
(1)

(2)

(3)

EQUIVALENCE  BETWEEN  THE  EXTENDED  WINDOW  DESIGN  OF  IIR
FILTERS  AND  LEAST  SQUARES  FREQUENCY  DOMAIN  DESIGNS

G. I.  Braileanu
Gonzaga University

Spokane, Washington 99258, USA
braileanu@gonzaga.edu

ABSTRACT

A new look at the problem of digitizing analog filters is taken in
the light of the proof of the equivalence between weighted least
squares (WLS) frequency-domain methods and a previously
proposed interpolation-based method referred to as the extended
window design (EWD). This equivalence is used to prove new
properties of the EWD and WLS methods. First, the EWD filters
are shown to be near-optimal due to their equivalence to the WLS
filters. Next, improved WLS filter designs are obtained, justified
by typical properties of the interpolation method that generates the
EWD filters. Thus, the digitizing error can be dramatically reduced
by adding a one- or two-step delay and slightly increasing the
number of the numerator coefficients relative to the denominator.
Finally, a choice of suitable implementations of fractional delay
filters is available for the various cases of fixed or variable delays.

1.  INTRODUCTION

The extended window design (EWD) filters, proposed and
analyzed in [1], are IIR digital equivalents of given analog
prototypes. The nature of their equations which approximate the
output signals of analog filters leads to an efficient solution to the
problem of implementing fractional delays (FD) by digital means
[2] encountered, for example, in sampling rate conversion.

While the efficiency of the EWD approach to FD implementa-
tions has been already demonstrated in [2], the main result of the
present paper is the proof that the EWD method is near-optimal
and equivalent to the traditional weighted least squares (WLS) IIR
filter design with frequency sampling [3]. The proof is based on
two features of the particular problem considered in this paper.
First, it is assumed that the fractional delay is to be applied to the
output of a filter that can be designed in analog form. In contrast
to the filter design performed directly in the digital domain, the
digitizing of an analog prototype lends itself to a simple and
accurate FD realization. Thus, all the derivations below deal with
the problem of approximating the transfer function H(s) of an
analog filter by a discrete-time transfer function HEWD(z). Second,
since both H(s) and HEWD(z) are analytical rational functions, the
properties of such functions dramatically simplify the present
problem relatively to the conventional WLS filter design which is
meant to approximate an arbitrary frequency response. In fact, the
simplest EWD filter design will be shown to yield exactly the same
IIR filter as a modified WLS filter design.

Finally, the above equivalence will be used to derive new
properties of both classes of digital filters. First, the EWD filters
are characterized by the fact that their digitizing error can be
reduced by slightly increasing the order of the filter while all the
additional poles are placed at z=0. An even more dramatic error

reduction is obtained by adding a one- or two-step delay to the
designed digital filter. This result leads to improved WLS and
iterative WLS filter designs, with or without additional delays.
Conversely,  the EWD filters are shown to be near-optimal due to
the equivalence between the EWD and WLS methods. The
importance of these results is twofold: the proposed simplified and
enhanced WLS design of conventional digital filters is simpler than
the EWD, yet the EWD can be viewed as a better alternative to
previous designs of fractional delay filters [4], [5].

The paper is organized as follows. Section 2 briefly presents
two forms of the EWD filter equations. The first one is a set of
equations derived through linear algebra and numerical methods
which demonstrates the efficiency of the EWD filters in imple-
menting fractional delays. The second one is a closed form
expression of the EWD transfer function which will be used in
Section 3 to prove the equivalence between EWD and WLS filters.
Next, Section 3 introduces a modified frequency-domain IIR filter
design method,  referred to as the matched-pole (MP) frequency
sampling design, and gives the proof of the identity of the MP and
EWD digital filters. The paper concludes with Section 4.

