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ABSTRACT

Internet packet data is analysed to determine the relationship be-
tween the arrival process of packets, and of TCP flows of packets.
Viewed as point processes, second order properties of the two pro-
cesses are studied using wavelets, and each is found to have long-
range dependence. A new result is given directly linking flow du-
rations to the onset scale of the long range dependence in the flow
process. Using this result a mechanism is described whereby the
flow level structure could in principle influence the packet level
structure, and it is shown and explained why this is not the case
currently. The circumstances under which the flow structure could
impact on the packet process, and therefore become important for
the modeling of the packet level dynamics, are given.

1. INTRODUCTION

Modern telecommunications networks transport data in the form
of packets, small collections of contiguous bytes forming part of
a larger whole. In the Internet,Internet Protocol(IP) packets pro-
vide the underlying transport mechanism used by higher level pro-
tocols which support more sophisticated services. A key exam-
ple is theTransport Control Protocol(TCP), which establishes a
virtual connection between two end points, and ensures that all
packets pertaining to a given set of data, say a file, are transported
reliably at a reasonable average rate.

A set of packets passing between the same two end points that
can be naturally grouped together, such as those of a TCP con-
nection, are said to form aflow. Flows are a key concept in the
understanding of network traffic structure. At a given point on a
network link pass packets from many thousands of intermingled
flows. Flows are highly variable in terms of duration (sub-second
to many hours), volume (from1 to several millions packets), and
average packet rate (from1 to millions per hour).

The set of arrival times of packets can be viewed as a point
processX(t) on the real line. A central aim of traffic modelling,
important for the understanding of the performance of switching
devices, is to be able to describe key features of this process. One
could try to modelX(t) directly in a black box fashion, however it
is far more meaningful to consider the relationship betweenX(t)
and the point processY (t) describing the subset of points corre-
sponding to flow arrival instants (the first packets). Furthermore,
Y (t) is important to study in its own right, for example to un-
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derstand the dynamics of processor load in web servers. We are
therefore led to study the two together.

In recent work we have studied in detail the relationship be-
tweenY andX, with a focus on the potential dependencies be-
tween their scale invariance properties. For example, at least in
the case of TCP flows which we focus on here, each ofX and
Y exhibitLong-Range Dependence(LRD) (defined below). In [1]
we examined empirically the impact of the structure ofY onX us-
ing precise Internet traces from a number of sources. Surprisingly,
aside from the first order statistic, the stationary arrival intensity,
we found that the influence ofY was negligible. This conclusion
was confirmed in a more in depth study [2], where we also pro-
posedPoisson cluster processesas a natural model framework for
X(t). In these models, a Poisson process is taken forY (t) con-
sistent with the idea that the details of the flow arrivals are not
important. However, in the same data traces used in [1, 2], inter-
esting structure forY is consistently found. Specifically (as shown
in the log-log wavelet energy plots of figure 1(a)), it has LRD, and
has an onset scale or ‘knee’ where the LRD begins which is very
pronounced.

Because of the divergent growth of low frequency power char-
acteristic of LRD, it will not necessarily be the case thatY never
has an impact onX. In this paper we examineY more closely, in
particular the position of the knee as a function of network param-
eters. What we find enables us to clearly explain when and how it
might impact onX.

2. BACKGROUND

2.1. The Wavelet Spectrum

To study scale invariant properties such as long range dependence
we use a wavelet-based analysis [3, 4]. The (discrete) wavelet
transform of a processX is defined by coefficientsdX(j, k) =
〈X,ψj,k〉, where the family{ψj,k} is derived from the mother
waveletψ, j = log2(scale), andk ∈ N indexes time at octave
j. Let X(t) be a continuous time stationary process with power
spectral densityΓX(ν). The variance of its wavelet coefficients
satisfies:

IE|dX(j, k)|2 =

∫
ΓX(ν)2j |Ψ(2jν)|2dν, (1)

whereΨ(ν) denotes the Fourier transform ofψ. If X possesses
scale invariance over a range of scales, for example if it is LRD,
defined as a power law divergence of the spectrum at the origin:
ΓX(ν) ∼ c|ν|−α, |ν| → 0, with α ∈ (0, 1), then in the limit of
large scales equation (1) becomes

IE|dX(j, k)|2 ∼ C2jα, j → +∞. (2)
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Fig. 1. Analysing the Flow Arrival ProcessY(t) (a) Logscale Diagrams for the Auck.II (lower set) and Auck.IV traces. Each has LRD
and a similar knee positionj∗, (b) The LDs of the duration based subsets, and the LD of their superposition compared with data, (c) Knee
positionj∗ as a function of median flow duration for the subsets, the dependence is linear.

