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ABSTRACT derstand the dynamics of processor load in web servers. We are

) ) ) ] therefore led to study the two together.
Internet packet data is analysed to determine the relationship be- |4 recent work we have studied in detail the relationship be-

tween the arrival process of packets, and of TCP flows of packets.;eeny and X, with a focus on the potential dependencies be-
Viewed as point processes, second order properties of the two proyyeen their scale invariance properties. For example, at least in
cesses are studied using wavelets, and each is found to have 10Ngne case of TCP flows which we focus on here. eachofnd
range dependence. A new result is given directly linking _flow du- v exhibit Long-Range Dependen@eRD) (defined below). In [1]
rations to the_ onse_t scale of the long range depen_dence in the flowye examined empirically the impact of the structur&’oén X us-
process. Using this result a mechanism is described whereby theng precise Internet traces from a number of sources. Surprisingly,
flow level structure could in principle influence the packet level 5gide from the first order statistic, the stationary arrival intensity,
structure, and it is shown and explained why this is not the case ye found that the influence &f was negligible. This conclusion
currently. The circumstances under which the flow structure could 55 confirmed in a more in depth study [2], where we also pro-

impact on the packet process, and therefore become important for,ssedPoisson cluster processes a natural model framework for

the modeling of the packet level dynamics, are given. X(t). In these models, a Poisson process is takeryi@) con-
sistent with the idea that the details of the flow arrivals are not
1. INTRODUCTION important. However, in the same data traces used in [1, 2], inter-

L . esting structure fo¥” is consistently found. Specifically (as shown
Modern telecommunlcgtlons netwo_rks transport data_ in the form i, the log-log wavelet energy plots of figure 1(a)), it has LRD, and
of packets small collections of contiguous bytes forming part of 55 an onset scale or ‘knee’ where the LRD begins which is very
a larger whole. In the Interndiiternet ProtocolIP) packets pro- pronounced.
vide the u_nderlying transport mec_he_mism used _by higher level pro- Because of the divergent growth of low frequency power char-
tocols which support more sophisticated services. A key exam- geteristic of LRD, it will not necessarily be the case thanever
ple is theTransport Control Protoco(TCP), which establishes a  has an impact ofX . In this paper we examing more closely, in
virtual connection between two end points, and ensures that all haticylar the position of the knee as a function of network param-

papkets pertaining to a given set of data, say a file, are transporteQyers. \What we find enables us to clearly explain when and how it
reliably at a reasonable average rate. might impact onX.

A set of packets passing between the same two end points that
can be naturally grouped together, such as those of a TCP con- 2. BACKGROUND
nection, are said to form ﬂaow._ Flows are a key concept _in the 51 The Wavelet Spectrum
understanding of network traffic structure. At a given point on a
network link pass packets from many thousands of intermingled To study scale invariant properties such as long range dependence
flows. Flows are highly variable in terms of duration (sub-second we use a wavelet-based analysis [3, 4]. The (discrete) wavelet
to many hours), volume (frorh to several millions packets), and  transform of a procesX is defined by coefficientdx (j, k) =
average packet rate (frointo millions per hour). (X, j,k), where the family{¢; .} is derived from the mother
The set of arrival times of packets can be viewed as a point wavelety, j = log,(scalg, andk € N indexes time at octave
processX (¢) on the real line. A central aim of traffic modelling, Jj. Let X(¢) be a continuous time stationary process with power
important for the understanding of the performance of switching spectral density'x (v). The variance of its wavelet coefficients

devices, is to be able to describe key features of this process. Oneatisfies: _ _
could try to modelX (¢) directly in a black box fashion, however it Eldx (j, k)|* _,:/ x (v)27 |9 (27v) 2 dy, (@)
is far more meaningful to consider the relationship betw&én) where (1) denotes the Fourier transform ¢f If X possesses

and the point procesk () describing the subset of points corre-  scale invariance over a range of scales, for example if it is LRD,
sponding to flow arrival instants (the first packets). Furthermore, defined as a power law divergence of the spectrum at the origin:
Y (t) is important to study in its own right, for example to un- Ix(v) ~ v, |v| — 0, witha € (0,1), then in the limit of
large scales equation (1) becomes

*Work partially supported by the French MENRT A@une Chercheur ) )
2329 and the Ericsson Melbourne University Laboratory. E|dx(j,k)|" ~ C2', j — +o0. (2)
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Fig. 1. Analysing the Flow Arrival ProcessY(t) (a) Logscale Diagrams for the Auck.!l (lower set) and Auck.IV traces. Each has LRD
and a similar knee positioji‘, (b) The LDs of the duration based subsets, and the LD of their superposition compared with data, (c) Knee
positionj* as a function of median flow duration for the subsets, the dependence is linear.

