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ABSTRACT

The EAFRP model has been recently proposed for modeling the
self-similar and impulsive traffic of high-speed networks. For math-
ematical simplicity, it assumes that the available transmission band-
width in the network is infinite. We here propose a modification
of the model that takes into account the fact that the network has
a limit, R, on the total traffic rate through it, and in addition,
each user’s traffic rate is often independently limited to a value,
L, which is significantly lower than the network’s limit (L < R).
We show that the existence of these two rate limits, L and R, re-
sults in the distinctive two slope behavior of the loglog survival
function of the overall traffic, a fact that has not been explained so
far by existing models. We further show that it achieves a closer
approximation of the observed reality than the EAFRP model.

1. INTRODUCTION

Over the past decade, and via extensive high-definition measure-
ments, it has been established that high-speed network traffic is
bursty on many or all time scales. Such behavior is distinctly dif-
ferent from that of traditional circuit switched voice traffic, and
from a modeling point of view, is usually associated with self-
similar and impulsive processes. Statistical modeling of traffic is
very important in network engineering, and a substantial body of
literature has been devoted to it. However, models developed for
traditional teletraffic no longer apply to data traffic. In high-speed
networks, the packets are communicated in a packet train fashion;
furthermore, the length of the packet train is heavy-tail distributed.
This observation led to the well-known On/Off model [7] also
called Alternating Fractal Renewal Process (AFRP) [4]. While
the AFRP model provides insight on the causes of self-similarity
of traffic, its Gaussian aggregated results is inconsistent with real
traffic data, which depart greatly from Gaussianity. An extension
of the AFRP, namely the EAFRP, that captures heavy-tailness as
well as self-similarity of traffic has been proposed in [6].

In this paper, we propose a modification of the EAFRP model
that enables a closer match to real traffic. The modification is
motivated by the distinctive two-slope appearance of the log-log
complementary distribution (or survival) function (LLCD) of real
traffic data, and the nature of the true bounds on the user trans-
mission rates in real networks. Limits on the sender’s and the
receiver’s TCP window sizes, TCP congestion avoidance strate-
gies, and bandwidth bottlenecks within the end-systems are among

Thiswork has been supported by ONR under grant NO0014-20-1-0137

0-7803-7663-3/03/$17.00 ©2003 IEEE

VI -25

many of the reasons that lead to an independent limit on each in-
dividual user’s transmission rate [9]. In reality, therefore, if R is
the peak rate of the link on to which traffic from multiple users is
multiplexed, the sum of the user transmission rates is bounded by
R and each user’s transmission rate is bounded by an even smaller
quantity, L (L < R). In our modified EAFRP model, i.e., the
rate-limited EAFRP, we capture this reality by modeling the trans-
mission rate during the On states by a cut-off Pareto random vari-
able, while the On/Off durations are distributed as in the EAFRP
model. We show that the existence of these two rate limits, L and
R, results in the distinctive two slope behavior of the LLCD of
the overall traffic, a fact that has not been explained so far by ex-
isting models. We validate our theoretical findings based on real
traffic measurements and provide queuing analysis of the proposed
model.

2. MATHEMATICAL PRELIMINARIES

The Pareto distribution is defined in terms of its complementary
distribution, or, survival function as:

K\«
F(m;a,K)zp(Xza;)z{ (1L) ) ii}lg )
where K is positive constant and 0 < « < 2 and especially the
mean exists if 1 < o < 2. When plotted is log-log scale, as x
increase, F'(x; o, K) appears as a straight line with slope —ca.
In this paper we will be using a variation of the Pareto dis-
tribution, namely the cut-off Pareto, defined in terms of density
function equals:

K. o
flz;a, K) = f(z;a, K)(1-u(z— L)) +(F)"(z~ L) (2)
where f(.) denotes the Pareto density function, w(.) is the unit
step function, 4(.) is the Dirac function, and L represents a limit
imposed to the random variable. It can be easily verified that the
integral of fr(x; o, K) taken for = between —oo to oo is one.

