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ABSTRACT

FIR filters obtained with classicalL2 methods have performance that
is very sensitive to the form of the ideal response selected for the
transition region. This is because, usually, filter specifications do not
constrain in any way the ideal frequency response inside this region.
In this paper we propose a new general method for the weightedL2

based design of arbitrary FIR filters. In particular we propose a well
defined optimization criterion that depends on the selection of the de-
sired response inside the transition regions. By optimizing our crite-
rion we obtain desired responses that produce weighted mean square
error optimum filters with extremely good characteristics. The pro-
posed method is computationally simple since it requires the solution
of a linear system of equations.

1. INTRODUCTION

The design of one-dimensional (1-D) digital filters, although is an old
problem with significant existing literature, it has been of growing
interest over the last decade mainly because digital filters are widely
used in a variety of signal processing applications.

The most well known class of 1-D FIR filters is the class of lin-
ear phase filters. Their popularity stems mainly from the fact that
corresponding design methods involve only real functions which also
allows for the successful employment of theL∞ criterion, the most
suitable one, for the filter design problem. Linear phase filters are
known however to introduce significant delays when their lengths are
large. In applications where long delays are unacceptable, it is clear
that there is a need of alternative filters. Furthermore there are prob-
lems which are by nature nonlinear-phase such as, constant group
delay FIR filters, FIR equalizers, beamformers, etc. These problems
require a filter design methodology that is significantly different from
the conventional used in linear phase. In particular one can no longer
be limited to real functions and needs to take into account general
complex filters. What constitutes the complex function design prob-
lem challenging, from a methodology point of view, is the lack of
efficientL∞ techniques as compared to linear phase where the Re-
mez Exchange Algorithm is dominant. This is largely due to the
non-existence of a suitable counterpart, in the complex case, to the
Alternation Theorem [3] that can serve as a base for developing com-
putationally efficient algorithms. ConsequentlyL∞ techniques rely
on sophisticated and computationally intense optimization machin-
ery [1], [2].

The L2 criterion, in the case of constant weight, results in the
well known Fourier series coefficients which, in most cases, can be
easily obtained analytically. The poor performance of this classical

method (due to the Gibb’s phenomenon) can be improved by intro-
ducing transitions regions between the passbands and stopbands of
the filter, an idea also used in the linear phase case. Therefore exist-
ing complex filter design techniques mainly become generalizations
to their real linear phase counterparts In particular, two of the above
methods, the “don’t care”, [4] and the eigenfilter [5] seem to have
comparable performance outperforming the other techniques. Both
methods succeed in reducing the Gibb’s phenomenon, their perfor-
mance on the other hand can be seen to be significantly inferior to
theL∞ optimum solution, whenever such filter is available. In [6]
anL2 based method suitable for the unweighted design of the zero
phase FIR digital filters was introduced. The basic characteristic of
this method is that it is capable of optimally defining the unknown
part of the ideal frequency response inside the transition regions and
drastically reduce the Gibb’s phenomenon. The method outperforms
the most popular nonL∞ design techniques while it compares very
favorably with the actualL∞ optimum solution. In this work we
intend to extend this idea to the complex filter design case and also
include variable weighting function. In the next section we are going
to present the proposed filter design method.

2. OPTIMIZATION CRITERION AND OPTIMUM
APPROXIMATIONS

It is well known that the filter design problem, when considered in the
frequency domain, is equivalent to a function approximation prob-
lem. Since frequency responses are periodic function with period2π
we can limit ourselves to the frequency interval[−π, π]. Suppose
that the complex functiond(ω), defined on the interval[−π, π], de-
note the desired frequency response. We like to approximated(ω)
using linear combinations of the complex exponentialsejnω, n =
N1, . . . , N2; with the coefficients of the combination constituting
the filter coefficients.

In this work we consider only the caseN2 − N1 being an even
integer since the odd case can be treated similarly. Without loss of
generality we can assume that−N1 = N2 = N . This is so because
it can be proved [3] that, approximatingd(ω) with linear combina-
tions ofejnω, i = N1, . . . , N2, is equivalent to approximating the
complex functiond(ω)ej0.5(N1+N2)ω with linear combinations of
ejnω, n = −(N2 −N1)/2, . . . , (N2 −N1)/2.

Let now f(ω), g(ω) be two functions defined on[−π, π], we
can then define their usual inner product as

< f, g >=

Z π

−π

f(ω)g∗(ω)dω, (1)
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where superscript “∗” denotes complex conjugate. Similarly iff(ω) =
[f1(ω) · · · fk(ω)]t andg(ω) = [g1(ω) · · · gm(ω)]t are two vec-
tor functions then< f ,g > denotes a matrix of dimensionsk ×m
defined as

< f ,g >=

Z π

−π

f(ω)gH(ω)dω, (2)

where the superscript “H ” denotes conjugate transpose (hermitian).
Finally with the help of the inner product we can define the norm of
a scalar functionf(ω) as‖f‖ =

√
< f, f >.

