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ABSTRACT

In this paper we consider the design of lowpass infinite impulse
response (IIR) magnitude filters which are robust against the im-
plementation error. It is shown that the design problem can be
cast as a quasiconvex problem with a set of linear matrix inequal-
ity (LMI) constraints and the autocorrelation sequences of the filter
coefficients as the design variables. The relation between the norm
error of autocorrelation sequences and that of filter coefficients is
derived, and the issue of filter stability is addressed by deriving a
lower bound on the distance from the pole to the unit circle. Sim-
ulation results show that our designed filter is immune from the
errors caused by finite precision implementation. The method can
also be used in similar highpass and bandpass IIR filter design.

1. INTRODUCTION

In hardware implementation of digital filters, each filter tap (co-
efficient) can only be represented as a finite word length number.
As a result, an optimal filter designed using real number formula-
tion must be rounded (or truncated) before digital implementation.
However, such rounding procedure may result in degradation of
filter performance or even render the filter unstable. Alternatively,
we may use mixed-integer linear programming formulation to de-
sign optimum filters with sum of power of two coefficients [1]–[5].
However, this problem formulation is not convex and suffers from
high computational complexity. In a recent paper [6], Lu proposed
a method by relaxing the design to a semidefinite programming
(SDP) problem, which can be solved using efficient interior-point
algorithms with polynomial-time complexity. However, this ap-
proach does not explicitly address the issue of filter robustness
against rounding errors.

In this paper, we present a new approach to the design of IIR
magnitude filters which are robust against the implementation (or
rounding) errors. In section 3, we show that such robust design
problem can be formulated as a quasiconvex problem which can be
solved via SDP feasibility problems without any approximation. A
design example is given in section 4 to illustrate the performance
of the proposed technique.

The notation we use in this paper is as follows:

• x º 0: vectorx is an autocorrelation sequence;

• X º 0: matrix X is positive semidefinite;

• I : identity matrix of appropriate size;

• 0: zero matrix of appropriate size.
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2. PROBLEM STATEMENT

The transfer function of an IIR filter is given by

H(z) =
a0 + a1z

−1 + a2z
−2 + · · ·+ anz−n

b0 + b1z−1 + b2z−2 + · · ·+ bmz−m

4
=

A(z)

B(z)

where we assume the filter coefficients to be real valued. We shall
usea = [a0, · · · , an]T ∈ Rn+1 andb = [b0, · · · , bm]T ∈ Rm+1

to denote the filter tap vectors.
In this paper, we consider the typical problem of designing a

lowpass IIR filter with maximum stopband attenuation, subject to
spectral mask constraint on the magnitude response in the pass-
band. This design problem can be expressed as [7]

minimize supω∈[ωs,π] |H(ejω)|
subject to 1− δp ≤ |H(ejω)| ≤ 1 + δp, ω ∈ [0, ωp],

bT b = 1,

(1)

whereδp is the passband deviation,ωs the stopband edge, andωp

the passband edge. The equality constraint is used to normalize
the solution.

Notice that the optimal design given by (1) will satisfy the
spectral mask constraint. However, after quantization (which is
necessary for digital implementation), the resulting filter design
may violate the spectral mask constraint, or even become unstable.
This motivates us to consider introducing robustness in the above
design formulation. We address this issue in the next section.

3. PROBLEM FORMULATION

3.1. Preliminary Formulation

Problem (1) is not convex in the variablesa andb. However, it was
pointed out in [7]–[11] that this problem can be reformulated as a
quasiconvex problem if the autocorrelation coefficients ofa andb
are used as variables.

Defineu = [u0, · · · , un]T ∈ Rn+1 andv = [v0, · · · , vm]T ∈
Rm+1 as the autocorrelation coefficients ofa andb, and let

U(ω)
4
= u0 + 2u1 cos ω + · · ·+ 2un cos nω,

V (ω)
4
= v0 + 2v1 cos ω + · · ·+ 2vm cos mω,

then it is easily shown that problem (1) can be expressed as

minimize t

subject to U(ω) ≤ (1 + δp)2V (ω), ω ∈ [0, ωp],

(1− δp)2V (ω) ≤ U(ω), ω ∈ [0, ωp],

0 ≤ U(ω) ≤ tV (ω), ω ∈ [ωs, π],
V (ω) ≥ 0, U(ω) ≥ 0, ω ∈ [0, π],
v0 = 1,

(2)
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where the non-negativity constraintsU(ω) ≥ 0 andV (ω) ≥ 0
are imposed to guarantee the existence ofa andb [8]. This is a
quasiconvex problem with variablest, u, andv, and can be solved
via binary search ont, t ∈ R. Once a solution of (2) is found, an
IIR filter can be obtained via spectral factorization.

3.2. Stability Considerations

For an IIR filter to be stable, all the poles must lie inside the unit
circle. Once an optimal solutionu andv is obtained, choosing
minimum phase spectral factors yields an IIR filter with no poles
and zeros outside the unit circle. However, in practice, a system
with a pole on the unit circle is also regarded as unstable or po-
tentially unstable unless it coincides with a zero on the unit circle,
since a minor disturbance or error will push the system into insta-
bility. Consequently, we set a stability marginε1 > 0 such that
V (ω) ≥ ε1 for all ω, which implies that none of the poles can
be on the unit circle when minimum phase spectral factors are ex-
tracted.

