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ABSTRACT 2. PROBLEM STATEMENT

In this paper we consider the design of lowpass infinite impulse The transfer function of an IIR filter is given by
response (IIR) magnitude filters which are robust against the im- . L .
plementation error. It is shown that the design problem can be  f(,) — 0t a@1z  Fa2z "+---+anz = A& A(z)

cast as a quasiconvex problem with a set of linear matrix inequal- Cbo+biz bz 2+ + bz B(z)
ity (LMI) constraints and the autocorrelation sequences of the filter \yhare we assume the filter coefficients to be real valued. We shall
coefficients as the design variables. The relation between the norm o, — [ao, -, an]T € R™'andb = [bo, - -, bm]T € R™!

error of autocorrelation sequences and that of filter coefficients is 4 genote the filter tap vectors.
derived, and the issue of filter stability is addressed by deriving a In this paper, we consider the typical problem of designing a

lower bound on the distance from the pole to the unit circle. Sim- lowpass IIR filter with maximum stopband attenuation, subject to

ulation results show that our designed filter is immune from the gneciral mask constraint on the magnitude response in the pass-
errors caused by finite precision implementation. The method canpng. This design problem can be expressed as [7]

also be used in similar highpass and bandpass IIR filter design. )
minimize  sup,,¢(, - [H(€’“)]

1. INTRODUCTION subjectto 1 —6, < [H(e’)| <146, we [0,wp], (1)
bTh =1,

whered, is the passband deviation, the stopband edge, ang
the passband edge. The equality constraint is used to normalize
the solution.

Notice that the optimal design given by (1) will satisfy the
spectral mask constraint. However, after quantization (which is
necessary for digital implementation), the resulting filter design
may violate the spectral mask constraint, or even become unstable.
This motivates us to consider introducing robustness in the above
design formulation. We address this issue in the next section.

In hardware implementation of digital filters, each filter tap (co-
efficient) can only be represented as a finite word length number.
As a result, an optimal filter designed using real number formula-
tion must be rounded (or truncated) before digital implementation.
However, such rounding procedure may result in degradation of
filter performance or even render the filter unstable. Alternatively,
we may use mixed-integer linear programming formulation to de-
sign optimum filters with sum of power of two coefficients [1]-[5].
However, this problem formulation is not convex and suffers from
high computational complexity. In a recent paper [6], Lu proposed
a method by relaxing the design to a semidefinite programming
(SDP) problem, which can be solved using efficient interior-point 3. PROBLEM FORMULATION
algorithms with polynomial-time complexity. However, this ap-

proach does not explicitly address the issue of filter robustness3-1. Preliminary Formulation

against rounding errors. _ Problem (1) is not convex in the variablesindb. However, it was

In this paper, we present a new approach to the design of IR inteq out in [7]-[11] that this problem can be reformulated as a
magnitude filters which are robust against the implementation (or quasiconvex problem if the autocorrelation coefficienta ahdb
rounding) errors. In section 3, we show that such robust design 4.e ysed as variables

problem can be formulated as a quasiconvex problem whichcanbe  pafiney, — o, un)” € R™ andv = [vo, -+, vm]T €
solved via SDP feasibility problems without any approximation. A pm+1 4¢ the autocorrelation coefficientscofindb, and let
design example is given in section 4 to illustrate the performance
of the proposed technique. U(w) 2 uo + 2u1 coSw + - - - + 2uy, cos nw,

The notation we use in this paper is as follows: A
V(w) = vo + 201 cosw + - - - + 20y, cOS Mw,

e 1 > 0: vectorz is an autocorrelation sequence; . ;
then it is easily shown that problem (1) can be expressed as

e X > 0: matrix X is positive semidefinite;

I identit trix of iate si minimize ¢
. identity matrix of appropriate size; .
* Y pprop subjectto U(w) < (1+6,)2V(w), w € [0,w,],
e 0: zero matrix of appropriate size.
PRIoP (1-6,)V(@) SUW), wellwl (g
This research is supported in part by the Natural Sciences and Engi- 0<U(w) <tV(w), w € [ws, 7,
neering Research Council of Canada, Grant No. OPG0090391 and by the Vw)>0, Uw)>0, wel0,nx],
Canada Research Chair Program. vo =1,
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where the non-negativity constraimi§w) > 0 andV(w) > 0
are imposed to guarantee the existence ahdb [8]. This is a
quasiconvex problem with variablesu, andv, and can be solved
via binary search on, ¢t € R. Once a solution of (2) is found, an
IIR filter can be obtained via spectral factorization.

