentioned in the Introduction, the SCR is very low in the
OTHR data. A clutter rejection algorithm is usually needed. The
available clutter rejection algorithms [3,9] combine the adaptive
clutter rejection and the maximum likelihood (ML) target
detection together mainly based on the sinusoidal, uniformly
moving target, signal model. These algorithms may not work well
for maneuvering target detection because the target signals are
chirps. In this section, we present a signal subspace clutter
rejection algorithm that can remove large amount of clutter
energy while keep the waveforms of moving target signals. After
the clutter rejection, ACT is applied to detect maneuvering
targets, characterized by chirps.

Signal subspace method is widely used in array signal processing
and multi -user detection in wireless communications. In typical
array signal processing, e.g., the MUSIC algorithm is applied, the
signal to noise ratio is not too low. Signal subspace is estimated
by the singular-value decomposition of the received signal
covariance matrix. By using the estimated signal subspace and
noise subspace a high resolution signal spectrum is obtained,
which is used in targets detection. The difference between the
OTHR application and the MUSIC is that the SCR is very low in
OTHR and the desire signal frequency may be time varying.
Therefore, a high resolution spectrum estimation may not achieve
a good performance in OTHR target detection. Because the SCR
in OTHR is very low (typically between –50dB and –60dB), it is
impossible to directly estimate the signal subspace similar to array
signal processing. However, signals from the neighboring range
cells are highly correlated which can be used to estimate the
clutter in an interested range cell . Let )(tsc  be the received signal

after range compression in the current interested range cell ,
)(),...,(1 tsts nNn  be received signals after range compression from

N neighboring range cells. The covariance matrix of clutter and
noise can be estimated by

H
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.                                (10)

The SVD decomposition of R  can be written as HUVUR = ,
where U is a unitary matrix and V is a diagonal matrix. Columns
of U  are eigen-vectors of R , and the elements in the diagonal of
V are the corresponding eigenvalues. As the clutter is much
stronger than noise and signal and is highly correlated between
range cells whereas the signal has negligible correlation, the
eigen-vectors Muuu ,...,, 21 for some M corresponding to the

largest eigenvalues are supposed coming from clutter. Therefore,
the subspace clutterS generated from Muuu ,...,, 21 is the clutter

subspace. If the target signal is not in the subspace clutterS , then

cproj sPIts )()( −= , is the projection of received signal )(tsc in

the current range cell i nto signal subspace, where

H
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1
,                                 (11)

is the projection operator to the clutter subspace clutterS . Now the

problem is how we can determine the number M of eigen-vectors

Muuu ,...,, 21 that belong to clutter subspace clutterS . The signal

)(target ts coming form a target may not be orthogonal to the

clutter subspace clutterS  if Muuu ,...,, 21  are not appropriately

chosen. In this case, the target signal )(target ts  is also reduced or

removed when clutter is reduced. We do not know the exact
waveforms of targets. What we can do is to use the knowledge of
estimated clutter covariance matrix to remove the clutter as much
as possible while maintain the target signal as much as possible.
Now, let us go back to (10), the estimated covariance R .
Because only a few neighboring range cells are used to estimate
R , it is rank deficient.  Covariance matrix 1R  of clutter and noise

can be estimated as IRR 2
1 σ+= , where 2σ is the variance of

noise that is roughly known. 1R  has the following SVD

decomposition and expression
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where iλ is the i-th largest eigenvalue of 1R , iu~  is its eigen-

vector, and iP  is the projection operator to the subspace generated

by iu~ . From (12), one can see that the larger eigenvalues iλ are,

the more clutter energy distributes to the subspace generated by

iu~ . Based on this observation, the following algorithm is used to

remove strong clutter without any knowledge of the signal
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where )( if λ is a decreasing function of iλ .  In (11), )( if λ  is
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In our simulations of this paper, )( if λ  is chosen as
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which is obtained before applying the ACT.  After this is
obtained, the ACT is applied for the moving target detection.

5. SIMULATION

In this section, the performance of the proposed algorithms for
maneuvering target detection is shown by some simulation
results. The signal data coming from maneuvering targets is
generated based on the signal model (1) and then added to the raw
OTHR clutter data. The radar working frequency is 20MHz.
There are 54 range cells in the data. Coherent integration time
(CIT) is =cT  12.3 seconds. The velocity and acceleration of

targets in the range direction are from 40 sm /  and 3 2/ sm ,
respectively. The signal to clutter ratio is about –53.5 dB.

In our simulations, the following steps are implemented. For the
received signal, match filtering and range compression are first
implemented in the range direction. Then, for each range cell , 6
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neighboring range cells (3 range cells on each side) are used to
estimate clutter covariance matrix of the current range cell . Next,
the signal subspace clutter rejection algorithm is used to remove
the clutter. After signal subspace clutter rejection, the ACT is
used to the signal after the clutter rejection for target detection.

Fig.1 shows the signal waveforms before and after signal
subspace clutter rejection of the range cell that contains a target.
We can see that the clutter energy is suppressed by about 15 dB
by using the signal subspace algorithm. Fig.2 depicts the range-
Doppler results using the Fourier transform to data after the
clutter rejection algorithms. Even the SCR is improved after the
clutter rejection, the target remains undetectable, because the
target energy is spread by using the Fourier transform to
maneuvering targets. Instead of the Fourier transform in Fig.2,
ACT is used in Fig.3.  The target can be easily detected in Fig.3 at
range 2250 km with Doppler frequency of about –4 Hz. The
amplitudes of the signal in the range cell containing the target are
shown in Fig.4, Fig.5 and Fig.6 using the Fourier transform
without clutter rejection, the Fourier transform with clutter
rejection, and the ACT with clutter rejection, respectively. From
Fig.4, we can see that the clutter amplitude of the main lobe
around 0 Hz is about 20 dB higher than that of the side lobes
including the region around –5 Hz where the target is located.  In
Fig.5, although the clutter amplitude of the main lobe is reduced
by about 15 dB and the side lode is reduced by about 5 to 10 dB,
the target still can not be detected. But in Fig.6, the target energy
is focused, and the amplitude of the target signal becomes about 4
dB higher than that of the clutter in target’s neighboring
frequency bands.

6. CONCLUSION

In this paper, an adaptive clutter rejection algorithm has been
proposed to maneuvering targets detection in OTHR systems.
This algorithm can reduce clutter energy by about 15 to 20 dB
with negligible distortion to the waveform of the signal returned
from maneuvering targets. An adaptive chirplet transform
algorithm was applied to the clutter-mitigated signal for improved

Doppler processing. Simulation results have shown that the
proposed method substantially enhances the target detection
abilit y. Particularly, several simulation examples have shown that
the proposed method can successfully detect weak target signals
where other methods fail .
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