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ABSTRACT method (due to the Gibb’s phenomenon) can be improved by intro-

FIR filters obtained with classicdl. methods have performance that ducmg trans_ltlons regions b_etweep the passbands and stopband_s of
the filter, an idea also used in the linear phase case. Therefore exist-

is very sensitive to the form of the ideal response selected for the. - . - ; »
. . . - e ing complex filter design techniques mainly become generalizations
transition region. This is because, usually, filter specifications do not . . .
L . L . . to their real linear phase counterparts In particular, two of the above
constrain in any way the ideal frequency response inside this region. s " . )
. . methods, the “don'’t care”, [4] and the eigenfilter [5] seem to have
In this paper we propose a new general method for the weighted : .
) ! : . comparable performance outperforming the other techniques. Both
based design of arbitrary FIR filters. In particular we propose a well

. 2 ) . methods succeed in reducing the Gibb’s phenomenon, their perfor-
defined optimization criterion that depends on the selection of the de- P Co
) o .. . S .~ mance on the other hand can be seen to be significantly inferior to
sired response inside the transition regions. By optimizing our crite-

rion we obtain desired responses that produce weighted mean squarté1e Loo optimum solution, whenever such filter is available. In [6]

error optimum filters with extremely good characteristics. The pro- an L, based method suitable for the unweighted design of the zero

posed method is computationally simple since it requires the solution phase FIR d{gltal fllye_rs was mtroduceq. The ba_su_: characteristic of
of a linear system of equations. this method is that it is capable of optimally defining the unknown

part of the ideal frequency response inside the transition regions and
drastically reduce the Gibb’s phenomenon. The method outperforms
1. INTRODUCTION the most popular noi... design techniques while it compares very
) ] ) o ) favorably with the actual., optimum solution. In this work we
The design of one-dimensional (1-D) digital filters, althoughis an old jntend to extend this idea to the complex filter design case and also

problem with significant existing literature, it has been of growing jnclude variable weighting function. In the next section we are going
interest over the last decade mainly because digital filters are widelyig present the proposed filter design method.

used in a variety of signal processing applications.

The most well known class of 1-D FIR filters is the class of lin-
ear phase filters. Their popularity stems mainly from the fact that 2. OPTIMIZATION CRITERION AND OPTIMUM
corresponding design methods involve only real functions which also APPROXIMATIONS
allows for the successful employment of the, criterion, the most
suitable one, for the filter design problem. Linear phase filters are Itis well known that the filter design problem, when considered in the
known however to introduce significant delays when their lengths are frequency domain, is equivalent to a function approximation prob-
large. In applications where long delays are unacceptable, it is clealem. Since frequency responses are periodic function with period
that there is a need of alternative filters. Furthermore there are prob-we can limit ourselves to the frequency interjalr, 7]. Suppose
lems which are by nature nonlinear-phase such as, constant grouphat the complex functiod(w), defined on the intervdl-, 7], de-
delay FIR filters, FIR equalizers, beamformers, etc. These problemsnote the desired frequency response. We like to approxidiai¢
require a filter design methodology that is significantly different from using linear combinations of the complex exponentidl¥’, n =

the conventional used in linear phase. In particular one can no longerNy, . .., N2; with the coefficients of the combination constituting
be limited to real functions and needs to take into account generalthe filter coefficients.
complex filters. What constitutes the complex function design prob- In this work we consider only the ca$é, — N; being an even

lem challenging, from a methodology point of view, is the lack of integer since the odd case can be treated similarly. Without loss of
efficient L. techniques as compared to linear phase where the Re-generality we can assume thafV; = N> = N. This is so because
mez Exchange Algorithm is dominant. This is largely due to the it can be proved [3] that, approximatintjw) with linear combina-
non-existence of a suitable counterpart, in the complex case, to thetions ofe’™, i = Ni,..., N2, is equivalent to approximating the
Alternation Theorem [3] that can serve as a base for developing com-complex functiond(w)ej(’ﬁ(Nl*N?)” with linear combinations of
putationally efficient algorithms. Consequently, techniques rely ~ ¢/™ n = —(No2 — N1)/2,..., (N2 — N1)/2.
on sophisticated and computationally intense optimization machin- Let now f(w), g(w) be two functions defined op-, 7], we
ery [1],[2]. can then define their usual inner product as

The L, criterion, in the case of constant weight, results in the
well known Fourier series coefficients which, in most cases, can be ™ y
easily obtained analytically. The poor performance of this classical <fg>= fw)g™ (w)dw, @