2. A  FEW  REPRESENTATIONS  OF  THE  EWD  FILTERS

The EWD filters are defined in [1] as digital equivalents of an
analog prototype with the transfer function

where N(s) and D(s) are known polynomials of orders mA and nA,
respectively. Without loss of generality, the time is assumed to be
normalized to the sampling period of the input signal, and so the
folding frequency will be  Tf  = B.

The EWD filters are the result of a joint time-frequency method
which is based on the interpolation of the input signal x(t) at the
sampling times t=k, as shown in Fig. 1 below. In addition to
targeting the time domain [k-m,k], the EWD interpolation targets
a frequency domain  T 0 [T0,TM] d [0,B] by expressing the input
signal in terms of the trigonometric polynomial

where T0, . . . , TM are distinct frequency knots of the interpolation
problem. The frequency knots are usually chosen to be equally
spaced within the frequency range [T0,TM] that contains most of
the spectral energy of H(jT). Also, in the basic EWD method, M
and m are chosen such that the coefficients "n and $n are obtained
as the exact solution of the algebraic equations

where x(tk) are the values of the input signal at the sampling times
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tk=k-m ,..., k. Next, a decision is to be made about an option that
was shown in [2] to increase the accuracy of the digitizing
procedure. Specifically, an integer delay  d may be chosen such
that the digital filter output yD(k), calculated at the current time t=k,
actually represents the analog output corresponding to the time
instant t=k-d. The EWD recursive generation of the current output
y(k-d) in Fig. 1 is based on the response y(t), k-d-nA#t#k-d,  of the
analog prototype H(s) to the interpolated signal x(t) built from the
last (m+1) input samples up to the time t=k. Obviously, any
positive integer  d  produces a digital filter whose implementation
implies an output delay d. Moreover, y(t) is determined along the
time segment, k-d-nA#t#k-d, while the initial conditions are the last
nA output samples,  y(k-d-nA), . . . , y(k-d-1). Thus, this design,
referred to as the extended window design (EWD) provides a
natural match for the initial conditions of the analog and digital
filters and incorporates the interpolation step into the s- to z-
domain mapping step. The “current sets” of input and output
samples used as auxiliary conditions during the computation of the
analog filter response are grouped into the vectors xaux and yaux:

2.1 The Fractional Delay Form of the EWD Filter Equations

In order to evidence the FD features of the EWD method, this
section briefly presents the original design of the EWD filters
which used the Chebyshev series representation of signals in terms
of vectors of Chebyshev series coefficients [1]. For convenience,
the mapping of square integrable functions into the space of square
summable vectors defined over the field of real numbers was
referred to as the A-transformation. Basically, the A-transform y of
a signal y(t), t 0 [T1, T2], is the vector  y = Ay(t), whose components
are the coefficients of the Chebyshev series expansion of y(t). The
inverse A-transform is defined by

where cn(J) = cos (n arc cos J) are the Chebyshev polynomials of the
first kind, and J is a normalized time variable. It is worth noting
that, for any given J and length Ny of y, only Ny multiplications are
required. Indeed, the Clenshaw algorithm (see, e.g., P2 in [2]),
which is used to compute (5), does not need the explicit computa-
tion of the values cn(J). Assume now that y is the A-transform of
the output signal y(t) of an analog filter, defined in Fig. 1 on the
interval k-d-nA#t#k-d, corresponding to -1#J#1. Then, this vector,
restricted to the first  Nc coefficients may be used to generate the
vector y0 of the interpolated output,

calculated at any given times  to = {ti}i = 1,2,...,NO contained in interval
[k-d-nA,k-d]. The ith row of the matrix Po is [0.5, c1 (Ji ) , c2 (Ji ),... ]
calculated with (5), where  T1=k-d-nA, T2=k-d,  Ji corresponds to ti,
and  -1#Ji #1.

Now, (2) is used to compute the A-transform x of x(t) on the
subinterval  k-d-nA#t#k-d  of  k-m#t#k in terms of the vector xaux

defined in (4). The result is the following matrix relation

which defines the A-transform interpolation operator C(m,nA,d).