Equation (1) can be viewed as defining a kind of wavelet energy
spectrum well suited to the study of scaling processes. To estimate
the wavelet spectrum from data, the simple time average based
variance estimates: Var(dj) = 1

nj

∑
k |dX(j, k)|2, wherenj is

the number ofdX(j, k) available at scalej, perform very well,
because of the short range dependence in the wavelet domain [4].
A plot of the logarithm of these estimates againstj we call the
Logscale Diagram(LD), in which straight lines indicate scaling.
For example, a straight line observed over large scales in figure 1
betrays long memory.

2.2. Data

We use a selection of theAuckland II andAuckland IVdata sets
collected using high precision timestamping at the University of
Auckland [5, 6]. For space reasons we present results mainly for a
single Auckland IV trace collected on April 2nd 2001, and use an
apparently stationary subset between 2pm and 5pm. The trace has
an average bitrate of0.5Mbps. The results hold across all Auck-
land traces as well as others [2].

A flow is defined as a set of time-ordered packets with the
same 5-tuple: higher level IP protocol carried, source address, des-
tination address, source port and destination port, where no packet
inter-arrival (defined as the difference between two arrival times)
exceeds 64 seconds [7]. From the raw data many different time
series can be constructed. At the ‘IP level’, where flows are not
individually tracked, the key quantity is the set of arrival times of
packets which definesX(t). At the ‘flow level’ statistics of indi-
vidual flows are collected. In addition to the set of arrival times
of flows definingY (t), the intrinsically discrete seriesP (i) and
D(i), i = 1, 2, · · · I, give the number of packets and durations in
seconds respectively of successive flows (D(i) is only defined if
P (i) > 1). We also located and stored, for each flow, a complete
list of packet inter-arrival times, which requires extensive compu-
tation.

3. THE FLOW ARRIVAL PROCESS

Figure 1 superimposes Logscale Diagrams ofY across many of
the Auckland traces: they are very similar. The prominent features
are the LRD at large scales, a clear knee at a characteristic scale
around1s (top edge shows seconds), and at small scales evidence

for another scaling regime. We leave the question of the detailed
characterisation of this latter regime for future work. In this paper
for simplicity we model it (in section 4) by a trivial flat spectrum,
which is very accurate in the case of Auckland IV. The precise
value of the LRD exponent varies but is typically aroundα = 0.6,
and will be discussed further in the next section. The origin of the
LRD in Y , in contrast to that inX, is at present unknown, and is
beyond the scope of this paper. Here we focus on the knee posi-
tion j∗, both for its intrinsic importance as a characteristic scale
whose origin is also not understood, and because it has received
little attention in the literature.

Our main approach was to study subsets of flows according to
various critera, in an attempt to observe and quantify the param-
eters affectingj∗. Somewhat surprisingly, it was very difficult to
observe patterns or even variations based on any of: trace, source
address, destination address, application protocol (eg. TCP pack-
ets carrying web (HTTP), or e-mail (SMTP) data), packet volume
P (i), average rate within flows, the round trip travel time (RTT)
of packets in a flow, or random subsets. The only clear and robust
dependency found was based on flow durationD:

t∗ ≡ 2j∗ ' 3D̄, (3)

wheret∗ is the timescale associated toj∗, andD̄ is a representive
duration of flows in the subset. More precisely, we grouped flows
(in fact TCP flows carrying HTTP, comprising 70% ofall flows)
into 10 equal sized subsets based on percentiles: the shortest10%
and so on up to the longest10%. The knees in the corresponding
LDs, each plotted in figure 1(b) (in fact averages over all the Auck-
land IV traces are shown to reduce variability) show a marked and
regular progression. To quantify this a practical definition ofj∗

is needed. We adopted one based on a heuristic algorithm which
measures the point of consistent departure (relative to confidence
intervals) from a straight line fitted over the smallest scales (space
limitations preclude full details). The resulting automatically mea-
sured knee values are plotted in figure 1(c) against the median flow
durationD̄ of the corresponding subset. The straight line with
slope1 on the logarithmic scale is equivalent to equation (3).

Figure 1(b) also compares the data with the ‘sum’ of the10
subset LDs. They are very close, indicating that the subsets are
roughly independent of each other. From this we learn that the
knee in the data can be understood as a smoothed ‘mixture’ of
sharper knees corresponding to independent subsets of flows which,
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in an idealised limit, would each have constant flow duration. Note
that confidence intervals in the estimated wavelet spectra are such
that the differences between the LDs forj > 16 are not significant.

