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Abstract: In this paper, we present a directly design 
method of minimum phase FIR filters with complex 
coefficients using successive projections (SP) method. In 
general, it is necessary to restrict the zeros of transfer 
function inside the unit circle or on the unit circle to 
directly obtain the transfer function of minimum phase FIR 
filters. We use the Rouche’s theorem for coefficients 
update algorithm in SP method to restrict the zeros of the 
transfer function inside the unit circle and on the unit circle. 
Therefore, the transfer function of minimum phase FIR 
filter is obtained without factorization by using the 
proposed method. Moreover, the proposed method is also 
possible to obtain the transfer function of real coefficients 
by considering imaginary part of complex coefficients as 
the zero. The usefulness of the proposed method is verified 
through some examples. 

1. Introduction 
FIR digital filters are important in the field of waveform 

transmission and image processing in which phase 
distortion becomes a problem, because the filter with the 
perfect linear phase characteristics can be easily realized. 
However, in speech processing systems, FIR filters with 
linear phase characteristics are undesirable because of 
unacceptable high delays. Hence, the minimum phase FIR 
filters are highly attractive in this case. In addition, the 
minimum phase FIR filters with complex coefficients are 
also necessary to implement AM-SSB (Amplitude 
Modulation Single Side Band) which is a kind of amplitude 
modulation used in the telephone system. 
Several methods for designing minimum phase FIR filters 

with real coefficients have been proposed previously 
[1]-[4]. In [1], Hurrmann and Schuessler (HS method) 
proposed a design method based on the Remez algorithm 
[5]. They first design a linear phase FIR filter with an 
equiripple characteristics as a prototype filter using Remez 
algorithm. Then, the obtained transfer function is factored 
by polynomial factorization to obtain the minimum phase 
FIR filters. Although the designed filters are theoretically 
optimal, a serious ill-condition problem often occurs 
during the polynomial factorization. In [2], Ueda et.al. 
solved these problems in numerical operations by 
increasing the gain level by little more amount in the 
comparison with HS method (modified HS method). 
However, these methods must design the filter with the 
twice order of the desired minimum phase FIR filter, since 
the desired minimum phase FIR filter is obtained by the 
factorization of the transfer function of the linear phase 
FIR filter. Therefore, these methods are a limit to design 
the transfer function of filter with 100th order. In addition, 

these methods can not handle filters with more than tow 
different gain level in each stopband, for example, 
bandpass filter with different gain level in their stopbands. 
In [3], Aikawa et. al. proposed a design method based on 
the SP method that it can handle filters with such 
characteristics. However, to obtain the minimum phase FIR 
filters, this method also needs factorization as same as HS 
method. Therefore, it is difficult to obtain the transfer 
function of minimum phase FIR filters with high order. In 
[4], Okuda et al. proposed an algorithm that based on 
solving a least squares problem iteratively. However, this 
method also needs factorization, though the accuracy is not 
worse than the HS method. And, the design method of 
minimum phase FIR filters with complex coefficient has 
not been proposed until now. 
In this paper, we present a directly design method of 

minimum phase FIR filter with complex coefficients using 
the SP method. In general, it is necessary to restrict the 
zeros of transfer function inside the unit circle or on the 
unit circle to directly obtain the transfer function of 
minimum phase FIR filters. The design problem of the 
transfer function restricted the zeros is complex 
approximation problem. We use a modified SP method [7] 
to solve a complex approximation problem. The filter 
obtained by this method is optimal in the Chebyshev sense 
because we use the transformation which completely 
converts a complex approximation problem into a real 
approximation problem. Moreover, we use the Roushe’s 
theorem for coefficients update algorithm in the modified 
SP method to restrict the zeros of transfer function inside 
the unit circle or on the unit circle. Therefore, the proposed 
method is possible to design the transfer function of high 
order further than conventional method, since it is possible 
to directly obtain the transfer function of minimum phase 
FIR filter without using factorization. Moreover, it can also 
design filters with more than tow different gain level in 
each stopband. Finally, the usefulness of the proposed 
method is verified using examples. 