Fig. 1. Interpolation intervals for m=9, nA=4, and d=3. Definitions
of some normalized variables:   t = the time normalized to the
sampling period;  J = the A-transform time variable of the filter
design interval  [k-d-nA,k-d];  Jf  = the A-transform variable of the
fractional delay interpolation interval [k-d-1,k-d].

As the A-transform reduces the computation of the response of
the analog filter H(s) to a linear algebra problem, a first general
expression for the A-transform  y = Ay(t) is obtained,

The parameters G and F in (8) are calculated once and for all for
any given transfer function H(s). Then, the inverse A-transform (5)
is to be applied to both sides of (8) in order to yield y(t) at any
desired time instant k-d-nA#t#k-d. In particular, the choice t=k-d
provides the conventional digital filter difference equation

Likewise, any fixed fractional delay like fd in Fig. 1 yields a pair
{g,f} of vectors which can be pre-computed and saved. A different
problem arises when fd is variable and must be determined in real
time, during each sampling interval. An efficient solution, which
avoids the recalculation of g and f from  G and F, is available
based on the time-window contraction matrix S (see, e.g., [2])
which relates the A-transforms y and yC, respectively defined on
the intervals -1#J#1 and  -1#Jf#1 in Fig. 1:  yC = S y. Now, the
solution (8), together with the matrices  Cy = S G and  Cx = S F, is
calculated once and for all, under the assumption that the output
interval is placed as in Fig. 1, and only the fractional part of the
delay is variable. This means that d will also be fixed and equal to
the minimum possible value of the integer part of the delay,
whereas any additional integer corresponding to the current delay
will be introduced during the digital implementation of the filter.

Property P1: Efficiency of the FD Computation.  It can be shown
[2] that, due to the small length of the output interval relatively to
the length of the overall A-transform interval, only very few terms
of the matrices  Cy and  Cx are needed. Also, usually, the matrix Cx

can be ignored altogether if d=0, as the latest input samples have
little effect on the current output interval [k-1,k]. Thus, the current
A-transform yC requires only a few operations and is given by

where the vector yaux is updated with the original equation (9).
Finally, for each new value to=k-fd of the interpolation time, the
inverse A-transform (5) applied to  yC  yields the interpolated
output value y0 with one multiplication for each component of yC.
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Property P2: Digitizing Error Reduction when d$1, and m>nA+d.
The well-known fact that the interpolation at equally spaced points
is more accurate toward the center of the interpolation interval [6]
can be used to advantage when the fractional delay interval fd has
an integer part d$1. Thus, according to Fig. 1, the last d sampling
periods prior to the current input sample can be left out of the
overall A-transform interval used in the computation of y. This
means that the A-transforms x and y will be calculated only for the
overall A-transform interval  k-d-nA#t#k-d in Fig. 1. Moreover, a
slight increase of m beyond nA+d improves the accuracy of the
approximation of y(t) as most of the input signal energy used to
calculate its A-transform y will be provided by the accurate central
segment of the approximation of x(t) on the interval [k-d-nA,k-d].

2.2 The EWD Transfer Function

The transfer function HEWD(z) below, corresponding to the
EWD difference equation (9), was derived in [7] for any integer d
that satisfies the condition 0 # d # m-nA. This expression will be
used in Section 3 to prove the equivalence between the EWD and
WLS filters.

Let x(t) be the trigonometric polynomial (2) whose coefficients
"n and $n are obtained by solving (3) for the particular right-hand
side values x(tk) all equal to zero with the exception of the last
sample which is one. Also let the origin of the time axis t be placed
at t=k-d-nA. Then the Laplace transform X(s) of x(t), and the z-
transform XD(z) of the sampled sequence xD(k) are given by

where L=nA+d, and R(s,m,L) is a polynomial in s. In the following,
Z{Y(s)} × Z{[‹-1[Y(s)]]| t = k } will denote the z-transform of the
samples of y(t), and the denominators in (11) will be written as

This yields the design equations

and the final causal transfer function

The following recursive equations determine the coefficients ck:

(15)

With (15), the nA leading terms of the numerator of HEWD(z) are
canceled to satisfy the standard condition of initial rest defined in
terms of the auxiliary conditions (4). The final HEWD(z) is precisely
the transfer function corresponding to (9). The algebraic analysis
of (14) yields Property P3 below.