3. THE PROPOSED MODEL

The EAFRP model was proposed in [6] as an extension to the
AFRP [4]. It yields traffic that is impulsive and long-range de-
pendent in the generalized codifference sense at both single and
multi-user case. However, for mathematical tractability, it relies
on the assumption of infinite bandwidth be available during the On
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state, an assumption that is not met in a real network. When used to
synthesize traffic, although it matches well a significant portion of
the log-log complementary distribution (LLCD), it does not cap-
ture the distinctive two-slope appearance of the LLCD. This traffic
behavior, although never commented on, can also be seen in the
figures of [2],[3] and other papers.

To illustrate the latter point, let us analyze some real data
which was collected at the 100Mbps network of the Department
of the Electrical and Computer Engineering at Drexel University
within three consecutive days (from 10 am Sep 23 to 10 am Sep
26 in 2001). The LLCD graph corresponding to a two-hour (N =
720000) segment of the data is shown in Fig. 1. The Pareto model,
hypothesized by the EAFRP model, would attempt to fit a line to
the graph of Fig. 1 (see dashed line in Fig. 1). However, a straight
line passed through most points of the graph would not be able
to match the rightmost part of the graph, and would overestimate
the probability of the rate exceeding very large values, compared
with proposed model. As it will be shown in the sequel, due to
the finite bandwidth available to the users, the latter probability is
smaller than the value suggested by the Pareto model.

Proposition 1 Let us consider an On/Off process, s(t),defined
as:

(A1) The On periods {X,,n € Z} and the Off periods {Y,,n €
Z} are i.i.d., independent of each other with distributions
i :F(CC Oél,K1)andFo F(l‘ Oéo,Ko) WIthOLo,Ozl >
1, thus have finite means p1 and po respectively;

(A2) The rates during the On states are random variables cut-off

Pareto distributed with probability density function fr (z; «, K),

and independent of X,,, Y,,.

Then, s(t) is distributed according to:

folaw) = —E2—§(x) + —2

me(a:;a,K) (3)

Proof: See Appendix A.

Let us now consider M independent i.i.d. On/Off process,
si(t),s = 1,..., M, each s;(t) constructed according to assump-
tions (A1),(A2). Let us form the process S(t) as the superposition
of the s;(¢),7 = 1,..., M, followed by a thresholding operation
with threshold R. In the following we will provide some insight
on the form of the pdf and the LLCD of the process S(¢).

For simplicity, let us first consider the case where M = 2. The
pdf of S(¢) will be:

fs(@) = (fs(@) * fs(2))(1 — u(z — R)) *)

where f,(z) denotes the pdf of each s;(¢) given in (3), and “*’
denotes convolution. To simplified the expression, we use fr(x)
to replace fr(x; «, K). Based on (2),(3) and(4) we get:

i 2
((#1+0M0))
x =0,

2 (MTFZEP fr(@)

((u1+uo )’ fu(@) +
+2 (uf?rul)ZfL( z)

K <z < 2K,

fi(x)

fs(z) = 2K <z<L-K,
((ul+uo)) fr(@) * fo(z)
L-K<z<L,
fs(@)(1 —u(z — L))*
fs(@)(1 —u(z — L))

L <z < min(2L, R)

x > min(2L, R)
©)

Let us consider the interval 2K < = < L — K. Over that
interval, fr(z;a, K) is identical to the Pareto pdf, f(z;a, K).
Thus, fs(x) for 2K < x < L — K is the sum of two terms, a
Pareto pdf and a convolution of Pareto pdf’s. The second term,
if L is large enough, will also be a Pareto pdf with parameters «
and 2K [1]. In fact the latter result also holds for the case where
s;(t) are non-i.i.d., expect that the resulting parameters would be
min{ai, a2} and K1 + Ko, respectively. For L >> K and for
x approaching L — K, fs(x) will behave like a Pareto pdf. Thus,
if L is large enough, a linear segment will appear in the LLCD of
S(t) within the range [2K, L — K. Over the interval between L
and R, fs(x) is hard to express in closed form, however, numerical
evaluation suggests that the LLCD exhibits behavior correspond-
ing to a Gaussian process. We should note here that at R the LLCD
should be —co

It is simple to extend the above result to any M. Still in
that case the LLCD will exhibit a linear trend over the interval
[M K, L], followed by a Gaussian-type decay, i.e. the tail decays
with the manner corresponding to a Gaussian process in LLCD.
As expected by the Central Limit Theorem, as M increases, the
resulting process will become Gaussian. This is in agreement by
the discussion above, since for M very large, the linear segment
will occur over increasingly smaller range and will eventually dis-
appear. Of course, the larger the L, the larger M it will take for
the result to become Gaussian.

