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ABSTRACT packet loss process. We then develop Markov chain Monte

In large-scale dynamic communication networks, end- Carlo (MCMC) algorithms to estimate both the mean loss
systems can not rely on the network itself to cooperate in rate and the transition probabilities in the Gilbert model,
characterizing its own behavior. This has prompted researchP@sed on end-to-end packet loss measurements. Finally,
activities on methods for inferring internal network behav- We apply the link loss algorithms on data generated by the
ior based on the external end-to-end network measurementdNetwork Simulator (NS2) software, and obtain good agree-
In particular, knowledge of the link losses inside the net- Ments between theoretical results and actual measurements.
work is important for network management. However it is The rest of this paper is organized as follows. In Section
impractical to directly measure packet losses or delays at ev-2, we describe the link loss models employed in this pa-
ery router. On the other hand, measuring end-to-end (fromper. In Section 3, we present several MCMC algorithms for
sources to receivers) losses is relatively easy. We formu-Bayesian inference of the link loss. In Section 4, we provide
late the problems of link in a network as Bayesian inference simulation results using data generated by NS 2. Section 5
problems and develop several Markov chain Monte Carlo contains the conclusions.

(MCMC) algorithms to solve them. We then apply the pro-
posed link loss algorithms to data generated by the Network
Simulator (NS2) software, and obtain good agreements be-

tween the theoretical results and the actual measurements. 2. LINKLOSS MODELS

Link loss is usually caused by congestion (router buffer over-
flow), link failure and lossy links. Therefore, link loss mea-
surements and models offer a better understanding of the
network behavior.

1. INTRODUCTION

As the Internet grows in size and diversity, its internal be-
havior becomes more difficult to measure. On the other
hand, many emerging applications, such as IP telephony,
needs on-line information about the network internal links Bernoulli model: The widely used link loss model is the
to support various QoS requirements. This has promptedSimp|e Bernoulli model. That is, the link loss is modelled
some recent research activities on network tomography. InPy a random process consisting of Bernoulli trials, in which
most of these works, the maximum likelihood (ML) estima- the outcome of each experiment (e.g., a packet is either lost
tor [1, 2] is employed as the inference tool. The expectation Or delivered) is independent of previous trials. However,
maximization (EM) algorithm is used in [3] to infer the net- in practice, a packet loss is usually an indication of possi-
work statistics with missing observations. However, when ble congestion buildup; and with high probability the next
the network is large, the likelihood surface typically exhibits Packet may also be lost, leading to a temporal dependency
many local maxima which the ML estimator can easily be Of link losses [7]. Such a dependency can be characterized
trapped into. Here we propose to approach the networkby the Gilbert model [6].
inference problems using Monte Carlo Bayesian methods
[4, 5], which are powerful global optimization techniques. Gilbert model: The Gilbert model is a two-state Markov
So far most existing works on loss inference focus on model with parameter®, ¢), wherep is the probability that
capturing the mean loss, whereas the inference of the losghe next packet is lost, given the current packet is delivered;
distribution has not been addressed. However, it is noted inand ¢ is the probability that the next packet is delivered,
[6] that for the same mean loss rate, different loss patternsgiven the current one is lost. Note that typically we have
can produce different perceptions of QoS. Here we use ap + ¢ < 1. If p + ¢ = 1, then the Gilbert model reduces to
Gilbert model to characterize the bursty nature of the link a Bernoulli model.
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3. BAYESIAN INFERENCE OF LINK LOSS Moreover, the conditional posterior of the loss indicakor
of the internal node is given by
In this section, we develop a number of algorithms for esti-
mating the link loss parameters of a network based on end-P(I; =0 | Y, mo, 71, m2) o< (1 —y1.:)(1 —y2:)m0,  (6)
t(_)-end uqicas_t or multicast Io_ss measurements. We firstcon-,(1, = 1| Y, 7, m, m) o W}*yu(l _ m)yl,iﬂizlfyg,i %
sider estimating the mean link loss probabilities in a net- (1= m)?> (1 — m0) )
work under the Bernoulli model. Then we treat estimating ! 0/
the loss parameters in a network under the Gilbert burstl0ssThe Gibbs sampler then iteratively draw random samples
model. of {mg, m,me, I} from the conditional marginal posterior
Parent densities (3)-(7).