Property P3: The real-time implementation of the EWD transfer
function is of order  nD = m $ nA+d, with the nA poles zn related to
the poles sn of the analog prototype by the expression ,
while the remaining poles, if any, are placed at   z=0.

3. EQUIVALENCE  BETWEEN  EWD  AND  WLS  FILTERS

Consistently with the approach taken in this paper, the
frequency domain IIR filter design problem is restricted to the
problem of approximating the transfer function (1) of an analog
filter of order nA by a discrete-time transfer function

where m$nA. Since both H(s) and HD(z) are analytical rational
functions, the properties of analytic functions imply some rather
powerful constraints on their behavior within their respective
regions of convergence. Moreover, these constraints also restrict
the behavior of  H(jT) and HD(ejT) leading, for example, to the
relationships between their real and imaginary parts, as well as
their magnitudes and phase angles.

3.1 The Matched-Pole Frequency Sampling Design

 One more consequence of the constraints on the frequency
responses H(jT) and HD(ejT)  relates the poles of H(s) and HD(z)
through the relationship , mentioned in Property P3
above. This is equivalent to the time domain condition that the
modes zn

k of the digital filter are exactly the same as the sampled
sequences of the modes of the analog prototype. Moreover,
in theory, the analyticity properties imply that H(jT) and HD(ejT)
can be completely defined by their values on finite intervals of the
real frequency T. Yet, the numerical design below is based on the
pole-matching condition, and aims at matching the two frequency
responses within a frequency range [T0,TM] that contains most of
the spectral energy of H(jT). Based on the above considerations,
a modified version of the conventional IIR frequency sampling
design [3] is now proposed. The set of algebraic equations

is solved for the (m+1) coefficients pn defined in (16), while DD(z)
is chosen with the same coefficients gk , k=1, ..., nA , as those found
in the vector g in (9) and the denominator of HEWD(z) in (14). Here,
M  and the frequency knots T0, . . . , TM are chosen in the same way
as in (2), that is such that (17) has a unique solution. The optional
delay d>0 makes the output yD(k), calculated at the current time
t=k, actually represent the analog output at the time instant t=k-d.
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Fig. 2  Normalized responses H(jT) (solid line), and HD(ejT)

(dashed line) for

Since the IIR filter design is now reduced to an FIR frequency-
sampling problem [3], this method will be referred to in the
following as the matched-pole (MP) frequency sampling design.

3.2 Identity of the EWD and MP Frequency Sampling Design

To prove that the EWD equation (9), as well as (13)-(15),
yields exactly the same transfer function (16) as the MP frequency
sampling design it suffices to show that they produce the same
numerator ND(z). First of all, the EWD computes the numerator
coefficients such that the digital filter response coincides with the
(possibly delayed) sampled response of the analog filter to the
interpolated input. Moreover, as (3) has a unique solution, inputs
like , Tn=T0,..., TM, are exactly interpolated (with
an optional d-step delay  d $ 0). Therefore, the exact response of
H(s) is ,  while the EWD output is given
by the relation 
and so the EWD filter satisfies the expression

Finally, since the MP design determines the numerator coefficients
pn as the exact solution of (17), the comparison of (17) and (18)
leads to the conclusion that HEWD(z) = HD(z), which proves the
identity of the MP frequency sampling filters and the EWD filters
for integer values of the delay d$0.