Since it is hard to derive the pdf of the superposition S(¢) in
closed form, we approximate it over the interval [M K, R] by the
following mixture:

Js(w) ~ (A2)yas(a - ) + fla; Ar, K1 - ufe - 1))
+ fe;As, Ka)u(e — L) — u(e — R)] (6)
where
e Ay = «ifthe {s;(¢),s = 1,...M} are i.i.d., otherwise,
A1 = min{aa, ..., }
M} arei.i.d., otherwise,

o Ki=KM if the {Si(t),i = 1,
M
= Zz‘:l K
e a4, Can be any positive value.

Ka, =

AT (@)
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The corresponding survival function is:

1 0<z < Ka,
Ka
n — ( J;l)aAl KAI §I<L
Fs(m)_ (K:’Q)O‘AQ L§$<R (8)
0 >R

Proposition 2 The process defined through (Al1),(A2) , and
also the supposition of A such processes are long-range depen-
dent

Proof: See Appendix B.

In the proof of Proposition 2, we assume that ML < R.
If ML > R, there is a non-zero probability of traffic conges-
tion at the multiplexing point. The total transmitted traffic rate, in
the presence of congestion, is not a mere supposition of the pro-
cesses that describe the transmission rates of individual users, and
therefore, it is not clear that it will still be long-range dependent.
While a detailed queuing-theoretic analysis is necessary to obtain
the characteristics of the process that describes the total traffic in
the presence of such congestion, initial results in [10] obtained
through simulation suggest that at least the degree of long-range
dependence in the total traffic will reduce in comparison to that of
the process describing the individual user transmission rates.

To provide some insight on the queuing characteristics of traf-
fic synthesized by the proposed model, we assume that the total
network traffic can be represented by a single On/Off process de-
fined as in (A1) and (A2). Let Q(¢), t > 0 denote the buffer
content at time ¢, and let

Q(o0) = lim Q(t) )

t—oo

where < represents equality in distribution. It can be shown that
stationary queue length Q(oo) is heavy-tail distributed with tail
index a1 — 1. The proof is omitted due to lack of space and can be
found in [8].

4. RESULTS

In this section, we provide simulations to support the claim that
the proposed modification of the On/Off process results in total
traffic that exhibits a two-slope LLCD. We provide evidence that
suggests that real traffic and traffic synthesized as superposition of
the proposed On/Off processes look very similar in terms of their
LLCDs and autocorrelations.

We consider again the Drexel traffic data (see Fig.1). We next
show how one can constructively generate this traffic based on the
model of (6), and also as a supposition of single user traffic traces.
The proposed mixture model (see (6)) was fitted to the traffic as
follows. Let [5]:

+oo
U=n / {Fsn(x) — Fs(z)} dFs(x)  (10)

oo

where Fs(x) is the survival function of test model, and Fs ,, (z) is
the empirical distribution function (EDF)defined as;

_ number of observations >
Fsn(z) = . z (11)

where n is the total number of available samples. Also, let the
model parameters be (in vector form): q = [aa, Ka, aa, L].
We computed

too B 9 _
a0 = arg min {n/ {Fsn(z) — Fs(x)} dFs(z)} (12)

where @ = [[0,2] 10°° [2,10] 101°!]. The above range was
used based on the experience that we has gathered working with
the real data. The parameters were found to be: a4, = 1.13,
Ka, = 10", a4, =7, L = 10*%, which yields K 4, = 10*%*
via (7). For a 100Mbps LAN, R = 1.25 % 10° Byte/time unit
where we choose time unit = 0.01s. Based on these numbers
we synthesized traffic following the pdf of (6) and show its LLCD
in Fig. 2(a), along with its autocorrelation. The autocorrelation
shown is the mean= standard deviation computed over 50 inde-
pendent traffic realizations. For easy reference, the LLCD and au-
tocorelation of the real traffic is superimposed on these figures (see
dashed line in 2).