For a general network, we can partition the set of nodes
VasV = S|UDUZ, whereS is the set of source nodes,
D is the set of destination nodes, ands the set of inter-

12 (Tl / P2, 92) nal nodes. In order to estimate the mean link losses in the

10 (Thy / Po,90)

Vo
Il(Ttl/Dl,ql)

network based on end-to-end measurements, we define an
Yi= {H1h2 - W} Y= {%1%2 - Yon} indicatorI'y, = {Ij;,s = 1,...,n} for each nodé < V,
wherel, ; = 1 if packeti reaches nodé, andl;,; = 0
Fig. 1. The simple example network for mean 10ss,¢ = otherwise. Note that it € S, thenI, ; = 1 for all i; and if
0, 1, 2) inference or burst losi(, ¢;,7 = 0, 1, 2) inference. k € D, thenl,, ; = yj; for eachi.

For each nodé ¢ S, define its pareng(k) as the node
that directly forwards packets ta For each nodé& ¢ D,
3.1. Mean Loss Inference define its childrerC (k) as the set of nodes to which notle

For th ke of clari f . first ill directly forwards packets. Denote the loss rate of the link
or the sake of clarity of presentation, we first illustrate . con node¢ and asm.. As before, denote the pa-

our approach by using a simple example netyvork shown in rameters of interest = {4,k € V}; the indicators
Flgd. 1. Suppos_e trlle Igss rates for thelihreeEglnkargrer_lf I = {I.k e T}, whereI), = {Ij;,i = 1,...,n}; and
andrs, respectively. Our aim is to make a Bayesian infer- ,, packet loss measuremedfs— {Y,,k € D}, where

ence about = {rg, m,m} based on end-to-end packet y, — {yri,i = 1,...,n}. Then we have the follow-
loss measuremen® = {Y';,Y»}. Our approach is based ing algorithm for sampling from the joint posterior density
on the Markov chain Monte Carlo method, and in particu- »(9, 1]Y).

lar, the Gibbs sampler. To that end, we define the following

indicator variablel; as the unknown observations at the in- Algorithm 1 [Mean link loss inference]

ternal modeV, in Fig. 1. Denotel 2 {I;, i =1,...,n}. Initialization: Draw random sample®® and I*) from
In order to implement a Gibbs sampler for this problem, their priors.
we assign Beta priors to the link loss rates, i.e., Forj = 1,2,...,.J (Jis total number of samples)
T, ~ Betday, b)), k=0,1,2. 1) e GivenIU~Y foreachk € D|JZ, draw a sample
Then we have i j—1 j—1
N ’/T;J(L)yk ~p (Wg(k’),k | I]((/j )7 I(gj(k) )) ; (8)
p07IaY X P\Y1,i 67Ipy,i 671—])0,[ (2) . ;
( ) };[1 (1.6 16, Dp(y2 [ 6, D)p(8, 1) e Giveng"), for eachk € Z andi = 1,...,n, draw a
. o sample
It then follows from (2) that the conditional posterior distri-
i flink | ill B i ) () (5-1)
bution of link loss rates are still Beta, given by ij)i ~ P (Ik-,z' | ﬂga(k)’k’ Ing)w
plro [ ¥, 1,m, o) w0 cechy). @

~ Beta(ao +n— ZL‘, bo + ZL‘) ; (3)

plmi | Y, I, mo, o) Note that the conditional posterior densities (8)-(9) can be

similarly calculated as in the simple example described above.
~ Beta(al +Y LA —ya), b+ Z-Iiyl,i) , (4) Moreover, a sensible sampling strategy is a bottom-up ap-
proach where we start from the parent nodes of the desti-
nation nodes, followed by their grandparents nodes, and so
~ Beta (az + ) L= y2i), bat Y fin,i) .(5)  on, until we reach the source nodes.

p(ﬂ-Q ‘ Y7I77T017Tl)
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3.2. Bursty Loss Inference subsequenck ; of Y, defined ad’), = {¥;, : 17" =

As discussed in Section 2, the Gilbert model can capture thel}’ k=1,2. Similarly we have

bursty nature of the link loss. Consider again the simple net- (G—1) @\ o 70,0
work depicted in Fig. 1. Now assume that each link loss is ( G| Y. I 0\q°> xp (I ) G (1= q0)""(16)
characterized by a Gilbert model with paraméiey, ¢), k (i-1) _G—=1)\ n (%)
0,1, 2. Hence in this case the parameters of interesfare ~ ? (q’“ Y, I ’e\q’“) ocp (yk,o ) g, (=)™,
{po, qdo,P1,491,DP2, QQ}. The observationy = {Yl, YQ} k=1,2. (17)

as well and the indicators for the internal nablare defined

the same as above. We next discuss methods for Bayesialhe marginal distributions on the initial measurement are

inference of9 based or". given by
Denotel|_;; = {I1,...,Ii—1,1;11,...,I,}. Thenthe Do
conditional posterlor marginal distribution6f i = 1,...,n, p(lo=0) = 7o + 00 (18)
is determined by i
and p(Jro=0 = —— k=1,2. (19)
' Pk + 4k