Equation (1) can be viewed as defining a kind of wavelet energy for another scaling regime. We leave the question of the detailed
spectrum well suited to the study of scaling processes. To estimatecharacterisation of this latter regime for future work. In this paper
the wavelet spectrum from data, the simple time average basedor simplicity we model it (in section 4) by a trivial flat spectrum,

variance estimates: Vat;) = -1 3, |dx(j, k)|*, wheren; is which is very accurate in the case of Auckland IV. The precise
J . . .

the number ofdx (j, k) available at scalg, perform very well, value of the LRD exponent varies but is typically aroune= 0.6,

A plot of the logarithm of these estimates agaifiste call the LRD in Y, in contrast to that inX, is at present unknown, and is

Logscale Diagram(LD), in which straight lines indicate scaling. ~beyond the scope of this paper. Here we focus on the knee posi-
For example, a straight line observed over large scales in figure 1tion j*, both for its intrinsic importance as a characteristic scale

betrays long memory. whose origin is also not understood, and because it has received
little attention in the literature.
2.2. Data Our main approach was to study subsets of flows according to

) various critera, in an attempt to observe and quantify the param-
We use a selection of theuckland Iland Auckland 1Vdata sets eters affectingi*. Somewhat surprisingly, it was very difficult to
collected using high precision timestamping at the University of gphserve patterns or even variations based on any of: trace, source
Auckland [5, 6]. For space reasons we present results mainly for agddress, destination address, application protocol (eg. TCP pack-
single Auckland IV trace collected on April 2nd 2001, and use an ets carrying web (HTTP), or e-mail (SMTP) data), packet volume
apparently stationary subset between 2pm and 5pm. The trace hag(;), average rate within flows, the round trip travel time (RTT)
an average bitrate ¢f.5Mbps. The results hold across all Auck-  of packets in a flow, or random subsets. The only clear and robust

land traces as well as others [2]. dependency found was based on flow durafinin
A flow is defined as a set of time-ordered packets with the . ~
same 5-tuple: higher level IP protocol carried, source address, des- t"=2" ~3D, 3)

tination address, source port and destination port, where no paCkesvheret* is the timescale associated;tt, andD is a representive

inter-arrival (defined as the difference between two arrival times) durati 1l in th b M isel dqf
exceeds 64 seconds [7]. From the raw data many different time luration of flows in the subset. More precisely, we grouped flows
' (in fact TCP flows carrying HTTP, comprising 70% all flows)

SEeries can be constructed. At the_ IF.) level’, where flow; are not into 10 equal sized subsets based on percentiles: the shbost
individually tracked, the key quantity is the set of arrival times of d he | %. The k i th di
ackets which defineX (¢). At the ‘flow level’ statistics of indi- and so on up to the longek%. The knees in the corresponding
P: ) S . . LDs, each plotted in figure 1(b) (in fact averages over all the Auck-
vidual flows are collected. In addition to the set of arrival times o
7 L - R land IV traces are shown to reduce variability) show a marked and
of flows definingY (¢), the intrinsically discrete serieB(i) and | ; T ity thi ical definition bf
D(i),i =1, 2,---1, give the number of packets and durations in regular progression. 1o quantify this a practical definitiory .
’ P X o X . is needed. We adopted one based on a heuristic algorithm which
seconds respectively of successive flodg4) is only defined if : ; ; '
: measures the point of consistent departure (relative to confidence
P(i) > 1). We also located and stored, for each flow, a complete . - . .
. ) L . . ; intervals) from a straight line fitted over the smallest scales (space
list of packet inter-arrival times, which requires extensive compu- . - i i .
. limitations preclude full details). The resulting automatically mea-
tation. o - .
sured knee values are plotted in figure 1(c) against the median flow
duration D of the corresponding subset. The straight line with
3. THE FLOW ARRIVAL PROCESS slopel on the logarithmic scale is equivalent to equation (3).
Figure 1(b) also compares the data with the ‘sum’ of the
Figure 1 superimposes Logscale Diagram&’oacross many of  subset LDs. They are very close, indicating that the subsets are
the Auckland traces: they are very similar. The prominent features roughly independent of each other. From this we learn that the
are the LRD at large scales, a clear knee at a characteristic scal&nee in the data can be understood as a smoothed ‘mixture’ of
aroundls (top edge shows seconds), and at small scales evidenceharper knees corresponding to independent subsets of flows which,
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in an idealised limit, would each have constant flow duration. Note

