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ABSTRACT

In large-scale dynamic communication networks, end-
systems can not rely on the network itself to cooperate in
characterizing its own behavior. This has prompted research
activities on methods for inferring internal network behav-
ior based on the external end-to-end network measurements.
In particular, knowledge of the link losses inside the net-
work is important for network management. However it is
impractical to directly measure packet losses or delays at ev-
ery router. On the other hand, measuring end-to-end (from
sources to receivers) losses is relatively easy. We formu-
late the problems of link in a network as Bayesian inference
problems and develop several Markov chain Monte Carlo
(MCMC) algorithms to solve them. We then apply the pro-
posed link loss algorithms to data generated by the Network
Simulator (NS2) software, and obtain good agreements be-
tween the theoretical results and the actual measurements.

1. INTRODUCTION

As the Internet grows in size and diversity, its internal be-
havior becomes more difficult to measure. On the other
hand, many emerging applications, such as IP telephony,
needs on-line information about the network internal links
to support various QoS requirements. This has prompted
some recent research activities on network tomography. In
most of these works, the maximum likelihood (ML) estima-
tor [1, 2] is employed as the inference tool. The expectation
maximization (EM) algorithm is used in [3] to infer the net-
work statistics with missing observations. However, when
the network is large, the likelihood surface typically exhibits
many local maxima which the ML estimator can easily be
trapped into. Here we propose to approach the network
inference problems using Monte Carlo Bayesian methods
[4, 5], which are powerful global optimization techniques.

So far most existing works on loss inference focus on
capturing the mean loss, whereas the inference of the loss
distribution has not been addressed. However, it is noted in
[6] that for the same mean loss rate, different loss patterns
can produce different perceptions of QoS. Here we use a
Gilbert model to characterize the bursty nature of the link

packet loss process. We then develop Markov chain Monte
Carlo (MCMC) algorithms to estimate both the mean loss
rate and the transition probabilities in the Gilbert model,
based on end-to-end packet loss measurements. Finally,
we apply the link loss algorithms on data generated by the
Network Simulator (NS2) software, and obtain good agree-
ments between theoretical results and actual measurements.

The rest of this paper is organized as follows. In Section
2, we describe the link loss models employed in this pa-
per. In Section 3, we present several MCMC algorithms for
Bayesian inference of the link loss. In Section 4, we provide
simulation results using data generated by NS 2. Section 5
contains the conclusions.

2. LINK LOSS MODELS

Link loss is usually caused by congestion (router buffer over-
flow), link failure and lossy links. Therefore, link loss mea-
surements and models offer a better understanding of the
network behavior.

Bernoulli model: The widely used link loss model is the
simple Bernoulli model. That is, the link loss is modelled
by a random process consisting of Bernoulli trials, in which
the outcome of each experiment (e.g., a packet is either lost
or delivered) is independent of previous trials. However,
in practice, a packet loss is usually an indication of possi-
ble congestion buildup; and with high probability the next
packet may also be lost, leading to a temporal dependency
of link losses [7]. Such a dependency can be characterized
by the Gilbert model [6].

Gilbert model: The Gilbert model is a two-state Markov
model with parameters(p, q), wherep is the probability that
the next packet is lost, given the current packet is delivered;
and q is the probability that the next packet is delivered,
given the current one is lost. Note that typically we have
p + q < 1. If p + q = 1, then the Gilbert model reduces to
a Bernoulli model.

VI - 330-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡



3. BAYESIAN INFERENCE OF LINK LOSS

In this section, we develop a number of algorithms for esti-
mating the link loss parameters of a network based on end-
to-end unicast or multicast loss measurements. We first con-
sider estimating the mean link loss probabilities in a net-
work under the Bernoulli model. Then we treat estimating
the loss parameters in a network under the Gilbert burst loss
model.
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Fig. 1. The simple example network for mean loss (πi, i =
0, 1, 2) inference or burst lost (pi, qi, i = 0, 1, 2) inference.