3.2. Stability Considerations

For an IIR filter to be stable, all the poles must lie inside the unit
circle. Once an optimal solution andv is obtained, choosing
minimum phase spectral factors yields an IIR filter with no poles
and zeros outside the unit circle. However, in practice, a system
with a pole on the unit circle is also regarded as unstable or po-
tentially unstable unless it coincides with a zero on the unit circle,
since a minor disturbance or error will push the system into insta-
bility. Consequently, we set a stability margin > 0 such that
V(w) > &1 for all w, which implies that none of the poles can
be on the unit circle when minimum phase spectral factors are ex-
tracted.

Let R(z) = z™B(z), and suppos@ € C'is a root of R(z)
with the maximum magnitude, then from the theorem of Lagrange
mean and the fact thz{n‘?(ej“’)|2 = V(w) > 1, itimmediately
follows that the minimum distancg,,;,, from the poles to the unit
circle can be lower bounded as

VEL
mlbol + (m = )foa] + -+ b’

dmin = |1 - |)\H 2 (3)

3.3. Intermediate Formulation

For a vectorr = [zo, z1,...,z,]" € R™!, the following prop-
erties are proven in [7, 10]:

1. z satisfies the constraint of the form

X (w) :xo+22xkcoskw >0, we€ln,fl (4)
k=1

if and only if
where matrixL(a, 3) € R™V*("+1) depends only on

« and 3 and can be constructed based on the recursion of
Chebyshev Polynomials;

. = = 0ifand only if there exists @ = PT € R™*" such
that

[ P—MTPM %- MTPN
—
T = NTPM zo— NTPN =0 ®)
with
[ 0 I nxn T n
M=| ., o|€R" N=,,01" €R",
] (6)
andz = [mn,xnfl,---,:cﬂT

Without loss of generality, we suppose> m. Notice that the
constraints in (2) have the form of (4). Defining matrices

I, = L(wap) c R(TL+1)><(7L+1)7

Ly = L(ws,7) € R (D)

00 0 1
L lo o 10
Ez e ) ] ] ] c Rnx(n+1) (7)
0 1 00
and
e2101,0,---,0" € ", @8)

applying the above two properties, through some simple deriva-
tions, we rewrite problem (2) and stability considerations as

minimize t
: Si  C .
subject to {C’f W, ] =0, i=1,---,5,
9
Pi=PF e R™" i=1,2,3,5, ©
P= P4T c Rmxm’
’U():l
with

Ci=01+ 5p)2Ez1L1vv — Eu1Liwu — M{ PNy,
Cy = EgaLiyu — (1 — 8,)> EgaL1,v — M3 PyNo,
03 = th?,LQUU — Eszzuu — M3TP3N3,
Cy = Eza(v —e1€2) — M{ PyNy,
Cs = FEy5(u — e2e3) — M7 PsNs,
Wi = (14 6,)%] Liyv — €] Liyu — N{ PNy,
Wa = ef Liyu — (1 — 6,)%e] Li,v — N3 PaNa,
Ws = tef Loyv — ef Loyu — Ny P3N,

W4 = eQT(v — 5162) — NEP4N4,

W5 = eg(u — 6263) — N5TP5N5,
where L1, is the matrix consisting of the first + 1 columns of
matrix L1, Ls, the firstm + 1 columns of matrixLs, L1, = L1,
Loy, = Lo, M;, N;, E4;, ande; are matrices and vectors with sizes
inferred from context and structures defined by (6), (7), and (8),
respectively, and we lét/ (w) > €2 > 0 to simplify the spectral
factorization. Obviously, some of these data matrices, depending
on their dimensions, are identical. Notice that problem (9) is a
guasiconvex problem with a set of LMI constraints. In particular,
for each fixedt, the constraints of (9) become linear matrix in-
equalities, so the feasibility of the constraint set can be checked
efficiently using interior-point methods for each fixedWith this

procedure to check feasibility, the minimunfor (9) can be found
via the standard binary search technique.

3.4. Robustness Considerations

In the presence of rounding errors, we must make sure the rounded
solution remains stable and still respects the spectral mask con-
straint. We will model the rounding error explicitly to avoid the
potential instability and to ensure the satisfaction of the spectral
mask constraints after rounding.

