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ABSTRACT 
In this paper, a design approach for stable IIR digital filters with 
equiripple magnitude in passband and stopband and linear phase 
in passband is presented. The design approach adopts a constant 
group delay all -pole filter in the denominator and a mirror image 
polynomial transfer function in the numerator. Starting with a 
suitable filter order and a constant group delay value for the 
denominator, the Remez exchange algorithm is used to aid the 
design of the equiripple passband and stopband numerator 
transfer function. Equiripple passband and stopband 
characteristic offers benefits of reduced width in transition band 
and lower filter order. Lowpass, highpass, bandpass, and 
bandstop filter design examples are given. 

 

1. INTRODUCTION 

Digital filters with linear phase or constant group delay property 
are desirable in applications where the time differences among 
the frequency components of a signal before and after filtering 
must be preserved. The non-existence of stabilit y problem and 
simplicity of linear phase FIR digital filters are known. The 
drawbacks of a linear phase FIR digital filter include its higher 
group delay constant and higher filter-order as compared to its 
corresponding IIR digital filter, especially in applications 
requiring a filter with a narrow transition band. Design of IIR 
digital filters with linear phase or constant group delay 
characteristics is of practical interest.  

An allpass approach for designing an IIR digital filter with a 
constant group delay characteristic is to design an additional 
allpass equalizer to equalize the group delay of the IIR digital 
filter over the passband of interest [1-2]. A linear programming 
approach [3] adopts linear programming technique to 
approximate prescribed magnitude and group delay of an IIR 
digital filter. This approach gives an optimal solution if it exists. 
In [2], the theory of eigen filters is extended to the design of an 
allpass filter that compensates for the nonlinear phase response 
of an IIR digital filter, as well as to the design of IIR digital 
filters for the simultaneous approximation of magnitude response 
and constant group delay. A nonlinear programming approach is 
to design an IIR digital filter that simultaneously approximates 
prescribed magnitude and group delay using nonlinear 
optimization techniques [2, 4]. In [4], a new nonlinear 
programming algorithm called the recursive quadratic 
programming is used to design such an IIR digital filter that 
yields shorter group delay response in examples than those of 
[2].  

A mirror image polynomial approach involves the use of a 
mirror image type of transfer function [5-8]. In [6], the 
coeff icients of an all -pole transfer function are first optimized in 
the least pth sense to approximate the constant group delay. Then 
the coeff icients of a cascaded mirror image polynomial are 
optimized also in the least pth sense to approximate the 
prescribed magnitude response. An analytical procedure is 
presented in [7] to obtain an explicit form of an allpass transfer 
function that approximates a maximally flat group delay 
response. The coeff icients of a cascaded numerator transfer 
function are then designed to approximate equiripple stopband 
magnitude response. Adopting the Thiran’s constant group delay 
all -pole transfer function [5] as the denominator, new methods 
[8] for the zero-determination of a cascaded numerator transfer 
function are presented to achieve maximally flat passband and 
equiripple stopband magnitude response. Similar techniques for 
designing 2-dimensional IIR digital filters can be found in [9-
11].   

Recently, a method [12-13] is advanced for designing IIR 
digital filters approximating maximally flat magnitude and group 
delay characteristics in the passband. The method can achieve an 
equiripple approximation to a constant group delay in the 
passband and an equiripple magnitude response in the stopband. 
The method can also achieve a magnitude response in the 
passband and stopband with different degrees of flatness at w=0 
and π. In the design method, the Thiran’s all -pole transfer 
function [5] is used to approximate a constant group delay in the 
maximally flat or equiripple sense. A cascaded mirror image 
polynomial is used to approximate the magnitude response 
requirements. The coeff icients of this numerator transfer function 
can be obtained by an analytical method, when a maximally flat 
magnitude approximation at w=0 or a magnitude response with 
different degrees of flatness at w=0 and w=π is required.  