2. Design Problem 
The frequency response of the FIR filters is expressed by 
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where ; 0,1, ,ia i N=  are complex filter coefficients. 
Then, our design problem is to find the optimal filter 

coefficients minimizing the complex error 
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where ( )D ω is the desired amplitude response and ( )λ ω  
is the positive maximum allowable deviation from the 
desired frequency response. 
Since ( )γ ω  in (2) is a complex function, we use the 

expanded SP method to solve the complex approximation 
problem. In this method [7], by using a simple 
transformation, (2) can be converted to a linear 
optimization problem in the real domain as 
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Where  is a rotation parameter and is defined as t
( ) (10.5 / tan /t π −= − )y x .                   (4) 
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respectively. 
3. Design by Successive Projections Method 

SP method is one of the iterative techniques. Thus, the 
error function in nth iteration step is defined as 
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where . 0 1[ , , , Na a a=a ]
The design problem of filter by SP method is to minimize 

of the function F  given by  
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where α  is the Lagrange multiplier, and 1n+a  is the 
projection of a  on the following N-dimentional 
Euclidean real space, 
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the set associated with ( ,M Mtω . Moreover, 
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Hence, the design problem is to minimize the objective 
function (10) under constraint condition: 

1( , , ) ( )n
M M Me tω λ ω+ −a                     (11) 

in N-dimentional Euclidean real space. 
(1) In Case of Complex Coefficients 
The evaluation function F of (8) becomes minimum value 

in satisfying (12) and (13) as follows. 
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Therefore, we can obtain 
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Substituting (14) and (15) in the constraint condition (11), 
we can get 
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Furthermore, substituting (16) in (14) and (15), real part 
and complex part of the equation of updating coefficients 
in n+1th iteration step are obtained 
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respectively. Therefore, the equation of updating 
coefficient of complex coefficient  is formulated as ia
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(2) In Case of Real Coefficients 
In case of real coefficients, filter coefficients are 

 because Re{ }ih = Im{ } 0ia = . Therefore, the Lagrange 
multiplier becomes  
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when only real part of (12) and (13) is considered. 
Substituting (21) in (14), the equation of updating 
coefficient of real coefficient  is formulated as ih
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By the way, all zeros of the transfer function of the 
minimum phase FIR filter must exist inside the unit circle 
in the passband and on the unit circle in the stopband. 
However, (19) and (22) are not guaranteed that zeros after 
updating coefficient are located inside the unit circle or on 
the unit circle. Therefore, the obtained filter by this 
iterative algorithm is not guaranteed to be minimum phase 
FIR filter. 
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4. The Expansion of the Updating Coefficients 
by Roushe’s Theorem 

In order to restrict zeros inside the unit circle in the 
passband and on the unit circle in the stopband, we expand 
updating coefficients of the SP method using the Rouche’s 
theorem. 
[Rouche’s Theorem] 
If  and  are analytic inside and on a closed 

contour C, and 
)(zf )(zg

( ) ( )f z g z>  on C, then  and 
 is have the same number of zeros inside C. 

)(zf
)(zf () zg+

A proof of this theorem can be found in [8].  
Let  and  to use 

Roushe’s theorem, where 
( ) ( )Nf z z H z= )()( zzzg N∆=

)(H z  is the actual coefficient 
polynomial of the desired transfer function and )(z∆  is 
an update value added to the actual coefficient polynomial 

( )H z
)(zg

 in each iteration step. The function  and 
 are analytic everywhere except at 

)(zf
∞=z . And, we 

choose C to be a unit circle centered at origin of the 
complex domain. If ( )H z  has all its zeros inside this 
circle, then the new coefficient polynomial 

( ) ( )H z zβ+ ∆ (0, 1)β< < , will still have all its zeros 
inside this circle if the update )(z∆β  satisfies 

( ) ( )z H z∆ ≤β  on the unit circle. 
(1) In Case of Complex Coefficients 
The equation of updating coefficients is modified as 

follows. 
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iδ  is eq. (20) and β  is the weight parameter as 

all zeros exist inside the unit circle and on the unit circle. 
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We choose a maximum β  satisfying (25). 
(2) In Case of Real Coefficients 
The equation of updating coefficients is modified as 

follows. 
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all zeros exist inside the unit circle and on the unit circle. 
Because  is Z-transform of ( )z∆ iρ , in iteration step n+1 
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We choose a maximum β  satisfying (27). 