p(Li=01Y,I_4,0)=y1iy2 {11—1171 +
The above simple random-walk proposal distribution is
1—1, )1 — HI,L- 1— I 0)(1— } 10 andom-wa
( D= a)| [l +( )1 —a) (10) frequently used due to its simplicity. However, a small step
p(li=1|Y,I_,0) = [(1 — Y1) o e ¢ } sizeo in the proposal distribution (12) W|II_ result in excee(_j-
P11+ @1 P11+ q1 ingly slow movement of the corresponding Markov chain,
{(1 ) P2, YL g2 } [Ii—l(l )+ whgreas a large w_|II_ result in very slow acceptance rate.
P2 + g2 D2 + q2 To improve the efficiency of the sampling algorithm, here
(1-Ti1)g } {Iiﬂ(l Cp) (1 Ii+1)p1}. (11) use the orientational bias Monte Carlo (OBMC) method [5],
which enables an MCMC sampler to make large step-size
On the other hand, the marginal posterior distributions JUMPS without lowering the acceptance rate.
p(pk|Y, I,0\py) [resp. p(qr|Y, I,0\qx)], k = 0,1,2,do Finally we summarize the link loss parameter estimation
not admit closed-form expressions. Here we use a Metropoligigorithm for the Gilbert loss model based on end-to-end

Hastings step with a random walk increment proposal dis- packet loss measurements. We use the same notation as in
tribution, e.g., Section 3.1. The parameters of interest @re= {py )«

) () O

Algorithm 2 [Burst link loss inference]
Thatis, we draw a sampje’’ from the above proposal dis-  Initialization: Draw random sample®” and I*) from
tribution, and accept it with probability their priors.

- Forj =1,2,...,J (J is total number of samples)
p(pk- Y, 10 9\pk)

G-DY  — ind1 X e GivendV~Y foreachk € Zandi = 1,...,n, Draw
Pk Py , 0
<pk | py~ ) asample
1 .
P 1) ) 19~ p (s 19050 i 11950,
— — ,
p (p,(f "y, 10 ,9\pk) w0y y Iéfml LeC(k)},
where by assuming uniform prior gn, we have m=1i—14,i+ 1})- (20)
1 (4) n ni,1 . .
(po |y, 10" 9\1’0) xp (I ’ > P (1 —=po)™(14) e GivenI) sampled"”) using the OBMC method as
, n® ) discussed above.
(-1) (-1) 1,0 n
p(pk Y, I ,9\pk) ocp(yko )pk (L—p)™t,
k=12, (15) 4. SIMULATIONS
wheren, ,, is the number of occurrences of the adjacent |n this section, we provide simulation results on a NS2 plat-
pair (u,v) in the sequencdV Y, u,v € {0,1}; nm is form [8] to illustrate the good performance of the proposed

the number of occurrences of the adjacent paiw) in the MCMC Bayesian network inference methods. As shown
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in Fig. 2, network with 8 nodes and 7 links is used in our difficult to get enough samples to make inference on these
simulation. The link loss probability; for the seven links  parameters with extremely small values.
are set to b¢0.01,0.001, 0.01, 0.02,0.001, 0.02,0.01}, re-

spectively. In order to model the burst link loss, we use the 1 - =
Gilbert model to model the loss at the seven links, with pa- T
rametergpy, ) as{(0.01, 0.85), (0.001,0.95), (0.01,0.85), | ¢ 5 .
(0.01,0.85), (0.001,0.85),(0.01,0.95),(0.01,0.85) }, respec-  ° | | H ﬁ 3
tively. Q Q 1 -
1T = L L =18 77 - = = =

0
1
L T,
5
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(@} (@}
3 4 6 7

Fig. 2. The simulated network by NS2. In this paper, several Markov chain Monte Carlo (MCMC)
algorithms are developed to solve the problems link loss es-
We consider the performance of the MCMC estimators timation in a network based on end-to-end measurements.
for link loss using data collected from NS2. In general, With a Bernoulli link loss model, a Gibbs sampler is given
for each simulation,J, + J = 500 samples are drawn in  for inferring the link loss behavior. For the Gilbert bursty
the MCMC procedure with the firsl, = 300 samples as  l0ss model, which can provide a more realistic character-
“burn-in” period and discarded. In the OBMC algorithm, ization of the network loss, we propose a method for in-
the number of reference point is set tofie= 5. ferring the loss parameters based the Metropolis-Hasting
The boxplot of the MCMC samples for the Bernoulli Method. The simulations show the good performance of the
random loss model is shown in Fig. 3. In the mean loss in- Proposed MCMC algorithms.
ference, 1000 measurements from NS2 are used. It is seen
that the mean of these samples is very close to the true val- 6. REFERENCES
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