-
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where superscript™ denotes complex conjugate. Similarlyfifw) = possibilities for the desired respondév). For each such selec-

[fi(w) -+ fr(w)]’ andg(w) = [g1(w) -+ gm(w)]" are two vec- tion there corresponds an optimum filter that minimizes the weighted
tor functions therx f,g > denotes a matrix of dimensiohsx m mean square error criteridhvd — wh||?. Itis also clear that the fil-
defined as . ter that minimizes the weighted mean square error will depend on
<f,g>= f(w)gH(w)dw ) the specific selection aof(w), let us therefore denote it ds;; fur-
’ _r ’ thermore the corresponding minimum weighted mean square error
where the superscript* denotes conjugate transpose (hermitian). Will &ls0 be a function ofi(w), thatis,
Finally with the help of the inner product we can define the norm of Eold) = llwd — whall? 6
a scalar functiory (w) as||f|| = V< f, [ >. od) = al ©)
Consider now the following vector function of where the optimum filter coefficienis;will be given by
e(w) = [6*J'Nw eI IN-Dw  i(N-1w ejN“’}t, @) h; =< we, we >"lc we, wd” > . ©)

Using (6), we can now propose a means to optimally define the de-
sired responseé(w) by further minimizing &y (d) with respect to
d(w), that is,

where superscript denotes transpose, if = [h—nx h—n41 ---
hn—1 hx]" is the vector of filter coefficients then the filter frequency
response can be written Aéw) = e (w)h. Our goal is to select the
coefficient vectoh so as the corresponding functiéiw) approxi- do(w) = arg min E(d) = arg min |lwd — whal|>. ©)
mates a desired respongev) optimally. d d

The solution of the optimization problem defined by (8) can be easily
2.1. The Class of the Candidate Desired Responses proved that yields, inside the transitions regions, as optimum desired

I . . responsel = e (w)hy,, and as optimum filter coefficients
In order to formulate ouf.; approximation problem let us first define P o(w) = e (w)ha P

the clas§ of frequency respongés ) and weighting functions(w) hg, = hg. 9)

we are interested in. Letwm = wo < wp < ... < wWopy—1 =, . . . .

be 2/ distinct points in the interval—r, 7]. Supposed(w) is a whereh,. is the optimum don't care filter. The main drawback of
complex function defined as the optimum don't care filter is the fact that the resulting optimum

desired response is not necessarily continuous. In order to come

d(w) = { di(w) w € [wai,w2iq1], ©=0,...,M —1, @) up with an optimality criterion that can design filters with improved
T 9ilw) weE(waim1,we), i=1,...,M—1, characteristics we extend the idea presented in [6] and propose the
following optimality criterion
andw(w) a real positive function defined as
E1(d) = |[(wd)’ = (wha)'||? (10)

whereh,(w) = e (w)hy is the frequency response of the filteg
’ (5) defined in (7). As in the case 6% (-), we now propose the following
optimization problem

do(w) = arg min £1(d) = arg min (wd) — (wha)'||*.  (11)

w(w) _ wl(w) w € [w2i7w21+1], 1=0,.. .,M —1,
- Uz‘(w) WE(W2i717w2i): i=1,...,M -1

whered; (w), w;(w) denote the parts of the frequency response and
weighting function that are known (corresponding either to pass-
bands or stopbands) and(w), v;i(w) the parts corresponding to

the transition regions that are unknown.Uf = [wz;, wai+1], i = The existence of the derivatives in the criterion (10) immediately
0, ... M—17T = (wa-1,wai), 1 = 1,...,M — 1, andif = excludes discontinuous desired responses as having infinite weighted
Ui—o Ui andT = U2, 7; thend(w) andw(w) are known ord mean squared error. Without loss of generality we can therefore im-
and unknown orY". pose the following constraint af(w).