Now, it is worth noting the close relationship between the
EWD and MP filter design methods and the traditional WLS
design [3]. The latter minimizes the expression

where pR and gR are the unknown coefficients of the numerator and
denominator of HD(z), Tn are the frequency knots within [0,B], and
w(T) is a user defined weighting function. As the IIR filter design
considered in this paper deals with the problem of approximating
the transfer function of an analog filter by a discrete-time transfer
function, the analyticity properties discussed above state that the
denominator of HD(z) is uniquely computed through the mapping
defined in Property P3. Indeed, extensive tests done on the EWD,
MP, and WLS designs support this assertion, in the sense that all
the denominators are practically the same, even when a large
number M is chosen in (19). In this last case, the WLS design may
lead to slightly different numerators, while the values of the
digitizing error ED(T) = 20 log10(|e

-jdT H(jT)-HD(ejT)|) remain about
the same as those obtained with the EWD and MP methods. This
is illustrated in Figs. 2 and 3. Actually, depending on the weighting
function w(T), the shape of the error  ED(T)  provided by the  WLS

Fig. 3. The digitizing error ED(T) of four digital filters equivalent
to the transfer function H(s) shown in Fig.2 (nA=6, m=7, and d=0).

design may vary all the way from the dashed line in Fig. 3, where
w(T) = 1, to the shape of the EWD error, shown by the solid line.
Also, Fig. 2 evidences the four frequency knots Tn (chosen within
the narrow frequency range [37,63] % Tf) which define HD(z)
under the pole-matching condition and consistently with the
analysis based on the analyticity properties. Moreover, if d=1, then
the EWD, MP, and WLS digitizing errors decrease by about 20 dB.

4. CONCLUSIONS

The proof that the EWD and WLS filters are equivalent implies
that the EWD filters are near-optimal, and so they are not only
efficient tools for FD applications, but also very accurate in
reproducing the characteristics of the original  filters (designed in
analog form) whose delays are to be controlled. Next, according to
Property P2, the digitizing errors can be reduced by adding a small
delay, or by increasing the filter order while the additional poles
are placed at z=0. Usually, such delays are negligible with respect
to the inherent group delay of the original filters. At the same time,
it ensues that the frequency sampling methods can be improved in
exactly the same way, due to their equivalence to the EWD
method. Moreover, a choice of suitable FD filter implementations
is available for various applications. Thus, fixed fractional delays,
can be realized with either the EWD or frequency sampling
methods  improved through the pole-matching condition. Finally,
variable delays required, for example, in sampling rate conversion
can be efficiently realized with the EWD equations (9) and (10).

5.  REFERENCES

[1] G.I. Braileanu, “Extended-Window Interpolation Applied to
Digital Filter Design,” IEEE Trans. Signal Processing, vol. 44,
pp. 457-472, 1996.

[2] G.I. Braileanu, “Digital filters with implicit interpolated
output,” IEEE Trans. Signal Processing, vol 45, pp. 2551-
2560, 1997.

[3] C.S. Burrus,  T.W. Parks, “Digital Filter Design,” Wiley, 1987.
[4] T.I. Laakso, V. Välimäki, M. Karjalainen, and U.K. Laine,

"Splitting the Unit Delay," IEEE Signal Processing Magazine,
Vol. 13, no. 1, January, 1996, pp. 30-60.

[5] W.S. Lu and T.B. Deng, “An Improved Weighted Least-
Squares Design for Variable Fractional Delay FIR Filters,”
IEEE Trans. Circuits and Syst., vol 46, pp. 1035-1040, 1999.

[6] M.J.D. Powell,  “Approximation  Theory  and  Methods,”
       Cambridge Univ. Press, 1981.
[7] G.I. Braileanu, “Derivation of Causal Digital Models from

Accurate Noncausal Digitized Models,” in Proc. IASTED Int.
Conf.  Control and Appl., pp. 321-326, Cancun, Mexico, 2000.

VI - 24

➡ ➠