3.1. Mean Loss Inference

For the sake of clarity of presentation, we first illustrate
our approach by using a simple example network shown in
Fig. 1. Suppose the loss rates for the three links areπ0, π1

andπ2, respectively. Our aim is to make a Bayesian infer-

ence aboutθ
4
= {π0, π1, π2} based on end-to-end packet

loss measurementsY = {Y 1, Y 2}. Our approach is based
on the Markov chain Monte Carlo method, and in particu-
lar, the Gibbs sampler. To that end, we define the following
indicator variableIi as the unknown observations at the in-

ternal modeV0 in Fig. 1. DenoteI
4
= {Ii, i = 1, . . . , n}.

In order to implement a Gibbs sampler for this problem,
we assign Beta priors to the link loss rates, i.e.,

πk ∼ Beta(ak, bk), k = 0, 1, 2. (1)

Then we have

p(θ, I,Y ) ∝
n∏

i=1

p(y1,i | θ, I)p(y2,i | θ, I)p(θ, I) (2)

It then follows from (2) that the conditional posterior distri-
bution of link loss rates are still Beta, given by

p(π0 | Y , I, π1, π2)

∼ Beta
(
a0 + n−

∑
Ii, b0 +

∑
Ii

)
, (3)

p(π1 | Y , I, π0, π2)

∼ Beta
(
a1 +

∑
Ii(1− y1,i), b1 +

∑
Iiy1,i

)
, (4)

p(π2 | Y , I, π0, π1)

∼ Beta
(
a2 +

∑
Ii(1− y2,i), b2 +

∑
Iiy2,i

)
.(5)

Moreover, the conditional posterior of the loss indicatorIi

of the internal node is given by

p(Ii = 0 | Y , π0, π1, π2) ∝ (1− y1,i)(1− y2,i)π0, (6)

p(Ii = 1 | Y , π0, π1, π2) ∝ π
1−y1,i

1 (1− π1)y1,iπ
1−y2,i

2 ×
(1− π1)y2,i(1− π0). (7)

The Gibbs sampler then iteratively draw random samples
of {π0, π1, π2, I} from the conditional marginal posterior
densities (3)-(7).

For a general network, we can partition the set of nodes
V asV = S⋃D⋃ I, whereS is the set of source nodes,
D is the set of destination nodes, andI is the set of inter-
nal nodes. In order to estimate the mean link losses in the
network based on end-to-end measurements, we define an
indicatorIk = {Ik,i, i = 1, . . . , n} for each nodek ∈ V,
whereIk,i = 1 if packet i reaches nodek, andIk,i = 0
otherwise. Note that ifk ∈ S, thenIk,i = 1 for all i; and if
k ∈ D, thenIk,i = yk,i for eachi.

For each nodek 6∈ S, define its parentg(k) as the node
that directly forwards packets tok. For each nodek 6∈ D,
define its childrenC(k) as the set of nodes to which nodek
directly forwards packets. Denote the loss rate of the link
between nodes̀ andk asπ`,k. As before, denote the pa-
rameters of interestθ = {πg(k),k, k ∈ V}; the indicators
I = {Ik, k ∈ I}, whereIk = {Ik,i, i = 1, . . . , n}; and
the packet loss measurementsY = {Y k, k ∈ D}, where
Y k = {yk,i, i = 1, . . . , n}. Then we have the follow-
ing algorithm for sampling from the joint posterior density
p(θ, I|Y ).

Algorithm 1 [Mean link loss inference]

Initialization: Draw random samplesθ(0) and I(0) from
their priors.

For j = 1, 2, . . . , J (J is total number of samples)

• GivenI(j−1), for eachk ∈ D⋃ I, draw a sample

π
(j)
g(k),k ∼ p

(
πg(k),k | I(j−1)

k , I
(j−1)
g(k)

)
; (8)

• Givenθ(j), for eachk ∈ I andi = 1, . . . , n, draw a
sample

I
(j)
k,i ∼ p

(
Ik,i | π(j)

g(k),k, I
(j−1)
g(k),i ,

{π(j)
k,`, I

(j)
`,i , ` ∈ C(k)}

)
. (9)