Our goal now is to properly exploit the unknown part of the
desired response in order to come up with an efficient filter design
method. Since the weighting function is also unknown inside the
transition regions in order to facilitate our design we propose to ex- Of course in view of Assumptiod we need to apply Constrait
tendw(w) on each transition interval; = (w2;—1,w2;) by using only in the transition regions paying special attention to the end points

C: The desired responsgw) is a continuous function which, at
each frequency has left and right derivatives.

an exponential interpolation scheme of the four(w) = v;(w) = of each such interval.
a;€%“ . The parameters;, 3; can be uniquely specified by assuring
that the resultingu(w) is continuous. 2.3. Optimum Filter and Optimum Desired Response

For the known parts of the desired response and the weighting . . )
function, that is, functiong; (w), w;(w) we make the following as- VW& will now present, without proof, a theorem that gives necessary
sumption: and sufficient conditions for the optimality of the desired response

. . do(w) and its corresponding filtdi,,, .
A: The partsi; (w), w;(w) of the desired response and the weight-

ing function defined on the intervals = [wa;,w2i+1], 1 = _Theorem: In order fordo(c_u)_anql its correspond_ing filtehg,

0,...,M — 1, are functions with first derivative and well de- ~ defined by (9) to solve the optimization problem defined by (11) and

fined left and right second order derivatives. (7) itis necessary and sufficient that the following ordinary differen-

tial equation is satisfied fap € 7;, i = 1,..., M — 1, inside each
2.2. Optimization Criterion transition region,
" H

Since the desired respongéy) is not defined in the transition re- [w(w)(do(w) = ha, (w))]” = —w(w)e” (w)p (12)
gions, by selecting the functiong (w), we end up with different p =< we,we > "< (we), [w(d}, — hj,)]" > . (13)

VI-10



With the help of Theorem we can find a system of linear equations
that solves the optimization problem defined by (11). A point worth
mentioning is the fact that when the weighting functiofw) is con-
stant then, from (13), the quantity (we)’, [w(d; — k)]’ >, using
integration by parts, is equal 0 < €”,d} — hj;, >= 0, with the

last equality being the result of the orthogonality principle. There-
fore forw(w) constant (12) is reduced to the differential equation of
Theorem 1 of [6].

Pu < (we)’]lu, (wd*),]lu > (22)

D < (we) Ly, (we) Ty > (23)
M—1

E = <we,we>+ Z < (we) 1z, £ 1z, > (24)

i=1

— < (we)' 1z, (¢) 1y, >, i=1,...,M — 1. (25)

Let us now present the unknown variables and the corresponding

linear equations needed for the solution of the optimization problem.

Finally by imposing continuity on the solutiom(w)d,(w) of

Notice that we already have introduced two parameter vectors that(14) at the two end points,; 1, ws; of each transition regioff;,

are inter-related, namely the optimum filter coefficidmis (2N + 1
unknowns) and the auxiliary vectprdefined in (13) which also con-
tains(2NV 4 1) unknowns. If we now integrate twice the differential
equation in (12) inside each transitionregibn i = 1,..., M — 1
we obtain

—fi(w)"p+c(W)ai

w(w)do(w) = w(w)eH (w)ha, (14)

wherec(w) = [w 1]*; q; is a vector containing the two unknown
parameters of the solution of the differential equation (12), that is,

ai = [¢i ¢7]" and finally

£y (w) = /w ‘;71 L ;71 w(s)e(s)dsdr.

is the double consecutive integration of the functiofw)e(w) with
e(w) defined in (3). The vector functiofy(w) can be easily evalu-

(15)

ated when we use the exponential extension of the weighting func-

tion. Notice that with (14) we have introdudé additional parameter
vectorsq;, i = 1,..., M — 1, which corresponds t2M — 2 addi-
tional unknown variables thus raising the total number of unknowns
to 4N + 2M. Itis clear that we need an equal number of equations
in order to produce the solution to the optimization problem.

The necessary equations can be obtained from (9) and (13) usin
(14) and by imposing continuity at the two end-points of each tran-
sition intervalZ; = (w2i—1,w2i), i = 1,..., M — 1 on the solution
w(w)do(w) of (14). Specifically, from (9) and using (14) we obtain
afirst set o2 N + 1 equations as follows

M-—1
Ahg, +Bp + Z Ciq; = hy (16)
i=1
where

hy = < we]lu, wd” 1 > (17)
A < wely,wely > (18)

M—1
B = ) <uwels,fily > (19)

1=1
C;, = —<we]lTi,cJ|Ti > t=1,...,M —1. (20)

andhg, is the optimum don’t care filter.
Similarly using the definition op from (13) and using (14) we
obtain2 NV + 1 additional equations

M—-1

Dhy, + Ep + Z F;q: = pu

i=1

(1)

where

in order to satisfy Constraird, we obtain the following2M — 2
equations

G:hy, +Hip+Jigi=s;,i=1,...,M — 1, (26)
where
si = [w(waim1)d(wai—1) w(was)d(wa:)]" (27)
Gi [w(wai—1)e(wzi—1) w(wai)e(ws:)]”  (28)
Hi = —[fi(wsi1) fi(wz)]” (29)
Ji = le(wai-1) e(wa)]” (30)

which constitutes the last set of equation raising the total number
to the desired N + 2M.

