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ABSTRACT

A new look at the problem of digitizing analog filtersis taken in
the light of the proof of the equivalence between weighted least
squares (WLS) frequency-domain methods and a previously
proposed interpol ation-based method referred to as the extended
window design (EWD). This equivalence is used to prove new
properties of the EWD and WLS methods. First, the EWD filters
are shown to be near-optimal dueto their equivalenceto the WLS
filters. Next, improved WLS filter designs are obtained, justified
by typical properties of theinterpolation method that generatesthe
EWD filters. Thus, thedigitizing error can bedramatically reduced
by adding a one- or two-step delay and dightly increasing the
number of the numerator coefficients relative to the denominator.
Finaly, a choice of suitable implementations of fractional delay
filtersisavailable for the various cases of fixed or variable delays.

1. INTRODUCTION

The extended window design (EWD) filters, proposed and
anadlyzed in [1], are IIR digital equivalents of given analog
prototypes. The nature of their equations which approximate the
output signals of anaog filters leads to an efficient solution to the
problem of implementing fractional delays (FD) by digital means
[2] encountered, for example, in sampling rate conversion.

While the efficiency of the EWD approach to FD implementa-
tions has been already demonstrated in [2], the main result of the
present paper is the proof that the EWD method is near-optimal
and equivalent to thetraditional weighted least squares (WLS) IR
filter design with frequency sampling [3]. The proof is based on
two features of the particular problem considered in this paper.
First, it is assumed that the fractional delay isto be applied to the
output of afilter that can be designed in analog form. In contrast
to the filter design performed directly in the digital domain, the
digitizing of an analog prototype lends itself to a simple and
accurate FD redlization. Thus, all the derivations below dea with
the problem of approximating the transfer function H(s) of an
analog filter by a discrete-time transfer function Hg,p(2). Second,
since both H(s) and Hgp(2) are anaytical rational functions, the
properties of such functions dramatically simplify the present
problem relatively to the conventional WL Sfilter design whichis
meant to approximate an arbitrary frequency response. In fact, the
simplest EWD filter design will be shownto yield exactly the same
IR filter as amodified WL Sfilter design.

Finally, the above equivalence will be used to derive new
properties of both classes of digital filters. First, the EWD filters
are characterized by the fact that their digitizing error can be
reduced by slightly increasing the order of the filter while all the
additional poles are placed at z=0. An even more dramatic error
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reduction is obtained by adding a one- or two-step delay to the
designed digital filter. This result leads to improved WLS and
iterative WLS filter designs, with or without additional delays.
Conversely, the EWD filters are shown to be near-optimal dueto
the equivalence between the EWD and WLS methods. The
importance of theseresultsistwofold: the proposed simplified and
enhanced WL Sdesign of conventional digital filtersissimpler than
the EWD, yet the EWD can be viewed as a better aternative to
previous designs of fractional delay filters[4], [5].

The paper is organized as follows. Section 2 briefly presents
two forms of the EWD filter equations. The first one is a set of
equations derived through linear algebra and numerical methods
which demonstrates the efficiency of the EWD filters in imple-
menting fractiona delays. The second one is a closed form
expression of the EWD transfer function which will be used in
Section 3to provethe equivalence between EWD and WL Sfilters.
Next, Section 3 introduces amodified frequency-domain IR filter
design method, referred to as the matched-pole (MP) frequency
sampling design, and gives the proof of theidentity of theMP and
EWD digita filters. The paper concludes with Section 4.

2.A FEW REPRESENTATIONS OF THE EWD FILTERS

The EWD filtersare defined in [1] asdigital equivalents of an
analog prototype with the transfer function
_ Y _ N@)
9" %9 " Dw @
where N(s) and D(s) are known polynomials of orders m, and n,,
respectively. Without loss of generality, thetimeis assumed to be
normalized to the sampling period of the input signal, and so the
folding frequency will be @, = m.

