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ABSTRACT

In this paper, adesign approach for stable IR digita filters with
equiripple magnitude in passhand and stopband and linea phase
in passhand is presented. The design approach adopts a wnstant
group celay al-padefilter in the denominator and a mirror image
polynomia transfer function in the numerator. Starting with a
suitable filter order and a cnstant group delay value for the
denominator, the Remez echange dgorithm is used to aid the
design o the euiripple pasdand and stopband numerator
transfer  function. Equiripple pasdand and stopband
charaderistic offers benefits of reduced width in transition band
and lower filter order. Lowpass highpass bandpess and
bandstop filter design examples are given.

1. INTRODUCTION

Digitd filters with linea phase or constant group celay property
are desirable in applicaions where the time differences among
the frequency comporents of a signal before and after filtering
must be preserved. The non-existence of stability problem and
simplicity of linea phase FIR digita filters are known. The
drawbadks of a linea phase FIR digita filter include its higher
group ctlay constant and Hgher filter-order as compared to its
correspondng IR digital filter, espedaly in applicaions
requiring a filter with a narrow transition band. Design of IIR
digita filters with linea phase or constant group dlay
charaderigticsis of pradicd interest.

An dlpassapproach for designing an IR digital filter with a
constant group dblay charaderistic is to design an additional
all pass equalizer to equalize the group delay of the IIR digita
filter over the passdand o interest [1-2]. A linea programming
approach [3] adops linea programming technique to
approximate prescribed magnitude and group dday of an IIR
digital filter. This approac gives an optimal solution if it exists.
In [2], the theory of eigen filters is extended to the design of an
allpassfilter that compensates for the norlinea phase response
of an IIR digital filter, as well as to the design of IIR digita
filters for the simultaneous approximation o magnitude resporse
and constant group celay. A norlinea programming approad is
to design an IIR digital filter that simultaneously approximates
prescribed magnitude ad group dday using norlinea
optimizaion techniques [2, 4]. In [4], a new norlinea
programming agorithm cdled the rearsive quadratic
programming is used to design such an IIR digita filter that
yields dorter group delay resporse in examples than those of
[2].
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A mirror image polynomia approach involves the use of a
mirror image type of transfer function [5-8]. In [6], the
coefficients of an al-pdle transfer function are first optimized in
the least p™" sense to approximate the @nstant group delay. Then
the wefficients of a cacaded mirror image polynomia are
optimized aso in the least p" sense to approximate the
prescribed magnitude resporse. An analyticd procedure is
presented in [7] to oktain an explicit form of an al passtransfer
function that approximates a maximaly flat group day
resporse. The wefficients of a cacaded numerator transfer
function are then designed to approximate euiripple stopband
magnitude resporse. Adopting the Thiran’s constant group delay
all-pde transfer function [5] as the denominator, new methods
[8] for the zeo-determination o a cacaded numerator transfer
function are presented to achieve maximaly flat passand and
equiripple stopband magnitude resporse. Similar techniques for
designing 2-dimensional IIR digital filters can be foundin [9-
11].

Recantly, a method [12-13)] is advanced for designing IIR
digita filters approximating maximally flat magnitude and group
delay charaderistics in the passand. The method can achieve an
equiripple gproximation to a @nstant group dlay in the
passand and an equiripple magnitude resporse in the stopband.
The method can aso achieve a magnitude resporse in the
passand and stopband with different degrees of flatnessat w=0
and 1t In the design method the Thiran’s dl-poe transfer
function [5] is used to approximate a ©nstant group delay in the
maximally flat or equiripple sense. A cascaded mirror image
polynomia is used to approximate the magnitude resporse
requirements. The wefficients of this numerator transfer function
can be obtained by an andyticd method, when a maximally flat
magnitude goproximation at w=0 or a magnitude resporse with
different degrees of flatnessat w=0 and w=ttis required.