4. THE PACKET ARRIVAL PROCESS

In each plot in figure 2 the upper grey curve is the LD ofX for
our chosen trace, whereas the lower dashed grey curve is forY .
It is natural that the LD forY lies below that ofX. In the LD a
uniform unit drop of1 corresponds to halving the variance, and can
be understood very roughly as a global reduction by2 in the total
number of packets. Although the points ofY have an important
structural significance, at another levelY is simply a subset ofX
comprising, for Auckland data, around6% of its points.

In figure 2(a) we show the results of3 ‘semi-experiments’,
where we selectively replace portions ofX with simplified ‘neu-
tral’ model substitutes, in order to reveal the role of the data feature
removed. In the first experiment,[A-Pois], the interior of flows are
not altered but the flow order is randomly permuted, and the flow
Arrivals are placed according to a sample path of a Poisson process
with a matched average intensity. The remarkable fact that the LD
is virtually unchanged by this complete erasure of the structure of
Y is one of the key observations of [1, 2]. In the second experi-
ment,[A-Pois;T-Pkt] , we have in additionTruncated flows after
the firstq packets, in this case atq = 6, the60% percentile. The
resulting dramatic elimination of the LRD is consistent with the
currently accepted explanation for LRD inX, namely heavy tailed
file sizes [8], which results in heavy tailed flows, and thereby LRD
through a well known mechanism [9]. The considerable drop in
level in the LD follows from the fact, as is also well known, that
the heavy tailed nature ofP results in a very small proportion of
flows containing a notable percentage of total packets.

Thus far the structure ofX seems very unproblematic, and the
correlation structure ofY irrelevant to it, however things are not
as simple as they would appear. In the third experiment,[T-Pkt] ,
the flow arrivals are not altered in any way, but the same packet
volume truncation is made. In apparent contradication to our pre-
vious conclusion, the LRD has ‘returned’ despite the absence of
the heavy tail ofP . Furthermore, the difference between[T-Pkt]
and[A-Pois;T-Pkt] is dramatic, apparently contradicting our first
conclusion thatY has no influence.

To explain this apparent paradox, the first observation is that
sinceY is LRD, then so must be[T-Pkt] , as for any truncation
level it includesY as a subset. This LRD was obscured previ-
ously through the ‘noise’ of the dominant LRD generated by the
heavy tail ofP . To explore this in more detail, observe that with a
truncation level of100% (q = ∞), the truncated process[T-Pkt]
is simplyX, and whenq = 1, it is Y . Thus as the truncation
level q drops, the truncated process[T-Pkt] passes fromX(t) to
Y (t). The evolution towardY is particularly easy to see whenq
is small, and takes an especially simple form at large scale. There,
the packets of a given flow appear co-located compared to the scale
of observation, so that[T-Pkt] is approximately justY (t) scaled
up by some factor, corresponding to a vertical shift in the LD. This
is seen in figure 1(a) at scales beyondj = 1.5, corresponding to
the scale of average duration after truncation.

We have seen howY , although of negligible influence onX
over scales up toj = 11 or 1 hour, is present just behind the scenes
with a potentially influential LRD. To examine the question of
when, if ever, this LRD can rise to prominence at the packet level,
we consider the impact onX of the knee movement inY found

in section 2.2. In a new type of semi-experiment,[A-Clus] , the
original flows are translated (without permutation) to begin at the
points of a Poisson cluster process [10] sample path with matched
average intensity. In [2] we successfully used such processes to
modelX. Here they serve simply as a convenient parametric class
to modelY which allows us to easily reproduce, in a black box
fashion, a flat spectrum at small scales and LRD at large scales,
with a controllable knee position. A stationary Poisson cluster pro-
cess consists of a Poisson process of rateλS defining the locations
of ‘seeds’, about which a group of points are placed according to
i.i.d. copies of another process, chosen here to be a finite Pois-
son process of rateλA beginning at the seed. In fact1/λA is a
scale parameter for the process. IncreasingλA simply translates
the spectrum, and hence the entire LD, toward smaller scales, a
simple way to adjustj∗.

Figure 2(b) shows two different[A-Clus] experiments in ad-
dition to the data. TheY processes are also plotted to show the
very different knee positions chosen for the two experiments. The
knee forY2 was put at a larger scale thanj∗. Not surprisingly,
the correspondingX process,[A-Clus2], shows little change, as
the LD forY2 is below that ofY and so contains even less energy.
In contrast, the knee forY1 is at a scale which is small enough so
that its LRD in fact does have a significant impact on the overall
packet process[A-Clus1], both in terms of the knee position and
the spectrum at scales beyond it.

The last observation above illustrates a principle which is in
contradiction to the original[A-Pois] conclusion, that the finer
structure ofY plays no role. We therefore also performed experi-
ments using theSelection of flow subsets method of section 3, in
order to induce a change inj∗ without imposing it across all flows
in such a uniform manner. Two subsets, each containing10% of
flows, were selected based on duration ranges designed to give a
wide contrast inj∗.