TheEWD filtersaretheresult of ajoint time-frequency method
which is based on the interpolation of the input signal x(t) at the
sampling times t=Kk, as shown in Fig. 1 below. In addition to
targeting the time domain [k-m,k], the EWD interpolation targets
afrequency domain w € [wy,wy] < [0,7] by expressing the input
signal in terms of the trigonometric polynomial

M
x(B)=Y (x,cosw +P sinwr), k-mstsk, @)
n=0
where w,, . . ., wy, aredistinct frequency knots of the interpolation

problem. The frequency knots are usually chosen to be equally
spaced within the frequency range [ w,,wy] that contains most of
the spectral energy of H(j w). Also, in the basic EWD method, M
and m are chosen such that the coefficients &, and £, are obtained
as the exact solution of the algebraic equations

M

Y (e, cosw,t, + B,sinw £) =x(t,), ©)

n=0

where x(t,) arethevalues of theinput signal at the sampling times
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t=k-m ..., k. Next, adecision is to be made about an option that
was shown in [2] to increase the accuracy of the digitizing
procedure. Specifically, an integer delay d may be chosen such
that thedigital filter output y,(K), cal culated at the current timet=Kk,
actually represents the analog output corresponding to the time
instant t=k-d. The EWD recursive generation of the current output
y(k-d) in Fig. 1isbased on theresponse y(t), k-d-n,<t<k-d, of the
analog prototype H(s) to theinterpolated signal x(t) built from the
last (m+1) input samples up to the time t=k. Obviously, any
positiveinteger d producesadigita filter whoseimplementation
implies an output delay d. Moreover, y(t) is determined along the
time segment, k-d-n,<t<k-d, whiletheinitial conditionsarethelast
n, output samples, y(k-d-n,), . . ., y(k-d-1). Thus, this design,
referred to as the extended window design (EWD) provides a
natural match for the initial conditions of the analog and digita
filters and incorporates the interpolation step into the s- to z-
domain mapping step. The “current sets’ of input and output
samplesused asauxiliary conditionsduring the computation of the
analog filter response are grouped into the vectors X, and Y,

T
- [xk’ Xp-15 > xk—m] >

>

4

>

Yo [yk—d—l > YVeed-2> > Yi-d-n A] r.

2.1 The Fractional Delay Form of the EWD Filter Equations

In order to evidence the FD features of the EWD method, this
section briefly presents the original design of the EWD filters
which used the Chebyshev seriesrepresentation of signalsinterms
of vectors of Chebyshev series coefficients [1]. For convenience,
themapping of squareintegrabl e functionsinto the space of square
summable vectors defined over the field of real numbers was
referred to asthe A-transformation. Basically, the A-transformy of
asignal y(t), t € [T,,T,], isthevector y=Ay(t), whose components
arethe coefficients of the Chebyshev series expansion of y(t). The
inverse A-transform is defined by

¥y =105, 0,0, (@), ... 1y, =20 g
2 1
wherec,(7)=cos(narc cos7) arethe Chebyshev polynomialsof the
first kind, and ris anormalized time variable. It is worth noting
that, for any given rand length N, of y, only N, multiplicationsare
required. Indeed, the Clenshaw algorithm (see, e.g., P2 in [2]),
which isused to compute (5), does not need the explicit computa
tion of the values ¢, (7). Assume now that y is the A-transform of
the output signal y(t) of an analog filter, defined in Fig. 1 on the
interval k-d-n,<t<k-d, correspondingto-1< r<1. Then, thisvector,
restricted to the first N, coefficients may be used to generate the
vector y, of the interpolated output,
yo =P0y’ Po:Noch’ (6)
calculated at any giventimes t,={t};-,,_ . Contained in interval
[k-d-n,k-d]. The i row of the matrix P, is[0.5, ¢, (%), C,(%),...]
calculated with (5), where T,=k-d-n,, T,=k-d, 7 correspondstot;,
and -l<g<l.

Now, (2) is used to compute the A-transform x of x(t) on the
subinterval k-d-n,<t<k-d of k-m<t<kin terms of the vector X,
defined in (4). The result is the following matrix relation

x = C(m,n,,d)x,, , )

which defines the A-transform interpolation operator C(m,n,,d).
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Fig. 1. Interpolationintervalsfor m=9, n,=4, and d=3. Definitions
of some normalized variables: t = the time normalized to the
sampling period; 7 = the A-transform time variable of the filter
designinterval [k-d-n,k-d]; 7 =the A-transform variable of the
fractional delay interpolation interval [k-d-1,k-d].