In [14], a class of approximately linear phase recursive 
digital filters composed of two allpass sections is designed using 
optimization. By choosing one of the allpass sections to be a pure 
delay network [15], the remaining allpass section is optimized to 
approximate prescribed magnitude and linear phase 
requirements. These are some of the typical methods for 
designing IIR digital filters meeting prescribed magnitude and 
group delay requirements. A review of the design techniques of 
both 1-dimensional and 2-dimensional IIR digital filters 
satisfying prescribed magnitude and constant group delay 
specifications can be found in [16]. 

In this paper, we present the results of a design approach for 
approximating equiripple passband and stopband magnitude 
response with a constant group delay in the passband of an IIR 
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digital filter. The method adopts the combination of a mirror 
image numerator polynomial to approximate equiripple 
magnitude response in the passband and stopband and an all-pole 
transfer function to provide a constant group delay passband to 
form an IIR digital filter. The Remez exchange algorithm [17] is 
used to facilitate the equiripple filter design procedure. As the 
Thiran’s all -pole transfer function [5] adopted in this approach is 
a lowpass filter, simple linear-phase-preserved transformations of 
z are used to aid highpass, bandpass, and bandstop digital filter 
design. 

2. FILTER FORMAT 

The transfer function of an IIR digital filter can be represented 
as: 

H(z-1)=N(z-1)/D(z-1)    (1) 

In the design method, the Thiran’s all -pole group delay filter is 
adopted as the denominator transfer function, D(z-1), whereas a 
mirror image polynomial is adopted as the numerator transfer 
function, N(z-1). The combination of a constant group delay 
passband filter with a real-valued even-order mirror image 
polynomial yields a digital filter with a constant group delay in 
the passband. 

In [5], an all-pole transfer function that exhibits a constant 
group delay characteristic is presented. The transfer function is 
given by: 
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T and τ represent, respectively, the filter-order and the group 
delay value of the transfer function. This all -pole digital filter can 
be shown to be stable for all finite positive values of τ.  

In order to maintain the constant group delay characteristic 
of the all -pole digital filter, a mirror image polynomial with an 
even filter order is used which can be expressed as: 
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(3) is a non-causal transfer function and can be realized as a 
causal transfer function by expressing the numerator transfer 
function as: 

N(z -1) = z - q Nm(z -1)      (4) 

By combining (2) and (4), we obtain a digital filter as represented 
by (1) with a constant group delay of q+τ.  

Substituting z = ejwT into (3), the frequency response of the 
mirror image polynomial is given by: 

Nm(e –jwT) = b0 + b1 cos(wT) + b2 cos(2wT) +…+ bq cos(qwT) (5) 

3. EQUIRIPPLE FILTER DESIGN 

From (1), the real transfer function of the digital filter can be 
defined as: 

Hr(e
 –jwT) = Nm(e –jwT) / |D(e –jwT)|     (6) 

Hence, from (4)-(6), 

b0 + b1cos(wiT) + b2cos(2wiT) +…+ bqcos(qwiT)  

= Hr(e –jwiT) |D(e –jwiT)|      (7) 

At any frequency wiT, given a desired magnitude response Hd(e
 –

jwiT) and a specified |D(e –jwiT)|, (7) can be used as one of the 
equations to solve the coeff icients of the mirror image 
polynomial. 

For equiripple passband and stopband design, assuming δp 
and δs are the peak values of the ripples in the passband and 
stopband of a digital filter. The passband peak ripples are defined 
as: 

|Hd(e
 –jwpiT)| - Nm(e –jwpiT) / |Dd(e

 –jwpiT)| = ± (-1)i δp  (8a) 

for wpu < wp1 < wp2 < wp3 < … < wpP < wpv    (8b)  

Similarly, the stopband peak ripples are defined as: 

|Hd(e
 –jwsiT)| - Nm(e –jwsiT) / |Dd(e

 –jwsiT)| = ± (-1)i δs      (9a) 

for wsu < ws1 < ws2 < ws3 < … < wsS < wsv    (9b) 

(7)-(9) can be solved with the aid of the Remez exchange 
algorithm to design a digital filter with equiripple passband and 
stopband characteristics. 