Let R(z) = zmB(z), and supposeλ ∈ C is a root ofR(z)
with the maximum magnitude, then from the theorem of Lagrange

mean and the fact that
∣∣R(ejω)

∣∣2 = V (ω) ≥ ε1, it immediately
follows that the minimum distancedmin from the poles to the unit
circle can be lower bounded as

dmin = |1− |λ|| ≥
√

ε1

m|b0|+ (m− 1)|b1|+ · · ·+ |bm−1| . (3)

3.3. Intermediate Formulation

For a vectorx = [x0, x1, . . . , xn]T ∈ Rn+1, the following prop-
erties are proven in [7, 10]:

1. x satisfies the constraint of the form

X(ω) = x0 + 2

n∑
k=1

xk cos kω ≥ 0, ω ∈ [α, β] (4)

if and only if
L(α, β)x º 0,

where matrixL(α, β) ∈ R(n+1)×(n+1) depends only on
α andβ and can be constructed based on the recursion of
Chebyshev Polynomials;

2. x º 0 if and only if there exists aP = P T ∈ Rn×n such
that

[
P −MT PM x̃−MT PN
x̃T −NT PM x0 −NT PN

]
º 0 (5)

with

M =

[
0 I
0 0

]
∈ Rn×n, N = [0, · · · , 0, 1]T ∈ Rn,

(6)
andx̃ = [xn, xn−1, · · · , x1]

T .

Without loss of generality, we supposen ≥ m. Notice that the
constraints in (2) have the form of (4). Defining matrices

L1 = L(0, ωp) ∈ R(n+1)×(n+1),

L2 = L(ωs, π) ∈ R(n+1)×(n+1),

Ex
4
=




0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0


 ∈ Rn×(n+1), (7)

and
e
4
= [1, 0, · · · , 0]T ∈ Rn+1, (8)

applying the above two properties, through some simple deriva-
tions, we rewrite problem (2) and stability considerations as

minimize t

subject to

[
Si Ci

CT
i Wi

]
º 0, i = 1, · · · , 5,

Pi = P T
i ∈ Rn×n, i = 1, 2, 3, 5,

P4 = P T
4 ∈ Rm×m,

v0 = 1

(9)

with
Si = Pi −MT

i PiMi, i = 1, · · · , 5,

C1 = (1 + δp)2Ex1L1vv − Ex1L1uu−MT
1 P1N1,

C2 = Ex2L1uu− (1− δp)2Ex2L1vv −MT
2 P2N2,

C3 = tEx3L2vv − Ex3L2uu−MT
3 P3N3,

C4 = Ex4(v − ε1e2)−MT
4 P4N4,

C5 = Ex5(u− ε2e3)−MT
5 P5N5,

W1 = (1 + δp)2eT
1 L1vv − eT

1 L1uu−NT
1 P1N1,

W2 = eT
1 L1uu− (1− δp)2eT

1 L1vv −NT
2 P2N2,

W3 = teT
1 L2vv − eT

1 L2uu−NT
3 P3N3,

W4 = eT
2 (v − ε1e2)−NT

4 P4N4,

W5 = eT
3 (u− ε2e3)−NT

5 P5N5,

whereL1v is the matrix consisting of the firstm + 1 columns of
matrixL1, L2v the firstm + 1 columns of matrixL2, L1u = L1,
L2u = L2, Mi, Ni, Exi, andei are matrices and vectors with sizes
inferred from context and structures defined by (6), (7), and (8),
respectively, and we letU(ω) ≥ ε2 > 0 to simplify the spectral
factorization. Obviously, some of these data matrices, depending
on their dimensions, are identical. Notice that problem (9) is a
quasiconvex problem with a set of LMI constraints. In particular,
for each fixedt, the constraints of (9) become linear matrix in-
equalities, so the feasibility of the constraint set can be checked
efficiently using interior-point methods for each fixedt. With this
procedure to check feasibility, the minimumt for (9) can be found
via the standard binary search technique.

3.4. Robustness Considerations

In the presence of rounding errors, we must make sure the rounded
solution remains stable and still respects the spectral mask con-
straint. We will model the rounding error explicitly to avoid the
potential instability and to ensure the satisfaction of the spectral
mask constraints after rounding.

If we let matrixF1(P1, u, v)
4
=

[
S1 C1

CT
1 W1

]
, then under

the robustness considerations, the constraintF1(P1, u, v) º 0 is
changed to

F1(P1, u +4u, v +4v) º 0 (10)
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for all ‖4u
4v
‖ ≤ δ1, whereδ1 is the norm error of variablesu and

v, andδ1 > 0.
Given

∥∥4a
4b

∥∥ ≤ δ, by Cauchy-Schwarz inequality and the def-
inition of u andv, it is easily shown that

4ui ≤ 2‖a‖δ + δ2, i = 0, 1, · · · , n, (11)

and
4vi ≤ 2δ + δ2, i = 0, 1, · · · , m. (12)

By Parseval’s Relation, we get

‖a‖ ≤ 1 + δp. (13)

Combining (11), (12) and (13) yields
∥∥∥∥
4u

4v

∥∥∥∥ ≤ δ1 (14)

with δ1 =
√

(n + 1)[2(1 + δp)δ + δ2]2 + (m + 1)(2δ + δ2)2.