Asthe A-transform reduces the computation of the response of
the analog filter H(s) to alinear algebra problem, afirst general
expression for the A-transform y = Ay(t) is obtained,

y= -Gy, +Fx,. (8)

The parameters G and F in (8) are cal culated once and for al for
any giventransfer function H(s). Then, theinverse A-transform (5)
is to be applied to both sides of (8) in order to yield y(t) at any
desired time instant k-d-n,<t<k-d. In particular, the choice t=k-d
provides the conventional digital filter difference equation

yk—d = - gT yaux * fT Xaux . (9)

Likewise, any fixed fractional delay like fyin Fig. 1 yields apair
{g.f} of vectorswhich can be pre-computed and saved. A different
problem arises when f; is variable and must be determined in real
time, during each sampling interval. An efficient solution, which
avoids the recalculation of g and f from G and F, is available
based on the time-window contraction matrix S (see, e.g., [2])
which relates the A-transformsy and vy, respectively defined on
theintervals-1<z<land -1l<gz<1linFig. 1: yc. = Sy. Now, the
solution (8), together with the matrices C,=SGand C,=SF,is
calculated once and for al, under the assumption that the output
interval is placed asin Fig. 1, and only the fractional part of the
delay isvariable. This meansthat d will also be fixed and equal to
the minimum possible value of the integer part of the delay,
whereas any additional integer corresponding to the current delay
will be introduced during the digital implementation of the filter.

Property P1: Efficiency of the FD Computation. It can be shown
[2] that, due to the small length of the output interval relatively to
thelength of the overall A-transforminterval, only very few terms
of thematrices C,and C, are needed. Also, usually, the matrix C,
can beignored atogether if d=0, as the latest input samples have
little effect on the current output interval [k-1,k]. Thus, the current
A-transform y requires only afew operations and is given by

Y = _Cy Yaux + Cx X 2 (10)
where the vector vy, is updated with the original equation (9).
Finaly, for each new value t,=k-f; of the interpolation time, the

inverse A-transform (5) applied to y. Yyields the interpolated
output value y, with one multiplication for each component of y_.
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Property P2: Digitizing Error Reduction when d>1, and m>n,+d.
Thewell-known fact that theinterpol ation at equally spaced points
ismore accurate toward the center of the interpolation interval [6]
can be used to advantage when the fractional delay interval f, has
an integer part d>1. Thus, according to Fig. 1, the last d sampling
periods prior to the current input sample can be left out of the
overal A-transform interval used in the computation of y. This
meansthat the A-transformsx and y will be calculated only for the
overall A-transforminterval k-d-n,<t<k-dinFig. 1. Moreover, a
slight increase of m beyond n,+d improves the accuracy of the
approximation of y(t) as most of the input signal energy used to
caculateits A-transformy will be provided by the accurate central
segment of the approximation of x(t) on the interval [k-d-n,k-d].

2.2 TheEWD Transfer Function

The transfer function Hg\p(2) below, corresponding to the
EWD difference equation (9), was derived in [7] for any integer d
that satisfies the condition 0 < d < m-n,. This expression will be
used in Section 3 to prove the equival ence between the EWD and
WLSfilters.

Let x(t) bethetrigonometric polynomial (2) whose coefficients
2, and S, are obtained by solving (3) for the particular right-hand
side values x(t,) al equal to zero with the exception of the last
samplewhichisone. Also let the origin of thetime axist be placed
a t=k-d-n,. Then the Laplace transform X(s) of x(t), and the z
transform X;(2) of the sampled sequence x,(k) are given by

Zm+1—L

X)=—REmD - pe)-

II(s%+ &2) II(z*-2zcos w,+1)
n=0 n=0

11

whereL=n,+d, and R(sm,L) isapolynomial ins. Inthefollowing,
Z{Y(9)} 2 Z{[LYUY(S)]]Ic =} will denote the ztransform of the
samples of y(t), and the denominatorsin (11) will be written as