To obtain aj∗ value at large scale a subset consisting of the
longest10% of flows was selected, yieldingY2 as seen in fig-
ure 2(c). Despite a knee aroundj = 6.3 for Y , the reconstructed
packet level process[S-Dur2] is very similar to the originalX,
with a knee aroundj = 0.4. This result is in agreement with the
corresponding one from figure 2(b), but it also contains an addi-
tional important element. In this caseY2 only contains10% of
flows, yet[S-Dur2] accounts for about half (48%) of the spectrum
of X. This is a clear indication that the tail ofP , which strongly
influences the flows with the longest durations, is disproportion-
ately responsible for the form of the LD ofX.

To obtain a contrastingY1 with aj∗ value at small scale we do
not select the very shortest flows, as flows with just a single packet
have somewhat different properties which would complicate the
analysis. Instead, a subset totalling10% of flows is selected by
choosing the shortest flows which have at least2 packets. In fig-
ure 2(c) the smallerj∗ = −1 of Y1 translates to an earlier knee
in the packet level process[S-Dur1] which looks quite different
from X, again in agreement with the corresponding experiment
from figure 2(b). A key difference however, it that instead of[S-
Dur1] being well above[S-Dur2], it is in fact well below it. The
subset corresponding to shorter durations has considerably less en-
ergy than that of the longer durations despite the delayed entry of
the former’s LRD.

We can now give a coherent picture explaining the above ob-
servations. From section 3 we know that flows of different dura-
tions have different knee positions, and from the experiments of
figure 2(b) we know that as a result for a small enough flow dura-
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Fig. 2. Semi-experiments: impact ofY(t) on X(t). (a) Manipulating arrivals:[A-Pois], flow volumes:[T-pkt] , and both:[A-Pois;T-
pkt] , (b) Manipulating the kneej∗ of Y : [A-Clus] - the effect onX is large for smallj∗, (c) Looking at differentj∗ using flow subsets:
[S-Dur] - the results are weighted by their ‘packet impact’, long durations dominate.

tion the LRD of the corresponding subset ofY can indeed impact
on the spectrum ofX. However, it is essential to consider the im-
pact at the packet level of any given subset of flows. Although
average packet rates within flows vary widely, broadly speaking
the flows with a very large number of packets are naturally also
very long. Thus, the subset ofX corresponding to the flow sub-
set with the longest durations contains the strong LRD due to the
heavy tailed packet size distribution, and simultaneously the weak-
est portion of the LRD fromY . Conversely, in the case of short
durations the LRD fromY is strongest, but the number of pack-
ets corresponding to it is far lower, resulting in a small subset of
X with low energy. The findings here are in agreement with and
complement those of [2], where it was found that the body and
the tail of the distribution ofP has a strong influence on both the
LRD and the knee position ofX, and therefore that the overall
behaviour of the wavelet spectrum is strongly influenced by this
‘packet-level impact’ weighting.

Thus far we have not discussed the role of the comparative
values of the LRD exponents ofX andY . This is because, in
the traces we have studied, the exponents for the two are similiar,
which leaves the knee position as the key feature to understand.
Clearly, if the exponent forY were much greater than that ofX,
then its impact would always show up for sufficiently large scale,
and in practice would make itself felt more often and at a smaller
scale.

5. CONCLUSION

The arrival processX of IP packets in the Internet, as well as the
arrival processY of flows of packets, viewed as point processes,
each have LRD. Using mixtures of real data and models we call
‘semi-experiments’, we have shown using a second order wavelet
analysis that, although the flow arrival process does not impact on
the second order properties of the overall packet process, it could
do so should certain circumstances be met. We first showed that
the onset scale of the LRD ofY varied according to flow duration,
and furthermore that flows of small duration have onset scales at
small enough scales to allow their LRD to impact the spectrum of
(the corresponding subset of)X despite the fact that the packets
marking the beginning of flows constitute only a small proportion
of total packets. We were able to explain why the LRD ofY has
little impact despite this fact, by showing that the heavy tailed na-
ture of the number of packets in flows means that the spectrum of

X is very heavily weighted towards the flows with the most pack-
ets, which also have the longest durations. These flows have the
longest onset scales forY , and so the impact of the LRD ofY
is the weakest precisely for the most important flows. The cur-
rent balance between the two sources of LRD, and their impact,
could change if flows of smaller duration increased in importance
in terms of their proportion of overall packets. It would then be
necessary to model details ofY to understand the spectrum ofX,
whereas currentlyY may be validly replaced by a Poisson pro-
cess as far as the study ofX is concerned, a fact with important
implications for traffic modelling and performance analysis.
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