Similarly, the other inequality constraints in (9) can also be
changed to constraints of form (10).

3.5. Final Formulation

Luo et al. in [12] has recently proven that the data matrices (S, C,
D, W, G, H, Q) satisfy the following condition

[
S C + DX

(C + DX)T W + XT G + GT X + XT HX

]
º 0

for anyX satisfyingI −XT QX º 0 if and only if there exists a
γ ≥ 0 such that

[
S C D

CT W GT

DT G H

]
− γ

[
0 0 0
0 I 0
0 0 −Q

]
º 0.

By applying the above theorem, the constraint of form (10)
can be transformed into an LMI constraint with some auxiliary
variable, and therefore the problem (9) and robustness considera-
tions can be rewritten as

minimize t

subject to

[
Si Ci Di

CT
i Wi GT

i

DT
i Gi 0

]
− γi

[
0 0 0
0 δ2

1 0
0 0 −I

]
º 0

γi ≥ 0, i = 1, · · · , 5,

Pi = P T
i ∈ Rn×n, i = 1, 2, 3, 5,

P4 = P T
4 ∈ Rm×m,

v0 = 1
(15)

with
D1 = [ −Ex1L1u (1 + δp)2Ex1L1v ],

D2 = [ Ex1L1u −(1− δp)2Ex1L1v ],

D3 = [ −Ex3L2u tEx3L2v ], D4 = [ 0 Ex4],

D5 = [ Ex3 0 ], GT
1 = 0.5[ −eT

1 L1u (1 + δp)2eT
1 L1v ],

GT
2 = 0.5[ eT

1 L1u −(1− δp)2eT
1 L1v ], GT

4 = 0.5[ 0 eT
2 ],

GT
3 = 0.5[ −eT

1 L2u teT
1 L2v ], GT

5 = 0.5[ eT
3 0 ].

Problem (15) can be solved via bisection ont, i.e. solving
a sequence of SDP feasibility problems. Then, we use minimum
phase spectral factorization to recover filter coefficientsa and b
from the autocorrelation coefficientsu andv.

Obviously, the techniques described above are readily extended
to related problems, such as robust highpass and bandpass IIR
magnitude filter design.

4. SIMULATION RESULTS

Two lowpass IIR digital filters were designed to illustrate the per-
formance of our proposed technique: one designed by the pro-
posed method with norm error of filter coefficients set toδ =
10−6, the other without taking robustness issue into account. Both
satisfy the same set of specifications: passband edgeωp = 0.15π,
stopband edgeωs = 0.30π, maximum passband deviationδp =
0.01, numerator degreen = 5, denominator degreem = 4, stabil-
ity marginε1 = 10−8, andε2 = 10−8. The SDP optimization was
implemented in SeDuMi Interface 1.01 [13] and SeDuMI 1.05 [14]
with MATLAB 6.1.

The simulation results are shown in Figs. 1 and 2, respectively.
The solid curves correspond to the optimal filters. The maximum
stopband attenuation is 0.029444 or 30.62dB for the optimal robust
filter vs. 0.0032434 or 49.78dB for the optimal nonrobust filter,
which implies that the robust optimization method trades off the
stopband performance for robustness.

As shown in Figs. 1 and 2, when the filter coefficients are sub-
ject to perturbationδ = 10−6, little change can be found in the
magnitude response of the robust filter and the spectral mask con-
straint is still satisfied. In contrast, the same perturbation results in
violation of the passband spectral mask specification by the nonro-
bust filter. As the size of rounding perturbation increases, our ro-
bust filter remains immune from the perturbationδ ≤ 6.0× 10−5,
which is larger than the quantization error produced by 16 bit trun-
cation of each filter coefficient. However, the violation of spectral
mask constaint by the nonrobust filter becomes more pronounced
with increasingδ. Meanwhile, pole-zero diagrams in Figs. 1 and 2
indicate that both filters remain stable when the filter coefficients
are subject to different perturbations from10−6 to 6.0× 10−5.

Our robust filter exhibits extra robustness in the simulations,
as shown in Fig. 1. This is likely due to the bounds in (11), (12),
and (14) are not tight.

5. CONCLUSIONS

We have proposed a new technique for the design of IIR digital
magnitude filters which are immune from the implementation er-
ror. The design problem is formulated as a quasiconvex SDP prob-
lem and hence can be solved efficiently and exactly via interior-
point methods. We demonstrated the effectiveness of our robust
design technique by comparing with the nonrobust method. The
technique can be extended to similar highpass and bandpass mag-
nitude filter design. Our design technique can also be used in FIR
case. All that is needed is to ignore the design variableb and the
stability constraint.
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