M M
0)=11(s2+0)), QO )=II(z*-2zcosw +1). (12)
n=0 n=0

Thisyields the design equations

- 7| R(mL)H(s)
Z{X(s)H( = Z{—=> 22
{X()H(s)} { 00) }

bys™ ™ e +b,
&z n ny-1 ’ (13)
o) (s +a;s™ +...+anA)

z([iozn"+m .+ [’,nAHn)
- -1
0,0 (z"+ g z" " +...vg, )

and the final causal transfer function

s

0, | z(Boz™ "+ B, L)

Zm+1—nA QD(Z) (Z ny +g1 ZnA—l .. +gn )

A

Hepry @ =

ng-1
z(c,z* .+ an)

* : (14

ny ny-1
z “+ ¥4 t...t
g 8,

The following recursive equations determine the coefficients ¢,:
Op@) az™t+dz™+ .. +d |, c,=-B,
(15

E-1
{ck = -PB; —El Cnd, » k=2,...,n, }

With (15), the n, leading terms of the numerator of Hgp(2) are
canceled to satisfy the standard condition of initial rest defined in
terms of the auxiliary conditions (4). Thefinal Hg,p(2) isprecisely
the transfer function corresponding to (9). The algebraic analysis
of (14) yields Property P3 below.

Property P3: The real-time implementation of the EWD transfer
function isof order ny = m > n,+d, with the n, poles z, related to
Sn

the poless, of the anal og prototype by theexpression z, = e™
while the remaining poles, if any, areplaced at z=0.

3.EQUIVALENCE BETWEEN EWD AND WLS FILTERS

Consistently with the approach taken in this paper, the
frequency domain IR filter design problem is restricted to the
problem of approximating the transfer function (1) of an analog
filter of order n, by a discrete-time transfer function

P 2" +p 2" . +p N,(2)
) = . "D 19
z7 (2 gzt +...+gnA) Dp(@)

where m>n,. Since both H(s) and Hy(2) are analytica rationa
functions, the properties of analytic functions imply some rather
powerful constraints on their behavior within their respective
regions of convergence. Moreover, these constraints also restrict
the behavior of H(jw) and Hy(€“) leading, for example, to the
relationships between their real and imaginary parts, as well as
their magnitudes and phase angles.

3.1 The M atched-Pole Frequency Sampling Design

One more consequence of the constraints on the frequency
responses H(jw) and Hy(€¥) relates the poles of H(s) and Hy(2)
through the relationship z, = e % mentioned in Property P3
above. Thisis equivaent to the time domain condition that the
modes z.* of the digital filter are exactly the same as the sampled
sequences of themodes e ! of theanal 0g prototype. Moreover,
in theory, the analyticity properties imply that H(j w) and Hy(&%)
can be completely defined by their values on finite intervals of the
real frequency w. Y et, the numerical design below is based on the
pole-matching condition, and aims at matching the two frequency
responses within a frequency range [ w,, wy] that contains most of
the spectral energy of H(jw). Based on the above considerations,
a modified version of the conventiond IIR frequency sampling
design [3] is now proposed. The set of algebraic equations

Ny'*) = e 7" D () Hjw), n=0,...M, (17)

issolved for the (m+1) coefficients p, defined in (16), while Dp(2)
is chosen with the same coefficients g,, k=1, ..., n,, asthose found
inthevector gin (9) and the denominator of Hg,p(2) in (14). Here,
M and thefrequency knots wy, . . ., wy arechosen inthe sameway
asin (2), that issuch that (17) has aunique solution. The optional
delay d>0 makes the output y,(k), calculated at the current time
t=k, actually represent the analog output at thetime instant t=k-d.
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Fig. 2 Normalized responses H(jw) (solid line), and Hy(€%)

(dashed line) for  H(s) = (s*+1)(s*+5) .
(52 +0.15+2)(s2+ 035 +2)(s2+02s +3)

Since the IIR filter design is now reduced to an FIR frequency-
sampling problem [3], this method will be referred to in the
following as the matched-pole (MP) frequency sampling design.