Consider now the following vector function ofω

e(ω) = [e−jNω e−j(N−1)ω · · · ej(N−1)ω ejNω]t, (3)

where superscriptt denotes transpose, ifh = [h−N h−N+1 · · ·
hN−1 hN ]t is the vector of filter coefficients then the filter frequency
response can be written ash(ω) = eH(ω)h. Our goal is to select the
coefficient vectorh so as the corresponding functionh(ω) approxi-
mates a desired responsed(ω) optimally.

2.1. The Class of the Candidate Desired Responses

In order to formulate ourL2 approximation problem let us first define
the class of frequency responsesd(ω) and weighting functionsw(ω)
we are interested in. Let−π = ω0 < ω1 < . . . < ω2M−1 = π,
be 2M distinct points in the interval[−π, π]. Supposed(ω) is a
complex function defined as

d(ω) =

�
di(ω) ω ∈ [ω2i, ω2i+1], i = 0, . . . , M − 1,
gi(ω) ω ∈ (ω2i−1, ω2i), i = 1, . . . , M − 1,

(4)

andw(ω) a real positive function defined as

w(ω) =

�
wi(ω) ω ∈ [ω2i, ω2i+1], i = 0, . . . , M − 1,
vi(ω) ω ∈ (ω2i−1, ω2i), i = 1, . . . , M − 1,

(5)
wheredi(ω), wi(ω) denote the parts of the frequency response and
weighting function that are known (corresponding either to pass-
bands or stopbands) andgi(ω), vi(ω) the parts corresponding to
the transition regions that are unknown. IfUi = [ω2i, ω2i+1], i =
0, . . . , M − 1; Ti = (ω2i−1, ω2i), i = 1, . . . , M − 1, andU =
∪M−1

i=0 Ui andT = ∪M−1
i=1 Ti thend(ω) andw(ω) are known onU

and unknown onT .
Our goal now is to properly exploit the unknown part of the

desired response in order to come up with an efficient filter design
method. Since the weighting function is also unknown inside the
transition regions in order to facilitate our design we propose to ex-
tendw(ω) on each transition intervalTi = (ω2i−1, ω2i) by using
an exponential interpolation scheme of the formw(ω) = vi(ω) =
αie

βiω. The parametersαi, βi can be uniquely specified by assuring
that the resultingw(ω) is continuous.

For the known parts of the desired response and the weighting
function, that is, functionsdi(ω), wi(ω) we make the following as-
sumption:

A: The partsdi(ω), wi(ω) of the desired response and the weight-
ing function defined on the intervalsUi = [ω2i, ω2i+1], i =
0, . . . , M − 1, are functions with first derivative and well de-
fined left and right second order derivatives.

2.2. Optimization Criterion

Since the desired responsed(ω) is not defined in the transition re-
gions, by selecting the functionsgi(ω), we end up with different

possibilities for the desired responsed(ω). For each such selec-
tion there corresponds an optimum filter that minimizes the weighted
mean square error criterion‖wd− wh‖2. It is also clear that the fil-
ter that minimizes the weighted mean square error will depend on
the specific selection ofd(ω), let us therefore denote it ashd; fur-
thermore the corresponding minimum weighted mean square error
will also be a function ofd(ω), that is,

E0(d) = ‖wd− whd‖2 (6)

where the optimum filter coefficientshdwill be given by

hd =< we, we >−1< we, wd∗ > . (7)

Using (6), we can now propose a means to optimally define the de-
sired responsed(ω) by further minimizingE0(d) with respect to
d(ω), that is,

do(ω) = arg min
d
E0(d) = arg min

d
‖wd− whd‖2. (8)

The solution of the optimization problem defined by (8) can be easily
proved that yields, inside the transitions regions, as optimum desired
responsedo(ω) = eH(ω)hdc, and as optimum filter coefficients

hdo = hdc (9)

wherehdc is the optimum don’t care filter. The main drawback of
the optimum don’t care filter is the fact that the resulting optimum
desired response is not necessarily continuous. In order to come
up with an optimality criterion that can design filters with improved
characteristics we extend the idea presented in [6] and propose the
following optimality criterion

E1(d) = ‖(wd)′ − (whd)′‖2 (10)

wherehd(ω) = eH(ω)hd is the frequency response of the filterhd

defined in (7). As in the case ofE0(·), we now propose the following
optimization problem

do(ω) = arg min
d
E1(d) = arg min

d
‖(wd)′ − (whd)′‖2. (11)

The existence of the derivatives in the criterion (10) immediately
excludes discontinuous desired responses as having infinite weighted
mean squared error. Without loss of generality we can therefore im-
pose the following constraint ond(ω).