We next synthesized 50 i.i.d. cut-off Pareto processes, dis-
tributed according to f;g4.5(; 1.13,10"®). The LLCD of their
supposition is shown in Fig. 2(b), along with the corresponding
autocorrelation. We should note here that the number of users was
taken 50, which was approximately the number of users on the
system when the traffic data was collected. For comparison con-
venience, the corresponding LLCD and autocorrelation of the real
date is superimposed in Fig. 2, which suggests that the synthesized
traffic matches the real traffic both based on outlook and statistics.

5. CONCLUSION

We have presented a constructive model for high-speed network
traffic that achieves a close approximation to real traffic than pre-
viously known constructive models. The modeling of traffic gener-
ated by a single user was performed along the lines of the EAFRP
[6], with the primary difference being the introduction of a max-
imum rate limit (L). The total traffic rate through the network
also experiences a limit (R) in real networks. We have shown that
the existence of these two limits, L and R, lead to a total traffic
whose LLCD and autocorrelation match those of real traffic very
closely. In particular, this provides insight for the first time into the
two-slope appearance of the LLCD of real traffic. We have further
shown that the supposition of the proposed rate-limited EAFRP
processes is long-range dependent. Thus, our model preserves the
long-range dependence of the total traffic in the traffic in the ab-
sence of congestion. The correlation structure of the total traffic
when ML > R, i.e. when there is a non-zero probability of con-
gestion, remains to be investigated.

The proposed model has finite variance and thus, as the num-
ber of users increases, the total traffic will eventually become Gaus-
sian. This is consistent with what can be observed in data that are
collected at gateways. However, we were able to show that as L
increases, it will take a larger number of users for the traffic to be-
come Gaussian. This implies that in modern networks, when L is
large, the traffic will be non-Gaussian. In that case, the proposed
model can be a useful tool in making certain design choices in the
network infrastructure.
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6. APPENDIX A

s(t), can be expressed as s(t) = A(t)V (t) where V(¢) is an
AFRP, and A(t) corresponds the transmission rate, distributed ac-
cording to assumption (A2). The probability density function of
s(t)is: fs(x) = P[V(t) = 0]6(x) + P[V(t) = 1]fr(x) where
d0(z) is the Dirac function, taking value of 1 at z = 0 point only.
Since P[V(t) = 1] =1—-P[V(t) = 0] = (“—1 for z > 0,
fs(x) is a scaled version of fr(x). Thus, s(t) is a cut-off Pareto,
exhibiting a power-law survival function for values less that L.

7. APPENDIX B

Due to the cut-off nature of fr(z), the proposed model will have
finite moments. Therefore, long-range dependence is here exam-
ined in terms of its covariance. The joint characteristic function
of an On/Off process with arbitrarily distributed On durations can
be found in [6]. Based on that expression, the covariance of s(t)
can be found as the second-order derivative of the characteristic
function, ¢s(s1, s2;7), evaluated as 0 (see also [8]).

The overall traffic S(t) is the supposition of M independent
and identical distributed as proposed process s, (t), (m = 1,2, ...,

ie. S(t) ="M S,.(t) then,

¢s(817 S2;

M
7) = [ bem(s1,5257) (13)
m=1

The covariance function of S(¢) equals:

_826175(81,52;7')
831882

_ Z{_8¢Sm S1,82;T )
o — 881882

cs(r) =

s1=0,52=0

} |31:0,52:0

x H {os.(sisun)}|, o, (4

n=1l,n#m

It can be easily derived that:
es(r) ~ Ml 000 ()

where a; = min(aa, ao).
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Figure 1: The Drexel traffic trace: LLCD of real traffic (solid line)
and that of traffic generated based on the EAFRP model of [6].

m

2000 8000 10000
Fime Unit 0015

Bytes/Time Unit
- i S

Real data mean + standard deviation

107
5 S
E .2
S0
S Mean Synthesized traffic
gmﬂ Real data R
% ’ g
X Nean sz vt iy
E10™ i
E !
2 107
[
g mean - standard deviation

107

107 o T z 0 3 5 w075 R 0 .

10 10 10 10 10 10 10 10 10 10 0

log, (x) log, (1)

(a) Synthesized traffic based on the mixture model of (6).
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(b) Synthesized traffic as a supposition of 50 i.i.d. On/Off
processes with cut-off Pareto rates.

Figure 2: Model validation based on the Drexel traffic trace