3.2 I dentity of the EWD and M P Freguency Sampling Design

To prove that the EWD equation (9), as well as (13)-(15),
yields exactly the sametransfer function (16) asthe MP frequency
sampling design it suffices to show that they produce the same
numerator Ny(2). First of al, the EWD computes the numerator
coefficients such that the digital filter response coincides with the
(possibly delayed) sampled response of the analog filter to the
interpolated input. Moreover, as (3) has a unique solution, inputs
like x(f) =e’" | &= wy,..., wy, are exactly interpolated (with
an optional d-step delay d > ,:2 Therefore, the exact response of
H()is ,0) = Hjw)e’“® | whiletheEWD outputisgiven
by the relation (k) = H(jw,) e’ ** @ = B (/) e’
and so the EWD filter satisfies the expression

Hyp @) = e 7" H(jw), n=0,...M. (18)
Findly, sincethe M P design determinesthe numerator coefficients
p. as the exact solution of (17), the comparison of (17) and (18)
leads to the conclusion that Hgyp(2) = Hp(2), which proves the
identity of the MP frequency sampling filters and the EWD filters
for integer values of the delay d>0.

Now, it is worth noting the close relationship between the
EWD and MP filter design methods and the traditional WLS
design [3]. The latter minimizes the expression

M
min

D 8 ,.2% v
where p,and g, are the unknown coefficients of the numerator and
denominator of Hy(2), w, arethefrequency knotswithin[0,n], and
W(w) isauser defined weighting function. AsthelIR filter design
considered in this paper deals with the problem of approximating
the transfer function of an analog filter by a discrete-time transfer
function, the analyticity properties discussed above state that the
denominator of Hy(2) is uniquely computed through the mapping
defined in Property P3. Indeed, extensive tests done on the EWD,
MP, and WLS designs support this assertion, in the sense that all
the denominators are practicaly the same, even when a large
number M ischosenin (19). In thislast case, the WLS design may
lead to dlightly different numerators, while the values of the
digitizing error Ep(w) = 2010g,,(|e* H(j w)-Hp(€°%)]) remain about
the same as those obtained with the EWD and MP methods. This
isillustratedin Figs. 2and 3. Actually, depending on theweighting
function w(w), the shape of theerror Ey(w) provided by the WLS

5

Lide N
e a4 "H(j(l)n) _HD(ej n) s (19)

impulse invariance design
20 o ) .
————— WLS design with unity weight

=301 EWD and MP firequency design
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Fig. 3. The digitizing error Ey(w) of four digital filters equivalent
to thetransfer function H(s) shownin Fig.2 (n,=6, m=7, and d=0).

design may vary all the way from the dashed linein Fig. 3, where
W(w) = 1, to the shape of the EWD error, shown by the solid line.
Also, Fig. 2 evidencesthe four frequency knots w, (chosen within
the narrow frequency range [37,63] % w;) which define Hy(2)
under the pole-matching condition and consistently with the
analysisbased on theanalyticity properties. Moreover, if d=1, then
theEWD, MP, and WL S digitizing errorsdecrease by about 20 dB.

4. CONCLUSIONS

Theproof that the EWD and WL Sfiltersareequivaentimplies
that the EWD filters are near-optimal, and so they are not only
efficient tools for FD applications, but also very accurate in
reproducing the characteristics of the original filters (designed in
anal og form) whose delays areto be controlled. Next, according to
Property P2, thedigitizing errors can be reduced by adding asmall
delay, or by increasing the filter order while the additional poles
are placed at z=0. Usually, such delays are negligible with respect
to theinherent group delay of theorigind filters. At the sametime,
it ensuesthat the frequency sampling methods can be improved in
exactly the same way, due to their eguivalence to the EWD
method. Moreover, achoice of suitable FD filter implementations
isavailablefor various applications. Thus, fixed fractional delays,
can be redlized with either the EWD or frequency sampling
methods improved through the pole-matching condition. Finally,
variable delaysrequired, for example, in sampling rate conversion
can be efficiently realized with the EWD equations (9) and (10).
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