In [14], a dass of approximately linea phase reaursive
digita filters composed of two alpass gdions is designed wsing
optimizaion. By choasing one of the dl pass dionsto be apure
delay network [15], the remaining al pass ®dionis optimized to
approximate prescribed magnitude ad linea  phase
requirements. These ae some of the typicd methods for
designing IIR digital filters meding prescribed magnitude and
group dHlay requirements. A review of the design techniques of
both 1-dimensiona and 2dimensiona IIR digital filters
satisfying prescribed magnitude ad constant group dlay
spedficaions can befoundin [16].

In this paper, we present the results of a design approac for
approximating equiripple passand and stopbend magnitude
resporse with a @mnstant group dllay in the pasand d an IIR
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digital filter. The method adopts the combination of a mirror
image numerator polynomial to approximate equiripple
magnitude response in the passband and stopband and an all-pole
transfer function to provide a constant group delay passband to
form an IIR digitd filter. The Remez exchange algorithm [17] is
used to facilitate the equiripple filter design procedure. As the
Thiran’s al -pole transfer function [5] adopted in this approach is
alowpass filter, simple linear-phase-preserved transformations of
z are used to aid highpass, bandpass, and bandstop digital filter
design.

2. FILTER FORMAT

The transfer function of an IIR digital filter can be represented
as:

H(ZhH=N(zY/D(zY) (1)

In the design method, the Thiran’s all -pole group delay filter is
adopted as the denominator transfer function, D(zY), whereas a
mirror image polynomial is adopted as the numerator transfer
function, N(z*%). The combination of a constant group delay
passband filter with a rea-valued even-order mirror image
polynomial yields a digital filter with a constant group delay in
the passband.

In [5], an al-pole transfer function that exhibits a constant
group delay characteristic is presented. The transfer function is
given by:
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T and 1 represent, respedively, the filter-order and the group
delay value of the transfer function. This all-pole digita filter can
be shown to be stable for al finite positive values of 1.

@

In order to maintain the mnstant group delay charaderistic
of the dl-padle digital filter, a mirror image polynomia with an
even filter order is used which can be expressd as:

z+z- z9%+z-1
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(3) is a noncausa transfer function and can be redized as a
causa transfer function by expressng the numerator transfer
function as:

Nz Y=z 9Nz} (4)

By combining (2) and (4), we obtain adigital filter as represented
by (1) with a cnstant group delay of g+T.

Nim(z ™) = bo+ Iy

Substituting z = "7 into (3), the frequency resporse of the
mirror image polynomial is given hy:

Nm(e ") = by + by cos(WT) + b, cosS(2WT) +...+ by cos(qwT) (5)

3. EQUIRIPPLE FILTER DESIGN

From (1), the red transfer function o the digital filter can be
defined as:

H(e ) = Nn(e?7) / D(e )] (6)
Hence from (4)-(6),

bo + bycos(wiT) + b,cos(2wiT) +...+ bycos(qwiT)

= Hr(e ") [D(e )| ()

At any frequency wiT, given a desired magnitude resporse Hy(e™
Wy and a spedfied [D(e 7™T)|, (7) can be used as one of the
equations to solve the wefficients of the mirror image
polynomial.

For equiripple pasdand and stopband design, asauming op
and 0s are the ped values of the ripples in the passand and
stopband o adigital filter. The passhand peek ripples are defined
as:

Ho(e 7P| - Ni(e ™) / IDg(e P )| = £ (-1)' 3p (84)

for Wiy < Wpy < Wpa <Wps < ... < Wpp < Wy (8b)

Similarly, the stopband pe&k ripples are defined as:
Ha(e 7| - Nin(e7"T) / [Dg(e 97| = £ (-1)' &5 (9a)

for wg, <Wg < Weo <Wg < ... < Weg < Wy, (9b)

(7)-(9) can be solved with the ad of the Remez echange
algorithm to design a digita filter with equiripple passand and
stopband charaderistics.

4. FILTER EXAMPLES

Four equiripple passand and stopband IIR digita filters eat
with a cnstant group celay of 1 in the denominator are designed.
The spedficaions and results of the 4 filter examples are
summarized in Tables 1-2. The magnitude resporses (with
enlarged magnitude resporses in the passands) and the phase
resporses of the four filter examples are shown respedively in
Figs. 1-2, 3-4, 5-6, and 7-8.