C: The desired responsed(ω) is a continuous function which, at
each frequencyω has left and right derivatives.

Of course in view of AssumptionA we need to apply ConstraintC
only in the transition regions paying special attention to the end points
of each such interval.

2.3. Optimum Filter and Optimum Desired Response

We will now present, without proof, a theorem that gives necessary
and sufficient conditions for the optimality of the desired response
do(ω) and its corresponding filterhdo .

Theorem: In order fordo(ω) and its corresponding filterhdo

defined by (9) to solve the optimization problem defined by (11) and
(7) it is necessary and sufficient that the following ordinary differen-
tial equation is satisfied forω ∈ Ti, i = 1, . . . , M − 1, inside each
transition region,

[w(ω)(do(ω)− hdo(ω))]′′ = −w(ω)eH(ω)p (12)

p =< we, we >−1< (we)′, [w(d∗o − h∗do
)]′ > . (13)
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With the help of Theorem we can find a system of linear equations
that solves the optimization problem defined by (11). A point worth
mentioning is the fact that when the weighting functionw(ω) is con-
stant then, from (13), the quantity< (we)′, [w(d∗o−h∗do

)]′ >, using
integration by parts, is equal tow < e′′, d∗o − h∗do

>= 0, with the
last equality being the result of the orthogonality principle. There-
fore forw(ω) constant (12) is reduced to the differential equation of
Theorem 1 of [6].

Let us now present the unknown variables and the corresponding
linear equations needed for the solution of the optimization problem.
Notice that we already have introduced two parameter vectors that
are inter-related, namely the optimum filter coefficientshdo (2N +1
unknowns) and the auxiliary vectorp defined in (13) which also con-
tains(2N + 1) unknowns. If we now integrate twice the differential
equation in (12) inside each transition regionTi, i = 1, . . . , M − 1
we obtain

w(ω)do(ω) = w(ω)eH(ω)hdo − fi(ω)Hp + cH(ω)qi (14)

wherec(ω) = [ω 1]t; qi is a vector containing the two unknown
parameters of the solution of the differential equation (12), that is,
qi = [q1

i q2
i ]t and finally

fi(ω) =

Z ω

ω2i−1

Z τ

ω2i−1

w(s)e(s)dsdτ. (15)

is the double consecutive integration of the functionw(ω)e(ω) with
e(ω) defined in (3). The vector functionfi(ω) can be easily evalu-
ated when we use the exponential extension of the weighting func-
tion. Notice that with (14) we have introduceM additional parameter
vectorsqi, i = 1, . . . , M − 1, which corresponds to2M − 2 addi-
tional unknown variables thus raising the total number of unknowns
to 4N + 2M . It is clear that we need an equal number of equations
in order to produce the solution to the optimization problem.

The necessary equations can be obtained from (9) and (13) using
(14) and by imposing continuity at the two end-points of each tran-
sition intervalTi = (ω2i−1, ω2i), i = 1, . . . , M − 1 on the solution
w(ω)do(ω) of (14). Specifically, from (9) and using (14) we obtain
a first set of2N + 1 equations as follows

Ahdo + Bp +

M−1X
i=1

Ciqi = hU (16)

where

hU = < we1lU , wd∗1lU > (17)

A = < we1lU , we1lU > (18)

B =

M−1X
i=1

< we1lTi , fi1lTi > (19)

Ci = − < we1lTi , c1lTi >, i = 1, . . . , M − 1. (20)

andhdo is the optimum don’t care filter.
Similarly using the definition ofp from (13) and using (14) we

obtain2N + 1 additional equations

Dhdo + Ep +

M−1X
i=1

Fiqi = pU (21)

where

pU = < (we)′1lU , (wd∗)′1lU > (22)

D = < (we)′1lU , (we)′1lU > (23)

E = < we, we > +

M−1X
i=1

< (we)′1lTi , f
′
i1lTi > (24)

Fi = − < (we)′1lTi , (c)′1lTi >, i = 1, . . . , M − 1. (25)

Finally by imposing continuity on the solutionw(ω)do(ω) of
(14) at the two end pointsω2i−1, ω2i of each transition regionTi,
in order to satisfy ConstraintC, we obtain the following2M − 2
equations

Gihdo + Hip + Jiqi = si, i = 1, . . . , M − 1, (26)

where

si = [w(ω2i−1)d(ω2i−1) w(ω2i)d(ω2i)]
t (27)

Gi = [w(ω2i−1)e(ω2i−1) w(ω2i)e(ω2i)]
H (28)

Hi = −[fi(ω2i−1) fi(ω2i)]
H (29)

Ji = [c(ω2i−1) c(ω2i)]
H (30)

which constitutes the last set of equation raising the total number
to the desired4N + 2M .