Note that the conditional posterior densities (8)-(9) can be
similarly calculated as in the simple example described above.
Moreover, a sensible sampling strategy is a bottom-up ap-
proach where we start from the parent nodes of the desti-
nation nodes, followed by their grandparents nodes, and so
on, until we reach the source nodes.
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3.2. Bursty Loss Inference

As discussed in Section 2, the Gilbert model can capture the
bursty nature of the link loss. Consider again the simple net-
work depicted in Fig. 1. Now assume that each link loss is
characterized by a Gilbert model with parameter(pk, qk), k =
0, 1, 2. Hence in this case the parameters of interest areθ =
{p0, q0, p1, q1, p2, q2}. The observationsY = {Y 1,Y 2}
as well and the indicators for the internal nodeI are defined
the same as above. We next discuss methods for Bayesian
inference ofθ based onY .

DenoteI [−i] = {I1, . . . , Ii−1, Ii+1, . . . , In}. Then the
conditional posterior marginal distribution ofIi, i = 1, . . . , n,
is determined by

p(Ii = 0 | Y , I [−i], θ) = y1,i y2,i

[
Ii−1p1 +

(1− Ii−1)(1− q1)
][

Ii+1q1 + (1− Ii+1)(1− q1)
]
, (10)

p(Ii = 1 | Y , I [−i], θ) =
[
(1− y1,i)

p1

p1 + q1
+ y1,i

q1

p1 + q1

]

[
(1− y2,i)

p2

p2 + q2
+ y1,i

q2

p2 + q2

][
Ii−1(1− p1) +

(1− Ii−1)q1

][
Ii+1(1− p1) + (1− Ii+1)p1

]
. (11)

On the other hand, the marginal posterior distributions
p(pk|Y , I, θ\pk) [resp. p(qk|Y , I, θ\qk)], k = 0, 1, 2, do
not admit closed-form expressions. Here we use a Metropolis-
Hastings step with a random walk increment proposal dis-
tribution, e.g.,

r
(
pk | p(j−1)

k

)
∼ N

(
p
(j−1)
k , σ2

)
. (12)

That is, we draw a samplep(j)
k from the above proposal dis-

tribution, and accept it with probability

α
(
pk, p

(j−1)
k

)
= min



1,

p
(
pk | Y , I(j−1), θ\pk

)

r
(
pk | p(j−1)

k

) ×

r
(
p
(j−1)
k | pk

)

p
(
p
(j−1)
k | Y , I(j−1),θ\pk

)


 , (13)

where by assuming uniform prior onpk, we have

p
(
p0 | Y , I(j−1), θ\p0

)
∝p

(
I
(j)
0

)
p

n1,0
0 (1− p0)

n1,1(14)

p
(
pk | Y , I(j−1), θ\pk

)
∝p

(
ỹ
(j−1)
k,0

)
p

n
(k)
1,0

k (1− pk)n
(k)
1,1 ,

k = 1, 2, (15)

wherenu,v is the number of occurrences of the adjacent

pair (u, v) in the sequenceI(j−1), u, v ∈ {0, 1}; n
(k)
u,v is

the number of occurrences of the adjacent pair(u, v) in the

subsequencẽY k of Y k, defined as̃Y k = {Yk,i : I
(j−1)
i =

1}, k = 1, 2. Similarly we have

p
(
q0 | Y , I(j−1), θ\q0

)
∝p

(
I
(j)
0

)
q

n0,1
0 (1− q0)

n0,0(16)

p
(
qk | Y , I(j−1),θ\qk

)
∝p

(
ỹ
(j−1)
k,0

)
q

n
(k)
0,1

k (1− qk)n
(k)
0,0 ,

k = 1, 2. (17)

The marginal distributions on the initial measurement are
given by

p(I0 = 0) =
p0

p0 + q0
(18)

and p(ỹk,0 = 0) =
pk

pk + qk
, k = 1, 2. (19)

The above simple random-walk proposal distribution is
frequently used due to its simplicity. However, a small step
sizeσ in the proposal distribution (12) will result in exceed-
ingly slow movement of the corresponding Markov chain,
whereas a largeσ will result in very slow acceptance rate.
To improve the efficiency of the sampling algorithm, here
use the orientational bias Monte Carlo (OBMC) method [5],
which enables an MCMC sampler to make large step-size
jumps without lowering the acceptance rate.