4. FILTER EXAMPLES 

Four equiripple passband and stopband IIR digital filters each 
with a constant group delay of 1 in the denominator are designed. 
The specifications and results of the 4 filter examples are 
summarized in Tables 1-2. The magnitude responses (with 
enlarged magnitude responses in the passbands) and the phase 
responses of the four filter examples are shown respectively in 
Figs. 1-2, 3-4, 5-6, and 7-8.  

Based on the specifications (L=5) of the lowpass filter given 
in the Fig. 5 of [13], our design yields a numerator transfer 
function with a filter order 24 instead of 26 as specified in [13]. 
The passband and stopband peak ripples, and the total group 
delay of our designed filter are, respectively, -37.52dB, -40.08 
dB, and 13. This result is due to the adoption of an equiripple 
passband instead of a maximally flat passband design strategy 
adopted in [13]. In the highpass filter example, a lowpass filter 
with passband and stopband cutoff f requencies ‘π-wp’ and ‘ π-
ws’ is first designed. By taking the z to –z transformation to the 
lowpass filter, the highpass IIR digital filter is obtained. In the 
bandpass filter example, the denominator transfer function is first 
subject to z to z4 transformation to obtain appropriate constant 
group delay and magnitude responses. The Remez algorithm is 
then applied to design the numerator transfer function of the 
bandpass filter. Alternatively, an appropriate Thiran’s all -pole 
lowpass filter could be used directly as the denominator of the 
bandpass filter without applying the z to z4 transformation. In the 

(2) 
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bandstop filter example, a prototype lowpass filter of passband 
and stopband cutoff f requencies 2wp1T and 2ws1T is first 
designed and the filter is obtained by z to z2 transformation.  

Filters LP HP BP BS 

Wp1T,Wp2T 0.12 0.79 0.2, 0.3 0.14, 0.86 

Ws1T,Ws2T 0.17 0.74 0.17, 0.33 0.165, 0.835 

Nd 5 7 9 9 

Nn (Nc) 79 (40) 81 (41) 97 (49) 77 (39) 

PB1, PB2 5 9 5 11, 11 

SB1, SB2 33 30 7, 32 52 

Gd 40 41 52 78 

Iter 5 6 8 5 

Table 1. Summary of specifications and results of 4 filter 
examples. Keys: Wp1T, Wp2T – Normalized passband cutoff 
frequencies/π; Ws1T, Ws2T – Normalized stopband cutoff 
frequencies/π; Nd – Number of denominator coeff icients; Nn – 
Number of numerator coeff icients; Nc - Number of distinct 
numerator coeff icients; PB1, PB2 - Number of passband peak 
ripples; SB1, SB2 - Number of stopband peak ripples; Gd - Total 
passband group delay; Iter – Number of iterations to converge. 

Filters LP HP BP BS 

MPPR -37.37 -40.51 -32.84 -35.72, -35.72 

MSPR -44.74 -43.23 -33.19, -32.85 -44.81 

Table 2. Summary of maximum passband peak ripple (MPPR) 
and maximum stopband peak ripple (MSPR) (in dB) of 4 filter 
examples. 

5. SUMMARY 

In this paper, we have described a design approach for stable IIR 
digital filters with equiripple magnitude response in passband 
and stopband and linear phase response in passband. With 
equiripple passband and stopband magnitude responses, the 
filter-order and the transition width of an IIR digital filter can be 
reduced. In practice, the level of the passband ripple peaks can be 
designed to meet the specific requirement of an individual 
application.  
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Fig. 1. Magnitude response of Filter 1. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency / pi

M
ag

ni
tu

de
 R

es
po

ns
e 

in
 d

B

 
Fig. 3. Magnitude response of Filter 2. 
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Fig. 5. Magnitude response of Filter 3. 
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Fig. 7. Magnitude response of Filter 4. 
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Fig. 2. Magnitude (dB) and phase (radians) responses of Filter 1. 
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Fig. 4. Magnitude (dB) and phase (radians) responses of Filter 2. 
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Fig. 6. Magnitude (dB) and phase (radians) responses of Filter 3. 
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Fig. 8. Magnitude (dB) and phase (radians) responses of Filter 4. 
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