A

If we let matrix Fy (P, u,v) = S G

cr w
the robustness considerations, the constrBi{t:, u,v) = 0 is
changed to

, then under

Fi(Pr,u+ Au,v+ Av) = 0 (20)
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Au

forall ||’x¥ ]| < &1, whered, is the norm error of variables and Problem (15) can be solved via bisection fri.e. solving
v, anddé; > 0. a sequence of SDP feasibility problems. Then, we use minimum
GivenH o H < §, by Cauchy-Schwarz inequality and the def- phase spectral factorization to recover filter coefficientsnd b
inition of » andv, it is easily shown that from the autocorrelation coefficientsandv.
Obviously, the techniques described above are readily extended
Ay < 2lal|§ +6%,i=0,1,---,m, (11) to related problems, such as robust highpass and bandpass IIR

and magnitude filter design.

Av; <26+6%,i=0,1,---,m. (12)

By Parseval's Relation, we get 4. SIMULATION RESULTS

lal| <1+ 6,. (13) Two lowpass IIR digital filters were designed to illustrate the per-
formance of our proposed technique: one designed by the pro-
Combining (11), (12) and (13) yields posed method with norm error of filter coefficients setjto=
1079, the other without taking robustness issue into account. Both
H Au <5 (14) satisfy the same set of specifications: passband edge 0.157,
Av || — stopband edgers = 0.307, maximum passband deviatiop =

0.01, numerator degree = 5, denominator degree = 4, stabil-
with 6, = v/(n+ 1)[2(1 4 6,)8 + 62]% + (m + 1)(26 + 62)°. ity margine; = 10~%, ands2 = 10~®. The SDP optimization was

Similarly, the other inequality constraints in (9) can also be 'MPlementedin SeDuMilnterface 1.01 [13] and SeDuMI1.05[14]
changed to constraints of form (10). with MATLAB 6.1. o ,

The simulation results are shown in Figs. 1 and 2, respectively.
The solid curves correspond to the optimal filters. The maximum
stopband attenuation is 0.029444 or 30.62dB for the optimal robust
Luo et al. in [12] has recently proven that the data matrices (S, C, filter vs. 0.0032434 or 49.78dB for the optimal nonrobust filter,
D, W, G, H, Q) satisfy the following condition which implies that the robust optimization method trades off the

stopband performance for robustness.
-0 As shown in Figs. 1 and 2, when the filter coefficients are sub-
- ject to perturbatiord = 10, little change can be found in the
magnitude response of the robust filter and the spectral mask con-
for any X satisfyingl — XTQX > 0if and only if there existsa  straint s still satisfied. In contrast, the same perturbation results in

3.5. Final Formulation

S C+ DX
(C+DX)" W+XTG+G"X +XTHX

~ > 0 such that violation of the passband spectral mask specification by the nonro-
bust filter. As the size of rounding perturbation increases, our ro-
s C D 0 0 O bust filter remains immune from the perturbatibrc 6.0 x 1072,
¢t w G |-y|0 1 O =0 which is larger than the quantization error produced by 16 bit trun-
pT G H 0 0 —@ cation of each filter coefficient. However, the violation of spectral

. . mask constaint by the nonrobust filter becomes more pronounced
By applying the above theorem, the constraint of form (10) yith increasing). Meanwhile, pole-zero diagrams in Figs. 1 and 2

can be transformed into an LMI constraint with some auxiliary jgicate that both filters remain stable when the filter coefficients
variable, and therefore the problem (9) and robustness considerag subject to different perturbations fram ¢ to 6.0 x 10~°.
tions can be rewritten as Our robust filter exhibits extra robustness in the simulations,
minimize ¢ as shown in Fig. 1. This is likely due to the bounds in (11), (12),
and (14) are not tight.

Si Ci D, 0O 0 O
subjectto | ¢ W: GT | —~ | 0 62 0 |=0
pT G, 0 l 0 0 —I ] 5. CONCLUSIONS
vi > 0, 1=1,---,5, We have proposed a new technique for the design of IIR digital
P, =PF e R, i=1,2,3,5, magnitude filters which are immune from the implementation er-
T xm ror. The design problem is formulated as a quasiconvex SDP prob-
Py=Pf €R ’ lem and hence can be solved efficiently and exactly via interior-
vo =1 point methods. We demonstrated the effectiveness of our robust
(15) design technique by comparing with the nonrobust method. The
with technique can be extended to similar highpass and bandpass mag-
Dy =[ —EsLiw (1+46p)*Es1Liy |, nitude filter design. Our design technique can also be used in FIR
Dy=[ Esiliu —(1—8,)2EuiL1y ], case. All that is_ needed is to ignore the design varidlded the
stability constraint.
D3 - [ 7E335L2u thfiLQ'u ], D4 - [ 0 El‘4]7
Ds=[ Esxs 0], Gl =05 —efLiu (1+ )] Lo ], 6. REFERENCES
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