Finally we summarize the link loss parameter estimation
algorithm for the Gilbert loss model based on end-to-end
packet loss measurements. We use the same notation as in
Section 3.1. The parameters of interest areθ = {pg(k),k,
qg(k),k, k ∈ V}.

Algorithm 2 [Burst link loss inference]

Initialization: Draw random samplesθ(0) and I(0) from
their priors.

For j = 1, 2, . . . , J (J is total number of samples)

• Givenθ(j−1), for eachk ∈ I andi = 1, . . . , n, Draw
a sample

I
(j)
k,i ∼ p

(
Ik,i | p(j−1)

g(k),k, q
(j−1)
g(k),k, {I(j−1)

g(k),m},
{p(j−1)

k,` , q
(j−1)
k,` , I

(j−1)
`,m , ` ∈ C(k)},

m = i− 1, i, i + 1}
)
. (20)

• GivenI(j), sampleθ(j) using the OBMC method as
discussed above.

4. SIMULATIONS

In this section, we provide simulation results on a NS2 plat-
form [8] to illustrate the good performance of the proposed
MCMC Bayesian network inference methods. As shown
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in Fig. 2, network with 8 nodes and 7 links is used in our
simulation. The link loss probabilityπk for the seven links
are set to be{0.01, 0.001, 0.01, 0.02, 0.001, 0.02, 0.01}, re-
spectively. In order to model the burst link loss, we use the
Gilbert model to model the loss at the seven links, with pa-
rameters(pk, qk) as{(0.01, 0.85), (0.001, 0.95), (0.01, 0.85),
(0.01, 0.85), (0.001, 0.85),(0.01, 0.95),(0.01, 0.85)}, respec-
tively.

π 4

π 6π 5

π 0

π 3π 2

π 1

5

0

2

1

3 4 6 7

Fig. 2. The simulated network by NS2.

We consider the performance of the MCMC estimators
for link loss using data collected from NS2. In general,
for each simulation,J0 + J = 500 samples are drawn in
the MCMC procedure with the firstJ0 = 300 samples as
“burn-in” period and discarded. In the OBMC algorithm,
the number of reference point is set to beK = 5.

The boxplot of the MCMC samples for the Bernoulli
random loss model is shown in Fig. 3. In the mean loss in-
ference,1000 measurements from NS2 are used. It is seen
that the mean of these samples is very close to the true val-
ues. The maximum error of the mean link loss estimation is
only about 0.001. Moreover, these samples closely concen-
trate on the small region near the true values.
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Fig. 3. The box plot for mean link loss inference under the
Bernoulli model. .

Next we consider the inference of loss parameters un-
der the Gilbert burst loss model. In this experiments,5000
measurements from NS2 are used. The boxplot for the burst
loss inference is shown in Fig. 4. In general, the algorithms
give good estimates of the loss parameters. However, if the
parameter has a very small value, e.g.,p = 0.001 at link
2 and link5, and with insufficient number of measurement
data, these algorithms will be trapped to some local station-
ary points. The reason for this is that in this case it is very

difficult to get enough samples to make inference on these
parameters with extremely small values.

1 2 3 4 5 6 7

0

0.02

0.04

0.06

0.08

0.1

V
al

ue
s

Link Number
1 2 3 4 5 6 7

0.84

0.86

0.88

0.9

0.92

0.94

0.96

V
al

ue
s

Link Number

Fig. 4. The box plot for burst link loss inference under the
Gilbert model.

5. CONCLUSION

In this paper, several Markov chain Monte Carlo (MCMC)
algorithms are developed to solve the problems link loss es-
timation in a network based on end-to-end measurements.
With a Bernoulli link loss model, a Gibbs sampler is given
for inferring the link loss behavior. For the Gilbert bursty
loss model, which can provide a more realistic character-
ization of the network loss, we propose a method for in-
ferring the loss parameters based the Metropolis-Hasting
method. The simulations show the good performance of the
proposed MCMC algorithms.
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