in section 2.2. In a new type of semi-experimgiClus], the

that confidence intervals in the estimated wavelet spectra are sucloriginal flows are translated (without permutation) to begin at the

that the differences between the LDs for 16 are not significant.

4. THE PACKET ARRIVAL PROCESS

In each plot in figure 2 the upper grey curve is the LDX6ffor

our chosen trace, whereas the lower dashed grey curve 8.for
It is natural that the LD foiy” lies below that ofX. In the LD a
uniform unit drop ofl corresponds to halving the variance, and can
be understood very roughly as a global reductior2 iy the total
number of packets. Although the points Bfhave an important
structural significance, at another levélis simply a subset ok
comprising, for Auckland data, arou8o of its points.

In figure 2(a) we show the results 8f‘'semi-experiments’,
where we selectively replace portions &fwith simplified ‘neu-
tral’ model substitutes, in order to reveal the role of the data feature
removed. In the first experimerfA-Pois], the interior of flows are
not altered but the flow order is randomly permuted, and the flow

points of a Poisson cluster process [10] sample path with matched
average intensity. In [2] we successfully used such processes to
model X. Here they serve simply as a convenient parametric class
to modelY which allows us to easily reproduce, in a black box
fashion, a flat spectrum at small scales and LRD at large scales,
with a controllable knee position. A stationary Poisson cluster pro-
cess consists of a Poisson process of kateefining the locations

of ‘seeds’, about which a group of points are placed according to
i.i.d. copies of another process, chosen here to be a finite Pois-
son process of ratd, beginning at the seed. In fatf\4 is a
scale parameter for the process. Increasingsimply translates

the spectrum, and hence the entire LD, toward smaller scales, a
simple way to adjusj™.

Figure 2(b) shows two differefA-Clus] experiments in ad-
dition to the data. Th&  processes are also plotted to show the
very different knee positions chosen for the two experiments. The
knee forY> was put at a larger scale than. Not surprisingly,

Arrivals are placed according to a sample path of a Poisson procesd€ correspondingt’ process[A-Clus:], shows little change, as

with a matched average intensity. The remarkable fact that the L
is virtually unchanged by this complete erasure of the structure of
Y is one of the key observations of [1, 2]. In the second experi-
ment, [A-Pois;T-Pkt], we have in additiod runcated flows after
the firstq packets, in this case at= 6, the60% percentile. The
resulting dramatic elimination of the LRD is consistent with the
currently accepted explanation for LRD ., namely heavy tailed
file sizes [8], which results in heavy tailed flows, and thereby LRD
through a well known mechanism [9]. The considerable drop in
level in the LD follows from the fact, as is also well known, that
the heavy tailed nature d? results in a very small proportion of
flows containing a notable percentage of total packets.

Thus far the structure oX seems very unproblematic, and the
correlation structure oY irrelevant to it, however things are not
as simple as they would appear. In the third experim{@nkt] ,

pthe LD forY; is below that ofy” and so contains even less energy.

In contrast, the knee fdr; is at a scale which is small enough so
that its LRD in fact does have a significant impact on the overall
packet procespA-Clus+], both in terms of the knee position and
the spectrum at scales beyond it.

The last observation above illustrates a principle which is in
contradiction to the origina]A-Pois] conclusion, that the finer
structure ofY” plays no role. We therefore also performed experi-
ments using th&election of flow subsets method of section 3, in
order to induce a change jii without imposing it across all flows
in such a uniform manner. Two subsets, each contaihidg of
flows, were selected based on duration ranges designed to give
wide contrast iry*.

To obtain aj* value at large scale a subset consisting of the
longest10% of flows was selected, yieldiny, as seen in fig-

o]

the flow arrivals are not altered in any way, but the same packeture 2(c). Despite a knee arougid= 6.3 for Y, the reconstructed

volume truncation is made. In apparent contradication to our pre-

packet level procesiS-Dur2] is very similar to the originalX,

vious conclusion, the LRD has ‘returned’ despite the absence of With a knee aroung = 0.4. This result is in agreement with the

the heavy tail ofP. Furthermore, the difference betweldhPkt]
and[A-Pois;T-Pkt] is dramatic, apparently contradicting our first
conclusion thalt” has no influence.