Based onthe spedfications (L=5) of the lowpassfilter given
in the Fig. 5 of [13], our design yields a numerator transfer
function with afilter order 24 instead of 26 as edfied in [13].
The passdand and stopband pe&k ripples, and the total group
delay of our designed filter are, respedively, -37.52dB, -40.08
dB, and 13 This result is due to the aloption o an equiripple
pasdand instead of a maximally flat pasdand design strategy
adopted in [13]. In the highpassfilter example, a lowpassfilter
with passand and stophand cutoff frequencies ‘Tewp’ and * T
ws' is first designed. By taking the zto —z transformation to the
lowpass filter, the highpass IR digital filter is obtained. In the
bandpessfilter example, the denominator transfer functionis first
subjedt to z to z* transformation to oktain appropriate @mnstant
group delay and magnitude resporses. The Remez dgorithm is
then applied to design the numerator transfer function o the
bandpess filter. Alternatively, an appropriate Thiran’s al -pole
lowpass filter could be used dredly as the denominator of the
bandpassfilter withou applying the z to z* transformation. In the
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bandstop filter example, a prototype lowpass filter of pasdand
and stopband cutoff frequencies 2wplT and 2wslT is first

designed and thefilter is obtained by z to z2 transformation.

Filters LP HP BP BS
WpITWp2T | 012 | 079 | 0203 | 0.14086
WsIT,Ws2T | 017 | 074 | 017033 | 0.165 0.835

Nd 5 7 9 9
Nn(Nc) | 79(40) | 81(41) | 97(49 77(39)
PB1, PB2 5 9 5 11,11
SB1, SB2 33 30 7,32 52

Gd 40 41 52 78

Iter 5 6 8 5

Table 1. Summary of spedficaions and results of 4 filter
examples. Keys: Wp1T, Wp2T — Normdized pasdand cutoff
frequencies/iTt Ws1T, Ws2T — Normaized stopband cutoff
frequencies/Tt Nd — Number of denominator coefficients; Nn —
Number of numerator coefficients; Nc - Number of distinct
numerator coefficients; PB1, PB2 - Number of passand pesk
ripples; SB1, SB2 - Number of stopband pe& ripples; Gd - Total
passhand group delay; Iter — Number of iterations to converge.

Filters LP HP BP BS
MPPR | -37.37 | -4051 -32.84 -35.72,-35.72
MSPR | -4474 | -4323 | -33.19, -32.85 -44.81

Table 2. Summary of maximum passand pe&k ripple (MPFR)
and maximum stopband pe&k ripple (MSPR) (in dB) of 4 filter
examples.

5. SUMMARY

In this paper, we have described a design approach for stable IR
digital filters with equiripple magnitude resporse in passhand
and stopband and linea phase resporse in passand. With
equiripple passdand and stopband magnitude resporses, the
filter-order and the transition width of an IIR digital filter can be
reduced. In pradice the level of the passand ripple pedks can be
designed to med the spedfic requirement of an individual
applicaion.
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Fig. 1. Magnitude response of Filter 1. Fig. 2. Magnitude (dB) and phase (radians) responses of Filter 1.
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Fig. 3. Magnitude response of Filter 2. Fig. 4. Magnitude (dB) and phase (radians) responses of Filter 2.
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Fig. 5. Magnitude response of Filter 3. Fig. 6. Magnitude (dB) and phase (radians) responses of Filter 3.
ol
-10 oL i i i i i i i i i 1
3H .
%:' -20
g =30
< 1 A
-'g’ —-40
g or ¥
-50 —1 H
—60 -2 H
il i L 8r i i i i i i i i i |
7700 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency / pi Normalized Frequency / pi

Fig. 7. Magnitude response of Filter 4. Fig. 8. Magnitude (dB) and phase (radians) responses of Filter 4.
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