Summarizing: In order to solve the minimization problem in
(11) we solve the system of equations defined by (16), (21) and (26)
which yields the optimum filter coefficientshdo , plus certain auxil-
iary quantitiesp, qi, i = 1, . . . , M − 1, that can be used to obtain
the optimum desired frequency responsedo(ω) through (14).

3. DESIGN EXAMPLES

In this section we are going to apply our method to a filter design
example and compare it to other existing filter design techniques. In
particular we will apply our method to the design of weighted nearly
linear phase lowpass filters; and compare it against the don’t care
method of [4], and the Complex Remez algorithm of [3] which is
included in Matlab as the functioncremez.m. For our comparison
we are going to focus on the maximum weighted magnitude error
em inside the passbands and stopbands of the filter, as well as the
maximum group delay erroreτ in the passbands.

Consider the following specifications

d(ω) =

�
e−j 4N

5 ω, ω ∈ [−0.1, 0.3]
0, ω ∈ [−1, − 0.18] ∪ [.38, 1]

with the weighting function equal to1 and
√

2 in the passband
and the stopbands respectively.

In Table I we present the maximal magnitude errorem, and in
Table II the corresponding group delay erroreτ for the three meth-
ods and for different filter lengths. The proposed method performs
always better than the don’t care method. What is however more
interesting is the fact that for filter lengths greater than 101 it also
outperfoms the Complex Remez algorithm. It is notable the fact
that this performance is obtained with a very low computational cost
while Complex Remez, as we said, is computationally demanding
and practically useless for lengths exceeding 151.

We obtained similar results in all other design examples we con-
sidered with different values of the cutoff frequencies as well as with
different values of the weighting function.
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Proposed Don’t Care C. Remez
2N + 1 em em em

51 1.77×10−2 3.29×10−2 1.24×10−2

61 9.60×10−3 1.83×10−2 5.75×10−3

71 4.87×10−3 9.62×10−3 3.73×10−3

81 2.70×10−3 5.75×10−3 1.63×10−3

91 1.26×10−3 2.86×10−3 1.98×10−3

101 7.16×10−4 1.76×10−3 6.29×10−4

111 3.35×10−4 8.75×10−4 4.43×10−4

121 1.93×10−4 5.13×10−4 4.88×10−4

131 9.75×10−5 2.71×10−4 4.03×10−4

141 5.01×10−5 1.43×10−4 8.33×10−5

151 2.77×10−5 8.25×10−5 7.96×10−5

Table I. Maximum magnitude approximation errors resulted from
the weighted design of the filter by different methods and for differ-
ent filter lengths.

Proposed Don’t Care C. Remez
2N + 1 eτ eτ eτ

51 9.27×10−1 1.03×100 7.10×10−1

61 6.84×10−1 8.54×10−1 6.99×10−1

71 5.42×10−1 7.39×10−1 5.13×10−1

81 3.23×10−1 4.87×10−1 3.43×10−1

91 2.31×10−1 3.91×10−1 2.66×10−1

101 1.35×10−1 2.48×10−1 1.46×10−1

111 8.13×10−2 1.66×10−1 8.06×10−2

121 5.04×10−2 1.12×10−1 5.00×10−2

131 2.59×10−2 6.27×10−2 2.93×10−2

141 1.62×10−2 4.28×10−2 1.61×10−2

151 8.00×10−3 2.27×10−2 1.04×10−2

Table II. Maximum group delay approximation errors resulted from
the design of the filter.

In Figures 1 and 2 we present the approximation errors in the
magnitude and the group delay for the proposed (solid), the don’t
care (dashed), and the Complex Remez (half-tone), for a filter of
length 21.
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Figure 1. Magnitude approximation errors for the design of the
nearly linear phase lowpass filter of length 21. Proposed method
(solid), Complex Remez (half-tone), don’t care region (dashed).
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Figure 2. Group delay approximation errors inside the passband for
the design of a nearly linear phase lowpass filter of length 21. Pro-
posed method (solid), Complex Remez (halh-tone), don’t care region
(dashed).

4. CONCLUSION

We have presented a newL2 based method for the design of arbitrary
FIR digital filters. Minimizing a suitableL2 measure results in an
optimum extension of the ideal response inside the transition regions.
The optimum filter is then obtained as the corresponding minimum
weighted mean squared error filter. The complexity of our scheme is
low since it requires the solution of a linear system of equations. In
all design examples we carried out, our method always outperformed
the don’t care while, at the same time, it either compared favorably or
even outperformed the computationally demanding Complex Remez
algorithm.
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