5. Design Examples 
Example. 1 
We design FIR filters with complex coefficients of 

specification shown as following. 

 {1 0.04 0.4( ) 0 0.04 ,0.48D ω πω π ω π π ω
≤ ≤= π− < ≤ − ≤ ≤  

 {0.0400 0.04 0.4( ) 0.0062 0.04 ,0.48
π ω πλ ω π ω π π ω
≤ ≤= π− < ≤ − ≤ ≤  

We choose 36N = . The initial coefficient of transfer 
function is chosen zeros to be in the unit circle. The 
magnitude response of the proposed filter is shown in 
Fig.1. It is clear from Fig.1 that we obtained equiripple 
characteristics of magnitude response. Therefore, the 
obtained filter is optimal in the Chebyshev sense. And, it is 
proven that the complex coefficients are required, since it 
is the asymmetry for the origin. The zeros location of the 
resulting filter is shown in Fig.2. It is clear from Fig.2 that 
the zeros of the obtained filter exist inside unit circle in the 
passband and on the unit circle in the stopband. Therefore, 
the obtained filter has the minimum phase characteristics. 
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Fig.1.  The amplitude response of FIR filter 

      with complex coefficients 
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Fig.2.  Zero locations of FIR filter 
      with complex coefficients 

Example. 2 
Next, we design FIR filters of specification shown as 

following. 

{1 0 0.1( ) 0 0.13D ω πω π ω π
≤ ≤= ≤ ≤  
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  {0.0023 0 0.1( ) 0.0022 0.13
ω πλ ω ω π

≤ ≤= ≤ ≤  

We choose . The initial coefficient of transfer 
function is chosen zeros to be in the unit circle. The 300th 
order linear phase filter must be designed, if the filter of 
this specification is designed using the conventional 
method [1]-[4]. However, the 150th order filter can be 
directly designed in our proposed method, because the 
factorization is not required. The magnitude response of 
the proposed filter is shown in Fig.3. It is clear from Fig.3 
that we obtained equiripple characteristics of magnitude 
response. Therefore, the obtained filter is optimal in the 
Chebyshev sense. The zeros location of the resulting filter 
is shown in Fig.4. It is clear from Fig.4 that the zeros of the 
obtained filter exist inside unit circle in the passband and 
on the unit circle in the stopband. Therefore, the obtained 
filter has the minimum phase characteristics. 
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Fig.3.  The amplitude response of FIR filter 

   with real coefficients 
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Fig.4.  Zero locations of FIR filter  

       with real coefficients 
6. Conclusion 

In this paper, we presented a directly design method of 
minimum phase FIR filters with complex coefficients using 
the SP method. In order to directly approximate the transfer 
function of FIR filter with the minimum phase 
characteristics generally, the approximation problem of the 
complex domain must be solved and the zeros of the 
transfer function is limited inside the unit circle and on the 
unit circle. To solve a complex approximation problem, we 

use a modified SP method. The filter obtained by this 
method is optimum in the Chebyshev sense because we use 
the transformation which completely converts a complex 
approximation problem into a real approximation problem. 
Moreover, we use Roushe’s theorem for coefficients 
update algorithm in SP method to restrict the zeros of 
transfer function inside the unit circle and on the unit circle. 
Therefore, the transfer function of minimum phase FIR 
filter is obtained without using factorization. Finally, the 
usefulness of the proposed method is verified using 
examples. 
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