Summarizing: In order to solve the minimization problem in
(11) we solve the system of equations defined by (16), (21) and (26)
which yields the optimum filter coefficients,_, plus certain auxil-
iary quantitiesp, q;, ¢ = 1,..., M — 1, that can be used to obtain
the optimum desired frequency respodséw) through (14).

3. DESIGN EXAMPLES

In this section we are going to apply our method to a filter design

gJsxample and compare it to other existing filter design techniques. In

particular we will apply our method to the design of weighted nearly
linear phase lowpass filters; and compare it against the don't care
method of [4], and the Complex Remez algorithm of [3] which is
included in Matlab as the functiocremez.m For our comparison
we are going to focus on the maximum weighted magnitude error
em inside the passbands and stopbands of the filter, as well as the
maximum group delay errar. in the passbands.

Consider the following specifications

e d 3
d = ’
(@) { N

with the weighting function equal td and+/2 in the passhand
and the stopbands respectively.

In Table | we present the maximal magnitude ergy, and in
Table 1l the corresponding group delay eregrfor the three meth-
ods and for different filter lengths. The proposed method performs
always better than the don't care method. What is however more
interesting is the fact that for filter lengths greater than 101 it also
outperfoms the Complex Remez algorithm. It is notable the fact
that this performance is obtained with a very low computational cost
while Complex Remez, as we said, is computationally demanding
and practically useless for lengths exceeding 151.

We obtained similar results in all other design examples we con-
sidered with different values of the cutoff frequencies as well as with
different values of the weighting function.

we =01, 0.3]
we[-1, —0.18U[38, 1]
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Proposed || Don'tCare || C. Remez
2N +1 €m €m €m

51 1.77x1072 |[ 3.29x1072 || 1.24x107?
61 9.60x10~% || 1.83x1072 || 5.75x10~°
71 4.87x107° || 9.62x1073 || 3.73x10~°
81 2.70x10~% || 5.75x10~° || 1.63x107~°
91 1.26x10~° || 2.86x1072 || 1.98x10~3
101 7.16x10~% || 1.76x1072 || 6.29x10~%
111 3.35x10~ % || 8.75x10~% || 4.43x10~ %
121 1.93x10~* || 5.13x10~7% || 4.88x10~*
131 9.75x107° || 2.72x10~* || 4.03x10~*
141 5.01x107° || 1.43x10~* || 8.33x10°°
151 2.77x107° || 8.25x107° || 7.96x107°

Table I. Maximum magnitude approximation errors resulted from

15
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the weighted design of the filter by different methods and for differ- Figure 2. Group delay approximation errors inside the passband for

ent filter lengths.

Proposed || Don't Care C. Remez
2N +1 er er er

51 9.27x107 T 1.03x10° [] 7.10x10° T
61 6.84x10~ 1 || 8.54x107 " || 6.99x107!
71 5.42x10° T || 7.39x107 " || 5.13x10° T
81 3.23x107 1 || 4.87x107 " || 3.43x107!
91 2.31x107 1 || 3.91x107 ' || 2.66x107 !
101 1.35x107 " || 2.48x107 " || 1.46x107!
111 8.13x107 7 || 1.66x10~ T || 8.06x1072
121 5.04x102 || 1.12x10~ ' || 5.00x10~?
131 2.59x107 7 || 6.27x1072 || 2.93x1072
141 1.62<107 2 || 4.28x1072 || 1.61x107?
151 8.00x10~ % || 2.27x1072 || 1.04x1072

Table Il. Maximum group delay approximation errors resulted from

the design of the filter.

In Figures 1 and 2 we present the approximation errors in the
magnitude and the group delay for the proposed (solid), the don't

the design of a nearly linear phase lowpass filter of length 21. Pro-
posed method (solid), Complex Remez (halh-tone), don't care region
(dashed).

4. CONCLUSION

We have presented a ndw based method for the design of arbitrary
FIR digital filters. Minimizing a suitabld., measure results in an
optimum extension of the ideal response inside the transition regions.
The optimum filter is then obtained as the corresponding minimum
weighted mean squared error filter. The complexity of our scheme is
low since it requires the solution of a linear system of equations. In
all design examples we carried out, our method always outperformed
the don’t care while, at the same time, it either compared favorably or
even outperformed the computationally demanding Complex Remez
algorithm.
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