To explain this apparent paradox, the first observation is that
sinceY is LRD, then so must bT-Pkt], as for any truncation
level it includesY as a subset. This LRD was obscured previ-
ously through the ‘noise’ of the dominant LRD generated by the
heavy tail of P. To explore this in more detail, observe that with a
truncation level 0fl00% (¢ = o), the truncated proce$s-Pkt]
is simply X, and wheng = 1, itis Y. Thus as the truncation
level ¢ drops, the truncated proce@sPkt] passes fromX (t) to
Y (t). The evolution toward” is particularly easy to see when
is small, and takes an especially simple form at large scale. There

corresponding one from figure 2(b), but it also contains an addi-
tional important element. In this cade only contains10% of
flows, yet[S-Dur ] accounts for about halfl§%o) of the spectrum

of X. This is a clear indication that the tail éf, which strongly
influences the flows with the longest durations, is disproportion-
ately responsible for the form of the LD o&f.

To obtain a contrasting; with aj* value at small scale we do
not select the very shortest flows, as flows with just a single packet
have somewhat different properties which would complicate the
analysis. Instead, a subset totallihg®o of flows is selected by
choosing the shortest flows which have at leapackets. In fig-
ure 2(c) the smallej* = —1 of Y7 translates to an earlier knee

in the packet level procegS-Dur] which looks quite different

the packets of a given flow appear co-located compared to the scaldrom X, again in agreement with the corresponding experiment

of observation, so thdf-Pkt] is approximately just’(¢) scaled

up by some factor, corresponding to a vertical shiftin the LD. This
is seen in figure 1(a) at scales beygne- 1.5, corresponding to
the scale of average duration after truncation.

We have seen how’, although of negligible influence o
over scales uptp = 11 or 1 hour, is present just behind the scenes
with a potentially influential LRD. To examine the question of
when, if ever, this LRD can rise to prominence at the packet level,
we consider the impact oX of the knee movement i found

from figure 2(b). A key difference however, it that instead ®f

Dur4] being well abovgS-Durz], it is in fact well below it. The
subset corresponding to shorter durations has considerably less en-
ergy than that of the longer durations despite the delayed entry of
the former’s LRD.

We can now give a coherent picture explaining the above ob-
servations. From section 3 we know that flows of different dura-
tions have different knee positions, and from the experiments of
figure 2(b) we know that as a result for a small enough flow dura-
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Fig. 2. Semi-experiments: impact ofY(¢) on X(t). (a) Manipulating arrivals[A-Poais], flow volumes:[T-pkt] , and both:[A-Pois;T-
pkt], (b) Manipulating the kneg* of Y: [A-Clus] - the effect onX is large for smallj*, (c) Looking at differentj* using flow subsets:
[S-Dur] - the results are weighted by their ‘packet impact’, long durations dominate.

tion the LRD of the corresponding subsetYofcan indeed impact X is very heavily weighted towards the flows with the most pack-
on the spectrum ok . However, it is essential to consider the im- ets, which also have the longest durations. These flows have the
pact at the packet level of any given subset of flows. Although longest onset scales faf, and so the impact of the LRD af
average packet rates within flows vary widely, broadly speaking is the weakest precisely for the most important flows. The cur-
the flows with a very large number of packets are naturally also rent balance between the two sources of LRD, and their impact,
very long. Thus, the subset &f corresponding to the flow sub-  could change if flows of smaller duration increased in importance
set with the longest durations contains the strong LRD due to thein terms of their proportion of overall packets. It would then be
heavy tailed packet size distribution, and simultaneously the weak-necessary to model details Bfto understand the spectrum &f,

est portion of the LRD front”. Conversely, in the case of short whereas currentlly” may be validly replaced by a Poisson pro-
durations the LRD front” is strongest, but the number of pack- cess as far as the study &f is concerned, a fact with important
ets corresponding to it is far lower, resulting in a small subset of implications for traffic modelling and performance analysis.

X with low energy. The findings here are in agreement with and

complement those of [2], where it was found that the body and 6. REFERENCES
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